1
|
Zou J, Du C, Liu S, Zhao P, Gao S, Chen B, Wu X, Huang W, Zhu Z, Liao J. Notch1 signaling regulates Sox9 and VEGFA expression and governs BMP2-induced endochondral ossification of mesenchymal stem cells. Genes Dis 2025; 12:101336. [PMID: 40083323 PMCID: PMC11905894 DOI: 10.1016/j.gendis.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 03/16/2025] Open
Abstract
Although bone morphogenetic protein 2 (BMP2) can induce chondrogenic differentiation of mesenchymal stem cells (MSCs), its induction of endochondral ossification limits the application of BMP2-based cartilage regeneration. Here, we clarified the mechanisms of BMP2-induced endochondral ossification of MSCs. In vitro and in vivo chondrogenic, osteogenic, and angiogenic differentiation models of MSCs were constructed. The expression of target genes was identified at both protein and mRNA levels. RNA sequencing, molecular docking, co-immunoprecipitation, and chromatin immunoprecipitation followed by sequencing were applied to investigate the molecular mechanisms. We found that BMP2 up-regulated the expression of Notch receptors and ligands in MSCs. Notch1 signaling activation was related to inhibition of chondrogenic differentiation, promotion of osteogenic and angiogenic differentiation. In vivo ectopic stem cell implantation identified that Notch1 signaling activation blocked BMP2-induced chondrogenesis and facilitated endochondral ossification of MSCs. Mechanistically, we elucidated Notch1 intracellular domain (NICD1)-RBPjk complex binding to SRY-box transcription factor 9 (Sox9) and vascular endothelial growth factor A (VEGFA) promoters to decrease Sox9 expression and increase VEGFA expression. These findings suggest that Notch1 signaling can regulate BMP2-induced endochondral ossification by promoting RBPjk-mediated Sox9 inactivation and VEGFA expression. It is conceivable that targeting Notch1 signaling mediated endochondral ossification would benefit BMP2-based cartilage regeneration.
Collapse
Affiliation(s)
- Jing Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shengqiang Gao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bowen Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Zhu Y, Liu Q, Yu C, Zhang H, Zhong J, Wang Y, Mei O, Gerhard E, You W, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Zeb U, Luu HH, Lee MJ, Shi LL, Bi Y, Yang J, Fan J, Reid RR, He T, Wen L. An Intervertebral Disc (IVD) Regeneration Model Using Human Nucleus Pulposus Cells (iHNPCs) and Annulus Fibrosus Cells (iHAFCs). Adv Healthc Mater 2025; 14:e2403742. [PMID: 40052622 PMCID: PMC12004445 DOI: 10.1002/adhm.202403742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Indexed: 04/18/2025]
Abstract
Intervertebral disc (IVD) degeneration (IVDD), primarily caused by nucleus pulposus (NP) dehydration, leads to low back pain. While current treatments focus on symptom management or surgical intervention, tissue engineering using IVD-derived cells, biofactors, and scaffolds offers a promising regenerative approach. Here, human NP cells (NPCs) and annulus fibrosus cells (AFCs) are immortalized with human telomerase reverse transcriptase (hTERT), generating immortalized NPCs (iHNPCs) and AFCs (iHAFCs). These cells express NP and AF-specific markers, are reversible via FLP recombinase, and are non-tumorigenic. iHAFCs exhibit osteogenic potential, while iHNPCs show chondrogenic differentiation. A 3D-printed citrate-based scaffold was employed to develop an IVD regeneration model, with BMP9-stimulated iHAFCs in the peripheral region and BMP2-stimulated iHNPCs in the central region. Histological analysis revealed bone formation in the iHAFC region and cartilage formation in the iHNPC region, mimicking the natural IVD structure. Additionally, an ex vivo spine fusion model demonstrated robust bone formation in iHAFC-treated segments. These findings highlight the potential of iHAFCs and iHNPCs as valuable tools for IVD tissue engineering and regeneration.
Collapse
|
3
|
Liu J, Yang K, Li G, Tan Y. Synergistic influences of BMP9 and NGF on the osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. J Orthop Surg Res 2025; 20:287. [PMID: 40089726 PMCID: PMC11909987 DOI: 10.1186/s13018-025-05669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) and nerve growth factor (NGF) are critical factors influencing osteogenic differentiation in mesenchymal stem cells (MSCs). While BMP9 has been recognized for its potent osteogenic capabilities, NGF's role in bone tissue engineering is less understood. This investigation delineated the synergistic link of BMP9 with NGF in driving osteogenic differentiation in C3H10T1/2 MSCs. OBJECTIVE To evaluate the combined impact of BMP9 and NGF on osteogenic markers' expression levels and the formation of calcified nodules in C3H10T1/2 cells, providing a basis for the enhanced bone regeneration strategies in tissue engineering. METHODS C3H10T1/2 cells were subjected to treatment regimens incorporating NGF at variable concentrations (10, 50, and 100 ng/ml) and BMP9, either as monotherapies or in combination. Osteogenic differentiation' comprehensive assessment was undertaken by quantifying early-stage markers (Runx2, Col I) and late-stage markers (OPN) via RT-PCR, Western blotting, ALP staining, and Alizarin Red S staining for mineralized matrix deposition. RESULTS NGF elicited a concentration-dependent augmentation of early osteogenic markers, with the 10 ng/ml dosage demonstrating maximal efficacy. BMP9 independently facilitated robust osteogenic differentiation, whereas the combinatorial treatment with BMP9 and NGF synergistically amplified the expression levels of Runx2, Col I, and OPN. Notably, this combined treatment yielded a remarkable enhancement in the deposition of mineralized extracellular matrix, as evidenced by a notable escalation in the size and density of calcified nodules relative to monotherapies. CONCLUSION The findings unveiled the remarkable synergistic link of BMP9 with NGF in potentiating osteogenic differentiation in C3H10T1/2 MSCs. This dual-factor approach presents a compelling paradigm for advancing bone regeneration strategies, providing substantial promise for utilization in bone tissue engineering plus regenerative medicine.
Collapse
Affiliation(s)
- Junyu Liu
- Chongqing Key Laboratory of Oral Diseases, The Affiliated Stomatological Hospital of Chongqing Medical University, No.426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Kun Yang
- Department of Periodontology, Affiliated Stomatology Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563099, China
| | - Gang Li
- Department of Stomatology, The First Affiliated Hospital of Army Medical University, No.29 Gaotanyan Main Street, Shapingba District, Chongqing, 400038, China
| | - Yinghui Tan
- Department of Stomatology, The Second Affiliated Hospital of Army Medical University, No.83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
4
|
Resuela-González JL, González-Gómez MJ, Rodríguez-Cano MM, López-López S, Monsalve EM, Díaz-Guerra MJM, Laborda J, Nueda ML, Baladrón V. NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells. Differentiation 2025; 142:100837. [PMID: 39879823 DOI: 10.1016/j.diff.2025.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Osteoblastogenesis is governed by complex interplays among signaling pathways, which modulate the expression of specific markers at each differentiation stage. This process enables osteoblast precursor cells to adopt the morphological and biochemical characteristics of mature bone cells. Our study investigates the role of NOTCH signaling in osteogenesis in MC3T3-E1 and C3H10T1/2 cell lines. MC3T3-E1 cells are preosteoblast precursors widely recognized as a model for bone biology research, offering a convenient and physiologically relevant system to study osteoblast transcriptional regulation. Conversely, the mesenchymal C3H10T1/2 cells are multipotent, capable of differentiating into osteoblasts, adipocytes, and chondrocytes under specific extracellular cues. The core of this in vitro study is the comparative analysis of the impact of overexpressing each mammalian NOTCH receptor on osteoblastogenesis in two cell lines reflecting different cell differentiation stages. We generated stable transfectant pools of both cell lines for each of the four NOTCH receptors and characterized their effect on osteoblastogenesis. We successfully obtained transfectant pools that overexpress Notch1, Notch2 and Notch3 at both mRNA and protein levels. However, we were unable to obtain cells overexpressing Notch4 at protein level. Our findings reveal that the overexpression of NOTCH1, NOTCH2, and NOTCH3 receptors promotes osteoblast differentiation in mesenchymal C3H10T1/2 cells, while inhibiting it in preosteoblastic MC3T3-E1 cells. These results provide novel insights into the distinct roles of NOTCH receptors in osteoblastogenesis across two different precursor cell types, potentially guiding the development of new therapeutic approaches for bone diseases.
