1
|
van Eekhout JCA, Becking EC, Scheffer PG, Koutsoliakos I, Bax CJ, Henneman L, Bekker MN, Schuit E. First-Trimester Prediction Models Based on Maternal Characteristics for Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. BJOG 2025; 132:243-265. [PMID: 39449094 PMCID: PMC11704081 DOI: 10.1111/1471-0528.17983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Early risk stratification can facilitate timely interventions for adverse pregnancy outcomes, including preeclampsia (PE), small-for-gestational-age neonates (SGA), spontaneous preterm birth (sPTB) and gestational diabetes mellitus (GDM). OBJECTIVES To perform a systematic review and meta-analysis of first-trimester prediction models for adverse pregnancy outcomes. SEARCH STRATEGY The PubMed database was searched until 6 June 2024. SELECTION CRITERIA First-trimester prediction models based on maternal characteristics were included. Articles reporting on prediction models that comprised biochemical or ultrasound markers were excluded. DATA COLLECTION AND ANALYSIS Two authors identified articles, extracted data and assessed risk of bias and applicability using PROBAST. MAIN RESULTS A total of 77 articles were included, comprising 30 developed models for PE, 15 for SGA, 11 for sPTB and 35 for GDM. Discriminatory performance in terms of median area under the curve (AUC) of these models was 0.75 [IQR 0.69-0.78] for PE models, 0.62 [0.60-0.71] for SGA models of nulliparous women, 0.74 [0.72-0.74] for SGA models of multiparous women, 0.65 [0.61-0.67] for sPTB models of nulliparous women, 0.71 [0.68-0.74] for sPTB models of multiparous women and 0.71 [0.67-0.76] for GDM models. Internal validation was performed in 40/91 (43.9%) of the models. Model calibration was reported in 21/91 (23.1%) models. External validation was performed a total of 96 times in 45/91 (49.5%) of the models. High risk of bias was observed in 94.5% of the developed models and in 58.3% of the external validations. CONCLUSIONS Multiple first-trimester prediction models are available, but almost all suffer from high risk of bias, and internal and external validations were often not performed. Hence, methodological quality improvement and assessment of the clinical utility are needed.
Collapse
Affiliation(s)
| | - Ellis C. Becking
- Department of Obstetrics and Gynecology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Peter G. Scheffer
- Department of Obstetrics and Gynecology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Ioannis Koutsoliakos
- Department of Obstetrics and Gynecology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Caroline J. Bax
- Department of Obstetrics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lidewij Henneman
- Amsterdam Reproduction and Development Research InstituteAmsterdam UMCAmsterdamThe Netherlands
- Department of Human Genetics, Amsterdam UMCLocation Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Mireille N. Bekker
- Department of Obstetrics and Gynecology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Narice BF, Labib M, Wang M, Byrne V, Shepherd J, Lang ZQ, Anumba DO. Developing a logistic regression model to predict spontaneous preterm birth from maternal socio-demographic and obstetric history at initial pregnancy registration. BMC Pregnancy Childbirth 2024; 24:688. [PMID: 39433994 PMCID: PMC11494931 DOI: 10.1186/s12884-024-06892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Current predictive machine learning techniques for spontaneous preterm birth heavily rely on a history of previous preterm birth and/or costly techniques such as fetal fibronectin and ultrasound measurement of cervical length to the disadvantage of those considered at low risk and/or those who have no access to more expensive screening tools. AIMS AND OBJECTIVES We aimed to develop a predictive model for spontaneous preterm delivery < 37 weeks using socio-demographic and clinical data readily available at booking -an approach which could be suitable for all women regardless of their previous obstetric history. METHODS We developed a logistic regression model using seven feature variables derived from maternal socio-demographic and obstetric history from a preterm birth (n = 917) and a matched full-term (n = 100) cohort in 2018 and 2020 at a tertiary obstetric unit in the UK. A three-fold cross-validation technique was applied with subsets for data training and testing in Python® (version 3.8) using the most predictive factors. The model performance was then compared to the previously published predictive algorithms. RESULTS The retrospective model showed good predictive accuracy with an AUC of 0.76 (95% CI: 0.71-0.83) for spontaneous preterm birth, with a sensitivity and specificity of 0.71 (95% CI: 0.66-0.76) and 0.78 (95% CI: 0.63-0.88) respectively based on seven variables: maternal age, BMI, ethnicity, smoking, gestational type, substance misuse and parity/obstetric history. CONCLUSION Pending further validation, our observations suggest that key maternal demographic features, incorporated into a traditional mathematical model, have promising predictive utility for spontaneous preterm birth in pregnant women in our region without the need for cervical length and/or fetal fibronectin.