Collapse
Affiliation(s)
- Jose-Luis Resuela-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de MonteGancedo UPM, Pozuelo de Alarcón, 28223, Spain; Departamento de Biotecnología-Biotecnología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040, Madrid, Spain
| | - María-Julia González-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, ETSIAMB/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-Milagros Rodríguez-Cano
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - Susana López-López
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, ETSIAMB/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - Eva-María Monsalve
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-José M Díaz-Guerra
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - Jorge Laborda
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-Luisa Nueda
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain.
| | - Victoriano Baladrón
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain.
| |
Collapse
|
5
|
Zhao G, Zhao P, Wang Y, Zhang H, Zhu Y, Zhong J, You W, Shen G, Luo C, Mei O, Wu X, Li J, Shu Y, Wang H, Wagstaff W, Luu HH, Bi Y, Shi LL, Reid RR, He TC, Jiang L, Tang W, Fan J, Tang Z. GAPDH suppresses adenovirus-induced oxidative stress and enables a superfast production of recombinant adenovirus. Genes Dis 2024; 11:101344. [PMID: 39188753 PMCID: PMC11345542 DOI: 10.1016/j.gendis.2024.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/15/2024] [Indexed: 08/28/2024] Open
Abstract
Recombinant adenovirus (rAdV) is a commonly used vector system for gene transfer. Efficient initial packaging and subsequent production of rAdV remains time-consuming and labor-intensive, possibly attributable to rAdV infection-associated oxidative stress and reactive oxygen species (ROS) production. Here, we show that exogenous GAPDH expression mitigates adenovirus-induced ROS-associated apoptosis in HEK293 cells, and expedites adenovirus production. By stably overexpressing GAPDH in HEK293 (293G) and 293pTP (293GP) cells, respectively, we demonstrated that rAdV-induced ROS production and cell apoptosis were significantly suppressed in 293G and 293GP cells. Transfection of 293G cells with adenoviral plasmid pAd-G2Luc yielded much higher titers of Ad-G2Luc at day 7 than that in HEK293 cells. Similarly, Ad-G2Luc was amplified more efficiently in 293G than in HEK293 cells. We further showed that transfection of 293GP cells with pAd-G2Luc produced much higher titers of Ad-G2Luc at day 5 than that of 293pTP cells. 293GP cells amplified the Ad-G2Luc much more efficiently than 293pTP cells, indicating that exogenous GAPDH can further augment pTP-enhanced adenovirus production. These results demonstrate that exogenous GAPDH can effectively suppress adenovirus-induced ROS and thus accelerate adenovirus production. Therefore, the engineered 293GP cells represent a superfast rAdV production system for adenovirus-based gene transfer and gene therapy.
Collapse
Affiliation(s)
- Guozhi Zhao
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200000, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 4000430, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wulin You
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214071, China
| | - Guowei Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Benq Medical Center, The Affiliated Benq Hospital of Nanjing Medical University, Nanjing, Jiangsu 210019, China
| | - Changqi Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Yibin Second People's Hospital, Affiliated with West China School of Medicine, Yibin, Sichuan 644000, China
| | - Ou Mei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedics, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Xingye Wu
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jingjing Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Oncology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, The National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Division of Research and Development, Decoding Therapeutics, Inc., Mt Prospect, IL 60056, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, The National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Li Jiang
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tang
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Tang
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
7
|
Zhao H, Zhao H, Ji S. A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies. Stem Cell Rev Rep 2024; 20:1420-1440. [PMID: 38727878 DOI: 10.1007/s12015-024-10732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 08/13/2024]
Abstract
Mesenchymal stem cells (MSCs) are extensively researched for therapeutic applications in tissue engineering and show significant potential for clinical use. Intrinsic or extrinsic factors causing senescence may lead to reduced proliferation, aberrant differentiation, weakened immunoregulation, and increased inflammation, ultimately limiting the potential of MSCs. It is crucial to comprehend the molecular pathways and internal processes responsible for the decline in MSC function due to senescence in order to devise innovative approaches for rejuvenating senescent MSCs and enhancing MSC treatment. We investigate the main molecular processes involved in senescence, aiming to provide a thorough understanding of senescence-related issues in MSCs. Additionally, we analyze the most recent advancements in cutting-edge approaches to combat MSC senescence based on current research. We are curious whether the aging process of stem cells results in a permanent "memory" and if cellular reprogramming may potentially revert the aging epigenome to a more youthful state.
Collapse
Affiliation(s)
- Hongqing Zhao
- Nanbu County People's Hospital, Nanchong City, 637300, Sichuan Province, China
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Houming Zhao
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China
| | - Shuaifei Ji
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China.
| |
Collapse
|
8
|
Zhu Y, Mei O, Zhang H, You W, Zhong J, Collins CP, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Luu HH, Shi LL, Fan J, He TC, Ameer GA, Sun C, Wen L, Reid RR. Establishment and characterization of a rat model of scalp-cranial composite defect for multilayered tissue engineering. RESEARCH SQUARE 2024:rs.3.rs-4643966. [PMID: 39108474 PMCID: PMC11302684 DOI: 10.21203/rs.3.rs-4643966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.