Collapse
Affiliation(s)
- Brenda F Narice
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Mariam Labib
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Mengxiao Wang
- Department of Automatic Control and System Engineering, The University of Sheffield, Sheffield, UK
| | - Victoria Byrne
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Joanna Shepherd
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Z Q Lang
- Department of Automatic Control and System Engineering, The University of Sheffield, Sheffield, UK
| | - Dilly Oc Anumba
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
3
|
Khan W, Zaki N, Ghenimi N, Ahmad A, Bian J, Masud MM, Ali N, Govender R, Ahmed LA. Predicting preterm birth using explainable machine learning in a prospective cohort of nulliparous and multiparous pregnant women. PLoS One 2023; 18:e0293925. [PMID: 38150456 PMCID: PMC10752564 DOI: 10.1371/journal.pone.0293925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/21/2023] [Indexed: 12/29/2023] Open
Abstract
Preterm birth (PTB) presents a complex challenge in pregnancy, often leading to significant perinatal and long-term morbidities. "While machine learning (ML) algorithms have shown promise in PTB prediction, the lack of interpretability in existing models hinders their clinical utility. This study aimed to predict PTB in a pregnant population using ML models, identify the key risk factors associated with PTB through the SHapley Additive exPlanations (SHAP) algorithm, and provide comprehensive explanations for these predictions to assist clinicians in providing appropriate care. This study analyzed a dataset of 3509 pregnant women in the United Arab Emirates and selected 35 risk factors associated with PTB based on the existing medical and artificial intelligence literature. Six ML algorithms were tested, wherein the XGBoost model exhibited the best performance, with an area under the operator receiving curves of 0.735 and 0.723 for parous and nulliparous women, respectively. The SHAP feature attribution framework was employed to identify the most significant risk factors linked to PTB. Additionally, individual patient analysis was performed using the SHAP and the local interpretable model-agnostic explanation algorithms (LIME). The overall incidence of PTB was 11.23% (11 and 12.1% in parous and nulliparous women, respectively). The main risk factors associated with PTB in parous women are previous PTB, previous cesarean section, preeclampsia during pregnancy, and maternal age. In nulliparous women, body mass index at delivery, maternal age, and the presence of amniotic infection were the most relevant risk factors. The trained ML prediction model developed in this study holds promise as a valuable screening tool for predicting PTB within this specific population. Furthermore, SHAP and LIME analyses can assist clinicians in understanding the individualized impact of each risk factor on their patients and provide appropriate care to reduce morbidity and mortality related to PTB.