Collapse
Affiliation(s)
- Yi Zhu
- The University of Chicago Medical Center
| | - Ou Mei
- The University of Chicago Medical Center
| | - Hui Zhang
- The University of Chicago Medical Center
| | - Wulin You
- The University of Chicago Medical Center
| | | | | | | | | | - Xingye Wu
- The University of Chicago Medical Center
| | | | - Yi Shu
- The University of Chicago Medical Center
| | - Ya Wen
- Capital Medical University
| | - Hue H Luu
- The University of Chicago Medical Center
| | | | | | | | | | | | - Liangyuan Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | | |
Collapse
|
9
|
Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, Zhao G, Wang Y, Zhu Y, Zhang H, Shi Y, Wagstaff W, Luu HH, Shi LL, Reid RR, He TC, Fan J. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater 2024; 34:51-63. [PMID: 38186960 PMCID: PMC10770370 DOI: 10.1016/j.bioactmat.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-β, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yanran Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200000, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 4000430, China
| | - Yunhan Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Psychology, School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
10
|
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024; 16:102-113. [PMID: 38455105 PMCID: PMC10915952 DOI: 10.4252/wjsc.v16.i2.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) originate from many sources, including the bone marrow and adipose tissue, and differentiate into various cell types, such as osteoblasts and adipocytes. Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development. Osteogenesis is the process by which new bones are formed; it also aids in bone remodeling. Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways are involved in many cellular processes and considered to be essential for life. Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body. Recent studies have indicated that these two signaling pathways contribute to osteogenic differentiation. Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway. Here, we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation, emphasizing the canonical pathways. This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch- and extracellular-regulated kinases in osteogenic differentiation and bone development.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
11
|
Chang L, Zheng Y, Li S, Niu X, Huang S, Long Q, Ran X, Wang J. Identification of genomic characteristics and selective signals in Guizhou black goat. BMC Genomics 2024; 25:164. [PMID: 38336605 PMCID: PMC10854126 DOI: 10.1186/s12864-023-09954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Guizhou black goat is one of the indigenous black goat breeds in the southwest region of Guizhou, China, which is an ordinary goat for mutton production. They are characterized by moderate body size, black coat, favorite meat quality with tender meat and lower odor, and tolerance for cold and crude feed. However, little is known about the genetic characteristics or variations underlying their important economic traits. RESULTS Here, we resequenced the whole genome of Guizhou black goat from 30 unrelated individuals breeding in the five core farms. A total of 9,835,610 SNPs were detected, and 2,178,818 SNPs were identified specifically in this breed. The population structure analysis revealed that Guizhou black goat shared a common ancestry with Shaanbei white cashmere goat (0.146), Yunshang black goat (0.103), Iran indigenous goat (0.054), and Moroccan goat (0.002). However, Guizhou black goat showed relatively higher genetic diversity and a lower level of linkage disequilibrium than the other seven goat breeds by the analysis of the nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity. Based on FST and θπ values, we identified 645, 813, and 804 selected regions between Guizhou black goat and Yunshang black goat, Iran indigenous goat, and cashmere goats. Combined with the results of XP-EHH, there were 286, 322, and 359 candidate genes, respectively. Functional annotation analysis revealed that these genes are potentially responsible for the immune response (e.g., CD28, CD274, IL1A, TLR2, and SLC25A31), humility-cold resistance (e.g., HBEGF, SOSTDC1, ARNT, COL4A1/2, and EP300), meat quality traits (e.g., CHUK, GAB2, PLAAT3, and EP300), growth (e.g., GAB2, DPYD, and CSF1), fertility (e.g., METTL15 and MEI1), and visual function (e.g., PANK2 and NMNAT2) in Guizhou black goat. CONCLUSION Our results indicated that Guizhou black goat had a high level of genomic diversity and a low level of linkage disequilibrium in the whole genome. Selection signatures were detected in the genomic regions that were mainly related to growth and development, meat quality, reproduction, disease resistance, and humidity-cold resistance in Guizhou black goat. These results would provide a basis for further resource protection and breeding improvement of this very local breed.
Collapse
Affiliation(s)
- Lingle Chang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yundi Zheng
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qingmeng Long
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
12
|
Seong CH, Chiba N, Fredy M, Kusuyama J, Ishihata K, Kibe T, Amir MS, Tada R, Ohnishi T, Nakamura N, Matsuguchi T. Early induction of Hes1 by bone morphogenetic protein 9 plays a regulatory role in osteoblastic differentiation of a mesenchymal stem cell line. J Cell Biochem 2023; 124:1366-1378. [PMID: 37565579 DOI: 10.1002/jcb.30452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Bone morphogenic protein 9 (BMP9) is one of the most potent inducers of osteogenic differentiation among the 14 BMP members, but its mechanism of action has not been fully demonstrated. Hes1 is a transcriptional regulator with basic helix-loop-helix (bHLH) domain and is a well-known Notch effector. In this study, we investigated the functional roles of early induction of Hes1 by BMP9 in a mouse mesenchymal stem cell line, ST2. Hes1 mRNA was transiently and periodically induced by BMP9 in ST2, which was inhibited by BMP signal inhibitors but not by Notch inhibitor. Interestingly, Hes1 knockdown in ST2 by siRNA increased the expression of osteogenic differentiation markers such as Sp7 and Ibsp and matrix mineralization in comparison with control siRNA transfected ST2. In contrast, forced expression of Hes1 by using the Tet-On system suppressed the expression of osteogenic markers and matrix mineralization by BMP9. We also found that the early induction of Hes1 by BMP9 suppressed the expression of Alk1, an essential receptor for BMP9. In conclusion, BMP9 rapidly induces the expression of Hes1 via the SMAD pathway in ST2 cells, which plays a negative regulatory role in osteogenic differentiation of mesenchymal stem cells induced by BMP9.
Collapse
Affiliation(s)
- Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mardiyantoro Fredy
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Brawijaya University, Malang, Indonesia
| | - Kiyohide Ishihata
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Biosignals and Inheritance, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryohei Tada
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
13
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Yang W, Wang C, Luo W, Apicella A, Ji P, Wang G, Liu B, Fan Y. Effectiveness of biomechanically stable pergola-like additively manufactured scaffold for extraskeletal vertical bone augmentation. Front Bioeng Biotechnol 2023; 11:1112335. [PMID: 37057137 PMCID: PMC10089125 DOI: 10.3389/fbioe.2023.1112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Objective: Extraskeletal vertical bone augmentation in oral implant surgery requires extraosseous regeneration beyond the anatomical contour of the alveolar bone. It is necessary to find a better technical/clinical solution to solve the dilemma of vertical bone augmentation. 3D-printed scaffolds are all oriented to general bone defect repair, but special bone augmentation design still needs improvement.Methods: This study aimed to develop a structural pergola-like scaffold to be loaded with stem cells from the apical papilla (SCAPs), bone morphogenetic protein 9 (BMP9) and vascular endothelial growth factor (VEGF) to verify its bone augmentation ability even under insufficient blood flow supply. Scaffold biomechanical and fluid flow optimization design by finite element analysis (FEA) and computational fluid dynamics (CFD) was performed on pergola-like additive-manufactured scaffolds with various porosity and pore size distributions. The scaffold geometrical configuration showing better biomechanical and fluid dynamics properties was chosen to co-culture for 2 months in subcutaneously into nude mice, with different SCAPs, BMP9, and (or) VEGF combinations. Finally, the samples were removed for Micro-CT and histological analysis.Results: Micro-CT and histological analysis of the explanted scaffolds showed new bone formation in the “Scaffold + SCAPs + BMP9” and the “Scaffold + SCAPs + BMP9 + VEGF” groups where the VEGF addition did not significantly improve osteogenesis. No new bone formation was observed either for the “Blank Scaffold” and the “Scaffold + SCAPs + GFP” group. The results of this study indicate that BMP9 can effectively promote the osteogenic differentiation of SCAPs.Conclusion: The pergola-like scaffold can be used as an effective carrier and support device for new bone regeneration and mineralization in bone tissue engineering, and can play a crucial role in obtaining considerable vertical bone augmentation even under poor blood supply.