Collapse
Affiliation(s)
- Wasif Khan
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain, UAE
| | - Nazar Zaki
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain, UAE
| | - Nadirah Ghenimi
- Department Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Amir Ahmad
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mohammad M. Masud
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Nasloon Ali
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Romona Govender
- Department Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Luai A. Ahmed
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, UAE
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
4
|
Khan W, Zaki N, Ahmad A, Masud MM, Govender R, Rojas-Perilla N, Ali L, Ghenimi N, Ahmed LA. Node embedding-based graph autoencoder outlier detection for adverse pregnancy outcomes. Sci Rep 2023; 13:19817. [PMID: 37963898 PMCID: PMC10645849 DOI: 10.1038/s41598-023-46726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
Adverse pregnancy outcomes, such as low birth weight (LBW) and preterm birth (PTB), can have serious consequences for both the mother and infant. Early prediction of such outcomes is important for their prevention. Previous studies using traditional machine learning (ML) models for predicting PTB and LBW have encountered two important limitations: extreme class imbalance in medical datasets and the inability to account for complex relational structures between entities. To address these limitations, we propose a node embedding-based graph outlier detection algorithm to predict adverse pregnancy outcomes. We developed a knowledge graph using a well-curated representative dataset of the Emirati population and two node embedding algorithms. The graph autoencoder (GAE) was trained by applying a combination of original risk factors and node embedding features. Samples that were difficult to reconstruct at the output of GAE were identified as outliers considered representing PTB and LBW samples. Our experiments using LBW, PTB, and very PTB datasets demonstrated that incorporating node embedding considerably improved performance, achieving a 12% higher AUC-ROC compared to traditional GAE. Our study demonstrates the effectiveness of node embedding and graph outlier detection in improving the prediction performance of adverse pregnancy outcomes in well-curated population datasets.
Collapse
Affiliation(s)
- Wasif Khan
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Nazar Zaki
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi (ASPIREPMRIAD), Al Ain, United Arab Emirates.
| | - Amir Ahmad
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mohammad M Masud
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Romana Govender
- Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Natalia Rojas-Perilla
- Department of Analytics in the Digital Era, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Luqman Ali
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Nadirah Ghenimi
- Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Luai A Ahmed
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Identifying the Early Signs of Preterm Birth from U.S. Birth Records Using Machine Learning Techniques. INFORMATION 2022. [DOI: 10.3390/info13070310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of infant mortality in the U.S. and globally. The goal of this study is to increase understanding of PTB risk factors that are present early in pregnancy by leveraging statistical and machine learning (ML) techniques on big data. The 2016 U.S. birth records were obtained and combined with two other area-level datasets, the Area Health Resources File and the County Health Ranking. Then, we applied logistic regression with elastic net regularization, random forest, and gradient boosting machines to study a cohort of 3.6 million singleton deliveries to identify generalizable PTB risk factors. The response variable is preterm birth, which includes spontaneous and indicated PTB, and we performed a binary classification. Our results show that the most important predictors of preterm birth are gestational and chronic hypertension, interval since last live birth, and history of a previous preterm birth, which explains 10.92, 5.98, and 5.63% of the predictive power, respectively. Parents' education is one of the influential variables in predicting PTB, explaining 7.89% of the predictive power. The relative importance of race declines when parents are more educated or have received adequate prenatal care. The gradient boosting machines outperformed with an AUC of 0.75 (sensitivity: 0.64, specificity: 0.73) for the validation dataset. In this study, we compare our results with seminal and most related studies to demonstrate the superiority of our results. The application of ML techniques improved the performance measures in the prediction of preterm birth. The results emphasize the importance of socioeconomic factors such as parental education as one of the most important indicators of preterm birth. More research is needed on these mechanisms through which socioeconomic factors affect biological responses.