Collapse
Affiliation(s)
- Wei Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- *Correspondence: Chao Wang,
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, China
| | - Antonio Apicella
- Advanced Materials Lab, Department of Architecture and Industrial Design, University of Campania, Aversa, Italy
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Gong Wang
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Bingshan Liu
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
15
|
TAZ promotes osteogenic differentiation of mesenchymal stem cells line C3H10T1/2, murine multi-lineage cells lines C2C12, and MEFs induced by BMP9. Cell Death Dis 2022; 8:499. [PMID: 36575168 PMCID: PMC9794779 DOI: 10.1038/s41420-022-01292-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic protein 9 (BMP9), also named as growth differentiation factor 2 (GDF-2), is the strongest cytokine that promotes osteogenic differentiation in the BMP family, and has broad clinical application value. Nevertheless, the mechanism of BMP9 promotes osteogenic differentiation remain unclear. TAZ, a transcriptional co-activator, has great effects on cell proliferation, differentiation, and stem cell self-renewal. In this research, we investigated the effects of TAZ in BMP9-induced osteogenic differentiation of mesenchymal stem cell line C3H10T1/2 (MSCs) and murine multi-lineage cell lines C2C12 and MEFs (MMCs) and explored its possible mechanisms. This study has found that BMP9 induces the expression of TAZ and promotes its nuclear translocation. Meanwhile, our study found that Ad-TAZ and TM-25659, a TAZ agonist, can enhance the osteogenic differentiation of MSCs and MMCs induced by BMP9. Conversely, Ad-si-TAZ and verteporfin, an inhibitor of TAZ, have the contradictory effect. Likewise, the promotion of TAZ to the BMP9-induced ectopic bone formation in vivo was confirmed by the subcutaneous transplantation of MSCs in nude mice. Furthermore, we have detected that TAZ might increase the levels of the phosphorylation of Smad1/5/8, p38, ERK1/2, and JNK induced by BMP9. Additionally, we also found that TAZ increased the total protein level of β-catenin induced by BMP9. In summary, our results strongly indicated that TAZ will promote the osteogenic differentiation in MSCs and MMCs induced by BMP9 through multiple signal pathways.
Collapse
|
16
|
Zhang Y, Zhao Y, Xie Z, Li M, Liu Y, Tu X. Activating Wnt/β-Catenin Signaling in Osteocytes Promotes Osteogenic Differentiation of BMSCs through BMP-7. Int J Mol Sci 2022; 23:ijms232416045. [PMID: 36555684 PMCID: PMC9785209 DOI: 10.3390/ijms232416045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Bone formation is critically needed in orthopedic clinical practice. We found that, bone morphogenetic protein-7 (BMP-7) gene expression was significantly increased in fractured mice, which activates canonical Wnt signaling exclusively in osteocytes. Wnt and BMP signaling appear to exhibit synergistic or antagonistic effects in different kinds of cells. However, the communication between Wnt/β-catenin signaling and BMP signaling in osteocytes is almost unknown. Our study verified in vitro that BMP-7 expression was significantly increased when Wnt signaling was activated in osteocytes. Next, BMP-7 in osteocytes was overexpressed using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was enhanced, when cocultured with osteocytes. On the contrary, BMP-7 in osteocytes was silenced using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was weakened. In addition, the osteogenesis of BMSCs was no longer promoted by Wnt-activated osteocytes when BMP-7 was silenced. Therefore, the results showed that BMP-7 mediated the anabolic actions of Wnt/β-catenin signaling in osteocytes. Our study provides new evidence for the clinical application of BMP-7-overexpressed osteocytes.
Collapse
Affiliation(s)
- Yining Zhang
- Correspondence: (Y.Z.); (X.T.); Tel.: +86-23-6365-1934 (X.T.)
| | | | | | | | | | - Xiaolin Tu
- Correspondence: (Y.Z.); (X.T.); Tel.: +86-23-6365-1934 (X.T.)
| |
Collapse
|
17
|
HIF1α Promotes BMP9-Mediated Osteoblastic Differentiation and Vascularization by Interacting with CBFA1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2475169. [PMID: 36217388 PMCID: PMC9547689 DOI: 10.1155/2022/2475169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 12/09/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) as the most potent osteogenic molecule which initiates the differentiation of stem cells into the osteoblast lineage and regulates angiogenesis, remains unclear how BMP9-regulated angiogenic signaling is coupled to the osteogenic pathway. Hypoxia-inducible factor 1α (HIF1α) is critical for vascularization and osteogenic differentiation and the CBFA1, known as runt-related transcription factor 2 (Runx2) which plays a regulatory role in osteogenesis. This study investigated the combined effect of HIF1α and Runx2 on BMP9-induced osteogenic and angiogenic differentiation of the immortalized mouse embryonic fibroblasts (iMEFs). The effect of HIF1α and Runx2 on the osteogenic and angiogenic differentiation of iMEFs was evaluated. The relationship between HIF1α- and Runx2-mediated angiogenesis during BMP9-regulated osteogenic differentiation of iMEFs was evaluated by ChIP assays. We demonstrated that exogenous expression of HIF1α and Runx2 is coupled to potentiate BMP9-induced osteogenic and angiogenic differentiation both in vitro and animal model. Chromatin immunoprecipitation assays (ChIP) showed that Runx2 is a downstream target of HIF1α that regulates BMP9-mediated osteogenesis and angiogenic differentiation. Our findings reveal that HIF1α immediately regulates Runx2 and may originate an essential regulatory thread to harmonize osteogenic and angiogenic differentiation in iMEFs, and this coupling between HIF1α and Runx2 is essential for bone healing.
Collapse
|
18
|
Zhang L, Luo W, Liu J, Xu M, Peng Q, Zou W, You J, Shu Y, Zhao P, Wagstaff W, Zhao G, Qin K, Haydon RC, Luu HH, Reid RR, Bi Y, Zhao T, He TC, Fu Z. Modeling lung diseases using reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2). Cell Biosci 2022; 12:159. [PMID: 36138472 PMCID: PMC9502644 DOI: 10.1186/s13578-022-00894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND A healthy alveolar epithelium is critical to the gas exchange function of the lungs. As the major cell type of alveolar epithelium, alveolar type 2 (AT2) cells play a critical role in maintaining pulmonary homeostasis by serving as alveolar progenitors during lung injury, inflammation, and repair. Dysregulation of AT2 cells may lead to the development of acute and chronic lung diseases and cancer. The lack of clinically relevant AT2 cell models hampers our ability to understand pulmonary diseases. Here, we sought to establish reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2) and investigate their potential in forming alveolar organoids to model pulmonary diseases. METHODS Primary mouse pulmonary alveolar cells (mPACs) were isolated and immortalized with a retroviral expression of SV40 Large T antigen (LTA). Cell proliferation and survival was assessed by crystal violet staining and WST-1 assays. Marker gene expression was assessed by qPCR, Western blotting, and/or immunostaining. Alveolar organoids were generated by using matrigel. Ad-TGF-β1 was used to transiently express TGF-β1. Stable silencing β-catenin or overexpression of mutant KRAS and TP53 was accomplished by using retroviral vectors. Subcutaneous cell implantations were carried out in athymic nude mice. The retrieved tissue masses were subjected to H & E histologic evaluation. RESULTS We immortalized primary mPACs with SV40 LTA to yield the imPACs that were non-tumorigenic and maintained long-term proliferative activity that was reversible by FLP-mediated removal of SV40 LTA. The EpCAM+ AT2-enriched subpopulation (i.e., imPAC2) was sorted out from the imPACs, and was shown to express AT2 markers and form alveolar organoids. Functionally, silencing β-catenin decreased the expression of AT2 markers in imPAC2 cells, while TGF-β1 induced fibrosis-like response by regulating the expression of epithelial-mesenchymal transition markers in the imPAC2 cells. Lastly, concurrent expression of oncogenic KRAS and mutant TP53 rendered the imPAC2 cells a tumor-like phenotype and activated lung cancer-associated pathways. Collectively, our results suggest that the imPAC2 cells may faithfully represent AT2 populations that can be further explored to model pulmonary diseases.
Collapse
Affiliation(s)
- Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Jiang Liu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Maozhu Xu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qi Peng
- University-Town Hospital, Chongqing Medical University, Chongqing, 401331, China
| | - Wenjing Zou
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jingyi You
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Shu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400046, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400046, China
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Rosalind Franklin University of Medicine, North Chicago, IL, 60064, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, the Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA.
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
| | - Zhou Fu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
19
|
Zhong X, Wang H. circSKIL promotes osteoblastic differentiation of periodontal ligament cells by sponging miR-532-5p to activate Notch signaling. J Periodontal Res 2022; 57:1148-1158. [PMID: 36063416 DOI: 10.1111/jre.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament cells (PDLCs) possess the capacity to differentiate into a variety of cell types to benefit periodontal regeneration. In this study, we examined the circSKIL/miR-532-5p/Notch1 axis in controlling the osteoblastic differentiation of PDLCs. METHODS Primary human PDLCs (hPDLCs) were isolated and induced to differentiate into osteoblasts. Osteogenic responses were assessed for the expressions of osteoblast-related marker proteins (including alkaline phosphatase (ALP), osteocalcin (OCN), bone morphogenetic protein-2 (BMP2), and runt-related transcription factor 2 (RUNX2) by RT-PCR. The formation of mineralized nodules was examined by Alizarin Red S (ARS) staining and ALP activity. Expressions of circSKIL, miR-532-5p, and Notch1 were measured by RT-PCR and western blotting, and their regulations by combining bioinformatic analysis and luciferase reporter assay. Notch signaling was assessed for the expressions of hairy and enhancer of split-1 (HES1) and Notch intracellular domain (NICD). RESULTS During osteoblastic differentiation of hPDLCs, circSKIL, and Notch1 were up-regulated, while miR-532-5p down-regulated. By sponging miR-532-5p, circSKIL activated Notch signaling, increasing levels of Notch1, HES1, and NICD. Functionally, knocking down circSKIL or overexpressing miR-532-5p inhibited osteoblastic differentiation of PDLCs, down-regulating ALP, OCN, BMP2, and RUNX2, and reducing ARS staining or ALP activity. The impacts of circSKIL knockdown were rescued by miR-532-5p inhibitor or overexpressing Notch1, while those caused by up-regulating miR-532-5p were reversed by overexpressing Notch1. CONCLUSION By targeting miR-532-5p and up-regulating Notch1, circSKIL critically controls osteoblastic differentiation of hPDLCs. Therefore, modulating this axis may maximize the differentiation of PDLCs into osteoblasts and benefit periodontal regeneration.
Collapse
Affiliation(s)
- Xiaohuan Zhong
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Huixin Wang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Gou Y, Weng Y, Chen Q, Wu J, Wang H, Zhong J, Bi Y, Cao D, Zhao P, Dong X, Guo M, Wagstaff W, Hendren-Santiago B, Chen C, Youssef A, Haydon RC, Luu HH, Reid RR, Shen L, He TC, Fan J. Carboxymethyl chitosan prolongs adenovirus-mediated expression of IL-10 and ameliorates hepatic fibrosis in a mouse model. Bioeng Transl Med 2022; 7:e10306. [PMID: 36176604 PMCID: PMC9472002 DOI: 10.1002/btm2.10306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/09/2022] Open
Abstract
Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qian Chen
- Health Management Center, Deyang People's Hospital Deyang China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders The Children's Hospital of Chongqing Medical University Chongqing China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital Chongqing China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| |
Collapse
|
21
|
Resveratrol Synergistically Promotes BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8124085. [PMID: 35923297 PMCID: PMC9343184 DOI: 10.1155/2022/8124085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Background. Mesenchymal stem cells (MSCs) differentiate into osteocytes, adipocytes, and chondrocytes. Resveratrol and bone morphogenetic protein 9 (BMP9) are known osteogenic induction factors of MSCs, but the effect of both resveratrol and BMP9 on osteogenesis is unknown. Herein, we explored whether resveratrol cooperates with BMP9 to improve osteogenic induction. Methods. The osteogenic induction of resveratrol and BMP9 on C3H10T1/2 cells was evaluated by detecting the staining and activity of the early osteogenic marker alkaline phosphatase (ALP). In addition, the late osteogenic effect was measured by the mRNA and protein levels of osteogenic markers, such as osteopontin (OPN) and osteocalcin (OCN). To assess the bone formation function of resveratrol plus BMP9 in vivo, we transplanted BMP9-infected C3H10T1/2 cells into nude mice followed by intragastric injection of resveratrol. Western blot (WB) analysis was utilized to elucidate the mechanism of resveratrol plus BMP9. Results. Resveratrol not only enhanced osteogenic induction alone but also improved BMP9-induced ALP at 3, 5, and 7 d postinduction. Both the early osteogenic markers (ALP, Runx2, and SP7) and the late osteogenic markers (OPN and OCN) were significantly increased when resveratrol was combined with BMP9. The fetal limb explant culture further verified these results. The in vivo bone formation experiment, which involved transplanting BMP9-overexpressing C3H10T1/2 cells into nude mice, also confirmed that resveratrol synergistically enhanced the BMP9-induced bone formation function. Resveratrol phosphorylated adenosine monophosphate- (AMP-) activated protein kinase (AMPK) and stimulated autophagy, but these effects were abolished by inhibiting AMPK and Beclin1 using an inhibitor or siRNA. Conclusions. Resveratrol combined with BMP9 significantly improves the osteogenic induction of C3H10T1/2 cells by activating AMPK and autophagy.
Collapse
|
22
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
23
|
Cross-talk between NOTCH2 and BMP4/SMAD signaling pathways in bovine follicular granulosa cells. Theriogenology 2022; 187:74-81. [DOI: 10.1016/j.theriogenology.2022.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
|
24
|
Zhong J, Wang H, Yang K, Wang H, Duan C, Ni N, An L, Luo Y, Zhao P, Gou Y, Sheng S, Shi D, Chen C, Wagstaff W, Hendren-Santiago B, Haydon RC, Luu HH, Reid RR, Ho SH, Ameer GA, Shen L, He TC, Fan J. Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioact Mater 2022; 9:523-540. [PMID: 34820586 PMCID: PMC8581279 DOI: 10.1016/j.bioactmat.2021.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Pediatric Research Institute, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huifeng Wang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Na Ni
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yetao Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shiyan Sheng
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60616, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
25
|
Tao ZS, Li TL, Xu HG, Yang M. Hydrogel contained valproic acid accelerates bone-defect repair via activating Notch signaling pathway in ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:4. [PMID: 34940936 PMCID: PMC8702411 DOI: 10.1007/s10856-021-06627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 05/23/2023]
Abstract
The purpose was to observe whether valproic acid (VPA) has a positive effect on bone-defect repair via activating the Notch signaling pathway in an OVX rat model. The MC3T3-E1 cells were cocultured with VPA and induced to osteogenesis, and the osteogenic activity was observed by alkaline phosphatase (ALP) staining, Alizarin Red (RES) staining and Western blotting (WB). Then the hydrogel-containing VPA was implanted into the femoral epiphysis bone-defect model of ovariectomized (OVX) rats for 12 weeks. Micro-CT, biomechanical testing, histology, immunofluorescence, RT-qPCR, and WB analysis were used to observe the therapeutic effect and explore the possible mechanism. ALP and ARS staining and WB results show that the cell mineralization, osteogenic activity, and protein expression of ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA group is significantly higher than the control group. Micro-CT, biomechanical testing, histology, immunofluorescence, and RT-qPCR evaluation show that group VPA presented the stronger effect on bone strength, bone regeneration, bone mineralization, higher expression of VEGFA, BMP-2, ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA when compared with OVX group. Our current study demonstrated that local treatment with VPA could stimulate repair of femoral condyle defects, and these effects may be achieved by activating Notch signaling pathway and acceleration of blood vessel and bone formation.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
26
|
Bone morphogenetic protein 9 enhances osteogenic and angiogenic responses of human amniotic mesenchymal stem cells cocultured with umbilical vein endothelial cells through the PI3K/AKT/m-TOR signaling pathway. Aging (Albany NY) 2021; 13:24829-24849. [PMID: 34837694 PMCID: PMC8660623 DOI: 10.18632/aging.203718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
Background: Neovascularization plays an essential part in bone fracture and defect healing, constructing tissue engineered bone that targets bone regeneration. Bone morphogenetic protein 9 (BMP9) is a regular indicator that potentiates osteogenic and angiogenic differentiation of MSCs. Objectives: To investigate the effects of BMP9 on osteogenesis and angiogenesis of human amniotic mesenchymal stem cells (hAMSCs) cocultured with human umbilical vein endothelial cells (HUVECs) and determine the possible underlying molecular mechanism. Results: The isolated hAMSCs expressed surface markers of MSCs. hAMSCs cocultured with HUVECs enhance osteogenic differentiation and upregulate the expression of angiogenic factors. BMP9 not only potentiates angiogenic signaling of hAMSCs cocultured with HUVECs also increases ectopic bone formation and subcutaneous vessel invasion. Mechanically, the coupling effect between osteogenesis and angiogenesis induced by BMP9 was activated by the BMP/Smad and PI3K/AKT/m-TOR signaling pathways. Conclusions: BMP9-enhanced osteoblastic and angiogenic differentiation in cocultivation with hAMSCs and HUVECs in vitro and in vivo also provide a chance to harness the BMP9-regulated coordinated effect between osteogenic and angiogenic pathways through BMP/Smad and PI3K/AKT/m-TOR signalings. Materials and Methods: The ALP and Alizarin Red S staining assay to determine the effects of osteoblastic differentiation. RT-qPCR and western blot was measured the expression of angiogenesis-related factors. Ectopic bone formation was established and retrieved bony masses were subjected to histochemical staining. The angiogenesis ability and vessel invasion were subsequently determined by immunofluorescence staining. Molecular mechanisms such as the BMP/Smad and PI3K/AKT/m-TOR signaling pathways were detected by ELISA and western blot analysis.