Collapse
|
6
|
Tarimo CS, Bhuyan SS, Zhao Y, Ren W, Mohammed A, Li Q, Gardner M, Mahande MJ, Wang Y, Wu J. Prediction of low Apgar score at five minutes following labor induction intervention in vaginal deliveries: machine learning approach for imbalanced data at a tertiary hospital in North Tanzania. BMC Pregnancy Childbirth 2022; 22:275. [PMID: 35365129 PMCID: PMC8976377 DOI: 10.1186/s12884-022-04534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Prediction of low Apgar score for vaginal deliveries following labor induction intervention is critical for improving neonatal health outcomes. We set out to investigate important attributes and train popular machine learning (ML) algorithms to correctly classify neonates with a low Apgar scores from an imbalanced learning perspective. Methods We analyzed 7716 induced vaginal deliveries from the electronic birth registry of the Kilimanjaro Christian Medical Centre (KCMC). 733 (9.5%) of which constituted of low (< 7) Apgar score neonates. The ‘extra-tree classifier’ was used to assess features’ importance. We used Area Under Curve (AUC), recall, precision, F-score, Matthews Correlation Coefficient (MCC), balanced accuracy (BA), bookmaker informedness (BM), and markedness (MK) to evaluate the performance of the selected six (6) machine learning classifiers. To address class imbalances, we examined three widely used resampling techniques: the Synthetic Minority Oversampling Technique (SMOTE) and Random Oversampling Examples (ROS) and Random undersampling techniques (RUS). We applied Decision Curve Analysis (DCA) to evaluate the net benefit of the selected classifiers. Results Birth weight, maternal age, and gestational age were found to be important predictors for the low Apgar score following induced vaginal delivery. SMOTE, ROS and and RUS techniques were more effective at improving “recalls” among other metrics in all the models under investigation. A slight improvement was observed in the F1 score, BA, and BM. DCA revealed potential benefits of applying Boosting method for predicting low Apgar scores among the tested models. Conclusion There is an opportunity for more algorithms to be tested to come up with theoretical guidance on more effective rebalancing techniques suitable for this particular imbalanced ratio. Future research should prioritize a debate on which performance indicators to look up to when dealing with imbalanced or skewed data. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04534-0.
Collapse
Affiliation(s)
- Clifford Silver Tarimo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
| | - Soumitra S Bhuyan
- Rutgers University-New Brunswick, Edward J. Bloustein, School of Planning and Public Policy, New Brunswick, USA
| | - Yizhen Zhao
- Luoyang Orthopedic Traumatological Hospital of Henan Province, Luoyang, China
| | - Weicun Ren
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,College of Sanquan, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Akram Mohammed
- Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Quanman Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Marilyn Gardner
- Department of Public Health, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY, 42101, USA
| | - Michael Johnson Mahande
- Institute of Public Health, Kilimanjaro Christian Medical University College, P.O. Box 2240, Moshi, Tanzania
| | - Yuhui Wang
- Centre for Financial and Corporate Integrity, Coventry University, Coventry, UK
| | - Jian Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China. .,Henan Province Engineering Research Center of Health Economics & Health Technology Assessment, Henan Province, China.
| |
Collapse
|
7
|
AlSaad R, Malluhi Q, Boughorbel S. PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks. BioData Min 2022; 15:6. [PMID: 35164820 PMCID: PMC8842907 DOI: 10.1186/s13040-022-00289-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/23/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Early identification of pregnant women at risk for preterm birth (PTB), a major cause of infant mortality and morbidity, has a significant potential to improve prenatal care. However, we lack effective predictive models which can accurately forecast PTB and complement these predictions with appropriate interpretations for clinicians. In this work, we introduce a clinical prediction model (PredictPTB) which combines variables (medical codes) readily accessible through electronic health record (EHR) to accurately predict the risk of preterm birth at 1, 3, 6, and 9 months prior to delivery. METHODS The architecture of PredictPTB employs recurrent neural networks (RNNs) to model the longitudinal patient's EHR visits and exploits a single code-level attention mechanism to improve the predictive performance, while providing temporal code-level and visit-level explanations for the prediction results. We compare the performance of different combinations of prediction time-points, data modalities, and data windows. We also present a case-study of our model's interpretability illustrating how clinicians can gain some transparency into the predictions. RESULTS Leveraging a large cohort of 222,436 deliveries, comprising a total of 27,100 unique clinical concepts, our model was able to predict preterm birth with an ROC-AUC of 0.82, 0.79, 0.78, and PR-AUC of 0.40, 0.31, 0.24, at 1, 3, and 6 months prior to delivery, respectively. Results also confirm that observational data modalities (such as diagnoses) are more predictive for preterm birth than interventional data modalities (e.g., medications and procedures). CONCLUSIONS Our results demonstrate that PredictPTB can be utilized to achieve accurate and scalable predictions for preterm birth, complemented by explanations that directly highlight evidence in the patient's EHR timeline.
Collapse
Affiliation(s)
- Rawan AlSaad
- College of Engineering, Qatar University, Doha, Qatar
| | | | - Sabri Boughorbel
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|