Collapse
|
27
|
Yu J, Zhang W, Huang J, Gou Y, Sun C, Zhang Y, Mao Y, Wu B, Li C, Liu N, Wang T, Huang J, Wang J. Management of intrauterine adhesions using human amniotic mesenchymal stromal cells to promote endometrial regeneration and repair through Notch signalling. J Cell Mol Med 2021; 25:11002-11015. [PMID: 34724320 PMCID: PMC8642679 DOI: 10.1111/jcmm.17023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Intrauterine adhesions (IUAs) severely hamper women's reproductive functions. Human amniotic mesenchymal stromal cell (hAMSC) transplantation is effective in treating IUAs. Here, we examined the function of Notch signalling in IUA treatment with hAMSC transplantation. Forty-five Sprague-Dawley female rats were randomly divided into the sham operation, IUA, IUA + E2, IUA + hAMSCs and IUA + hAMSCs + E2 groups. After IUA induction in the rats, hAMSCs promoted endometrial regeneration and repair via differentiation into endometrial epithelial cells. In all groups, the expression of key proteins in Notch signalling was detected in the uterus by immunohistochemistry. The results indicated Notch signalling activation in the hAMSCs and hAMSCs + E2 groups. We could also induce hAMSC differentiation to generate endometrial epithelial cells in vitro. Furthermore, the inhibition of Notch signalling using the AdR-dnNotch1 vector suppressed hAMSC differentiation (assessed by epithelial and mesenchymal marker levels), whereas its activation using the AdR-Jagged1 vector increased differentiation. The above findings indicate Notch signalling mediates the differentiation of hAMSCs into endometrial epithelial cells, thus promoting endometrial regeneration and repair; Notch signalling could have an important function in IUA treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayue Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yating Gou
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yingfeng Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yanhua Mao
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Benyuan Wu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Changjiang Li
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Nizhou Liu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiren Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Zhang Y, Jing X, Li Z, Tian Q, Wang Q, Chen X. Investigation of the role of the miR17-92 cluster in BMP9-induced osteoblast lineage commitment. J Orthop Surg Res 2021; 16:652. [PMID: 34717687 PMCID: PMC8557618 DOI: 10.1186/s13018-021-02804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. METHODS In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. RESULTS The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3'-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. CONCLUSION Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuran Jing
- Department of Molecular Laboratory, Qingdao, Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Zhongzhu Li
- Department of Clinical Laboratory, Pingyi Hospital of Traditional Chinese Medicine, Linyi, 273300, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
29
|
Mao Y, Ni N, Huang L, Fan J, Wang H, He F, Liu Q, Shi D, Fu K, Pakvasa M, Wagstaff W, Tucker AB, Chen C, Reid RR, Haydon RC, Ho SH, Lee MJ, He TC, Yang J, Shen L, Cai L, Luu HH. Argonaute (AGO) proteins play an essential role in mediating BMP9-induced osteogenic signaling in mesenchymal stem cells (MSCs). Genes Dis 2021; 8:918-930. [PMID: 34522718 PMCID: PMC8427325 DOI: 10.1016/j.gendis.2021.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
As multipotent progenitor cells, mesenchymal stem cells (MSCs) can renew themselves and give rise to multiple lineages including osteoblastic, chondrogenic and adipogenic lineages. It's previously shown that BMP9 is the most potent BMP and induces osteogenic and adipogenic differentiation of MSCs. However, the molecular mechanism through which BMP9 regulates MSC differentiation remains poorly understood. Emerging evidence indicates that noncoding RNAs, especially microRNAs, may play important roles in regulating MSC differentiation and bone formation. As highly conserved RNA binding proteins, Argonaute (AGO) proteins are essential components of the multi-protein RNA-induced silencing complexes (RISCs), which are critical for small RNA biogenesis. Here, we investigate possible roles of AGO proteins in BMP9-induced lineage-specific differentiation of MSCs. We first found that BMP9 up-regulated the expression of Ago1, Ago2 and Ago3 in MSCs. By engineering multiplex siRNA vectors that express multiple siRNAs targeting individual Ago genes or all four Ago genes, we found that silencing individual Ago expression led to a decrease in BMP9-induced early osteogenic marker alkaline phosphatase (ALP) activity in MSCs. Furthermore, we demonstrated that simultaneously silencing all four Ago genes significantly diminished BMP9-induced osteogenic and adipogenic differentiation of MSCs and matrix mineralization, and ectopic bone formation. Collectively, our findings strongly indicate that AGO proteins and associated small RNA biogenesis pathway play an essential role in mediating BMP9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Yukun Mao
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, PR China
| | - Kai Fu
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lin Cai
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Corresponding author. Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, 430071, China.
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Corresponding author. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA. Fax: +(773) 834 4598.
| |
Collapse
|
30
|
Wu X, Li Z, Zhang H, He F, Qiao M, Luo H, Zhang J, Zhang M, Mao Y, Wagstaff W, Zhang Y, Niu C, Zhao X, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Haydon RC, Reid RR, Luu HH, He TC, Wang Z, Liang H, Zhang BQ, Wang N. Modeling colorectal tumorigenesis using the organoids derived from conditionally immortalized mouse intestinal crypt cells (ciMICs). Genes Dis 2021; 8:814-826. [PMID: 34522710 PMCID: PMC8427244 DOI: 10.1016/j.gendis.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Intestinal cancers are developed from intestinal epithelial stem cells (ISCs) in intestinal crypts through a multi-step process involved in genetic mutations of oncogenes and tumor suppressor genes. ISCs play a key role in maintaining the homeostasis of gut epithelium. In 2009, Sato et al established a three-dimensional culture system, which mimicked the niche microenvironment by employing the niche factors, and successfully grew crypt ISCs into organoids or Mini-guts in vitro. Since then, the intestinal organoid technology has been used to delineate cellular signaling in ISC biology. However, the cultured organoids consist of heterogeneous cell populations, and it was technically challenging to introduce genomic changes into three-dimensional organoids. Thus, there was a technical necessity to develop a two-dimensional ISC culture system for effective genomic manipulations. In this study, we established a conditionally immortalized mouse intestinal crypt (ciMIC) cell line by using a piggyBac transposon-based SV40 T antigen expression system. We showed that the ciMICs maintained long-term proliferative activity under two-dimensional niche factor-containing culture condition, retained the biological characteristics of intestinal epithelial stem cells, and could form intestinal organoids in three-dimensional culture. While in vivo cell implantation tests indicated that the ciMICs were non-tumorigenic, the ciMICs overexpressing oncogenic β-catenin and/or KRAS exhibited high proliferative activity and developed intestinal adenoma-like pathological features in vivo. Collectively, these findings strongly suggested that the engineered ciMICs should be used as a valuable tool cell line to dissect the genetic and/or epigenetic underpinnings of intestinal tumorigenesis.
Collapse
Affiliation(s)
- Xiaoxing Wu
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Zhaoxia Li
- Department of Oncology, The PLA Rocket Force Characteristic Medical Center, Beijing, 100088, PR China
| | - Hongyu Zhang
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Fang He
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Min Qiao
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Departments of Burn & Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Jing Zhang
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, PR China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Departments of Orthopaedic Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, PR China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Yongtao Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, PR China
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Department of Clinical Laboratory Medicine, Chongqing General Hospital Affiliated with the University of Chinese Academy of Sciences, Chongqing, 400013, PR China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, PR China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Linjuan Huang
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, PR China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Departments of Orthopaedic Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, PR China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Ziwei Wang
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Bing-Qiang Zhang
- Departments of Gastrointestinal Surgery, Medicine/Gastroenterology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 606037, USA.,Department of Oncology, The PLA Rocket Force Characteristic Medical Center, Beijing, 100088, PR China
| |
Collapse
|
31
|
Kim JH, Yang YR, Kwon KS, Kim N. Anti-Müllerian Hormone Negatively Regulates Osteoclast Differentiation by Suppressing the Receptor Activator of Nuclear Factor-κB Ligand Pathway. J Bone Metab 2021; 28:223-230. [PMID: 34520656 PMCID: PMC8441534 DOI: 10.11005/jbm.2021.28.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Multiple members of the transforming growth factor-β (TGF-β) superfamily have well-established roles in bone homeostasis. Anti-Müllerian hormone (AMH) is a member of TGF-β superfamily of glycoproteins that is responsible for the regression of fetal Müllerian ducts and the transcription inhibition of gonadal steroidogenic enzymes. However, the involvement of AMH in bone remodeling is unknown. Therefore, we investigated whether AMH has an effect on bone cells as other TGF-β superfamily members do. Methods To identify the roles of AMH in bone cells, we administered AMH during osteoblast and osteoclast differentiation, cultured the cells, and then stained the cultured cells with Alizarin red and tartrate-resistant acid phosphatase, respectively. We analyzed the expression of osteoblast- or osteoclast-related genes using real-time polymerase chain reaction and western blot. Results AMH does not affect bone morphogenetic protein 2-mediated osteoblast differentiation but inhibits receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclast differentiation. The inhibitory effect of AMH on osteoclast differentiation is mediated by IκB-NF-κB signaling. Conclusions AMH negatively regulates osteoclast differentiation without affecting osteoblast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
32
|
Huang L, Zhao L, Zhang J, He F, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, He TC, Tang L. Antiparasitic mebendazole (MBZ) effectively overcomes cisplatin resistance in human ovarian cancer cells by inhibiting multiple cancer-associated signaling pathways. Aging (Albany NY) 2021; 13:17407-17427. [PMID: 34232919 PMCID: PMC8312413 DOI: 10.18632/aging.203232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the third most common cancer and the second most common cause of gynecologic cancer death in women. Its routine clinical management includes surgical resection and systemic therapy with chemotherapeutics. While the first-line systemic therapy requires the combined use of platinum-based agents and paclitaxel, many ovarian cancer patients have recurrence and eventually succumb to chemoresistance. Thus, it is imperative to develop new strategies to overcome recurrence and chemoresistance of ovarian cancer. Repurposing previously-approved drugs is a cost-effective strategy for cancer drug discovery. The antiparasitic drug mebendazole (MBZ) is one of the most promising drugs with repurposing potential. Here, we investigate whether MBZ can overcome cisplatin resistance and sensitize chemoresistant ovarian cancer cells to cisplatin. We first established and characterized two stable and robust cisplatin-resistant (CR) human ovarian cancer lines and demonstrated that MBZ markedly inhibited cell proliferation, suppressed cell wounding healing/migration, and induced apoptosis in both parental and CR cells at low micromole range. Mechanistically, MBZ was revealed to inhibit multiple cancer-related signal pathways including ELK/SRF, NFKB, MYC/MAX, and E2F/DP1 in cisplatin-resistant ovarian cancer cells. We further showed that MBZ synergized with cisplatin to suppress cell proliferation, induce cell apoptosis, and blunt tumor growth in xenograft tumor model of human cisplatin-resistant ovarian cancer cells. Collectively, our findings suggest that MBZ may be repurposed as a synergistic sensitizer of cisplatin in treating chemoresistant human ovarian cancer, which warrants further clinical studies.
Collapse
Affiliation(s)
- Linjuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ling Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Medicine/Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Liangdan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Tao ZS, Zhou WS, Xu HG, Yang M. Intermittent administration sodium valproate has a protective effect on bone health in ovariectomized rats. Eur J Pharmacol 2021; 906:174268. [PMID: 34166702 DOI: 10.1016/j.ejphar.2021.174268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/09/2022]
Abstract
The present work was aimed to evaluate the effect of different administration modes of sodium valproate (VPA) on bone strength, bone mass and bone mineral density in ovariectomized (OVX) rats and further investigation of the possible mechanism. 60 female SD rats were randomly divided into 4 groups: Sham group (Sham, n = 15), OVX group (OVX, n = 15), OVX rats received intermittent VPA treatment group (IVPA, n = 15) and OVX rats received daily VPA treatment group (EVPA, n = 15). After 12 weeks of treatment, the rats were sacrificed, and serum and femur samples were harvested. DEXA, Micro-CT, history, biomechanical testing, biochemical index and western blot analysis were used to observe the therapeutic effect and explore the possible mechanism. Micro-CT and DEXA analysis of bones revealed better BMD and higher BV/TV, Tb. Th, Tb. N, Conn. D and lower Tb. Sp at femoral metaphysis evaluated in IVPA when compared with OVX and EVPA group (P < 0.05). Histological, fluorescent analysis and biological strength revealed more trabecular bone and higher relative mineral apposition rate, maximal load, elastic modulus and energy at break with evaluated in IVPA when compared with OVX and EVPA group (P < 0.05). The levels of P1NP, estrogen, CTX, TRAP-5b and RANKL of the IVPA group showed a significant increase when compared with the OVX and EVPA group (P < 0.05). We confirm adverse effects on protein expressions including Notch1, Jagged1, HEY1, Wnt 1, β-catenin and RUNX2 following daily VPA treatment in OVX female rats. Our current study demonstrated that intermittent administration of sodium valproate has a protective effect on bone health in OVX rats and these effects may be achieved by activating Notch/Wnt/β-catenin/RUNX2 signal axis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Wan-Shu Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Wannan Medical College, No.123, Kangfu Road, Wuhu, 241000, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Spinal Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
34
|
Zhao X, Huang B, Wang H, Ni N, He F, Liu Q, Shi D, Chen C, Zhao P, Wang X, Wagstaff W, Pakvasa M, Tucker AB, Lee MJ, Wolf JM, Reid RR, Hynes K, Strelzow J, Ho SH, Yu T, Yang J, Shen L, He TC, Zhang Y. A functional autophagy pathway is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs). Am J Transl Res 2021; 13:4233-4250. [PMID: 34150011 PMCID: PMC8205769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into bone, cartilage and adipose tissues. We identified BMP9 as the most potent osteoinductive BMP although detailed mechanism underlying BMP9-regulated osteogenesis of MSCs is indeterminate. Emerging evidence indicates that autophagy plays a critical role in regulating bone homeostasis. We investigated the possible role of autophagy in osteogenic differentiation induced by BMP9. We showed that BMP9 upregulated the expression of multiple autophagy-related genes in MSCs. Autophagy inhibitor chloroquine (CQ) inhibited the osteogenic activity induced by BMP9 in MSCs. While overexpression of ATG5 or ATG7 did not enhance osteogenic activity induced by BMP9, silencing Atg5 expression in MSCs effectively diminished BMP9 osteogenic signaling activity and blocked the expression of the osteogenic regulator Runx2 and the late marker osteopontin induced by BMP9. Stem cell implantation study revealed that silencing Atg5 in MSCs profoundly inhibited ectopic bone regeneration and bone matrix mineralization induced by BMP9. Collectively, our results strongly suggest a functional autophagy pathway may play an essential role in regulating osteogenic differentiation induced by BMP9 in MSCs. Thus, restoration of dysregulated autophagic activity in MSCs may be exploited to treat fracture healing, bone defects or osteoporosis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330031, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Medicine/Gastroenterology, Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Medicine/Gastroenterology, Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Sherwin H Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Tengbo Yu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Section of Surgical Research, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Section of Surgical Research, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
35
|
Deng Y, Li L, Zhu JH, Li PP, Deng YX, Luo HH, Yang YY, He BC, Su Y. COX-2 promotes the osteogenic potential of BMP9 through TGF-β1/p38 signaling in mesenchymal stem cells. Aging (Albany NY) 2021; 13:11336-11351. [PMID: 33833129 PMCID: PMC8109063 DOI: 10.18632/aging.202825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
This study investigated the effects of transforming growth factor-β1 (TGF-β1) and cyclooxygenase-2 (COX-2) on bone morphogenetic protein 9 (BMP9) in mesenchymal stem cells (MSCs). We found that BMP9 increased mRNA levels of TGF-β1 and COX-2 in C3H10T1/2 cells. BMP9-induced osteogenic markers were enhanced by TGF-β1 and reduced by TGF-βRI-specific inhibitor LY364947. BMP9 increased level of p-Smad2/3, which were either enhanced or reduced by COX-2 and its inhibitor NS398. BMP9-induced osteogenic markers were decreased by NS398 and it was partially reversed by TGF-β1. COX-2 increased BMP9-induced osteogenic marker levels, which almost abolished by LY364947. BMP9-induced bone formation was enhanced by TGF-β1 but reduced by silencing TGF-β1 or COX-2. BMP9’s osteogenic ability was inhibited by silencing COX-2 but partially reversed by TGF-β1. TGF-β1 and COX-2 enhanced activation of p38 signaling, which was induced by BMP9 and reduced by LY364947. The ability of TGF-β1 to increase the BMP9-induced osteogenic markers was reduced by p38-specific inhibitor, while BMP9-induced TGF-β1 expression was reduced by NS398, but enhanced by COX-2. Furthermore, CREB interacted with Smad1/5/8 to regulate TGF-β1 expression in MSCs. These findings suggest that COX-2 overexpression leads to increase BMP9’s osteogenic ability, resulting from TGF-β1 upregulation which then activates p38 signaling in MSCs.
Collapse
Affiliation(s)
- Yan Deng
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing 400014, China.,National Clinical Research Center for Child Health and Disorders, Chongqing Medical University, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Medical University, Chongqing 400014, China.,Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ling Li
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Hui Zhu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Pei-Pei Li
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yi-Xuan Deng
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hong-Hong Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yuan-Yuan Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Bai-Cheng He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Su
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing 400014, China.,National Clinical Research Center for Child Health and Disorders, Chongqing Medical University, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Medical University, Chongqing 400014, China.,Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
36
|
Li FS, Li PP, Li L, Deng Y, Hu Y, He BC. PTEN Reduces BMP9-Induced Osteogenic Differentiation Through Inhibiting Wnt10b in Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 8:608544. [PMID: 33614622 PMCID: PMC7889951 DOI: 10.3389/fcell.2020.608544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 12/09/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) is one of the most efficacious osteogenic cytokines. PTEN and Wnt10b are both implicated in regulating the osteogenic potential of BMP9, but the potential relationship between them is unknown. In this study, we determined whether PTEN could reduce the expression of Wnt10b during the osteogenic process initialized by BMP9 in mesenchymal stem cells (MSCs) and the possible molecular mechanism. We find that PTEN is inhibited by BMP9 in MSCs, but Wnt10b is increased simultaneously. The BMP9-induced osteogenic markers are reduced by PTEN but increased by silencing PTEN. The effects of knockdown PTEN on elevating BMP9-induced osteogenic markers are almost abolished by knockdown of Wnt10b. On the contrary, the BMP9-increased ALP activities and mineralization are both inhibited by PTEN but almost reversed by the combination of Wnt10b. Bone masses induced by BMP9 are enhanced by knockdown of PTEN, which is reduced by knockdown of Wnt10b. The BMP9-increased Wnt10b is decreased by PTEN but enhanced by knockdown of PTEN. Meanwhile, the BMP9-induced Wnt10b is also reduced by a PI3K-specific inhibitor (Ly294002) or rapamycin, respectively. The BMP9-induced phosphorylation of CREB or Smad1/5/9 is also reduced by PTEN, but enhanced by PTEN knockdown. In addition, p-CREB interacts with p-Smad1/5/9 in MSCs, and p-CREB or p-Smad1/5/9 are both enriched at the promoter region of Wnt10b. Our findings indicate that inhibitory effects of PTEN on BMP9's osteogenic potential may be partially mediated through decreasing the expression of Wnt10b via the disturbance of interaction between CREB and BMP/Smad signaling.
Collapse
Affiliation(s)
- Fu-Shu Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Pei-Pei Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Ying Hu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Tao L, Fang SY, Zhao L, He TC, He Y, Bi Y. Indocyanine Green Uptake and Periodic Acid-Schiff Staining Method for Function Detection of Liver Cells are Affected by Different Cell Confluence. Cytotechnology 2021; 73:159-167. [PMID: 33927473 DOI: 10.1007/s10616-021-00453-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatic stem cell transplantation has been demonstrated as an effective alternative therapy for the end-stage liver failure patients. Therefore, the functional detection of hepatic stem cell is essentially required. The present study confirmed that adenovirus BMP9 (Ad-BMP9) could increase the ALB-Gluc activity of HP14-19 hepatic progenitor cells, the expression of specific hepatic markers ALB, TAT, UGT1A were up-regulated while the hepatic stem cell markers DLK, AFP were down-regulated, and the number of positive Periodic acid-Schiff (PAS) stained cells were significantly higher than those in control group. However, the indocyanine green (ICG) uptake failed to be detectable in induced hepatocytes, which was inconsistent. By using another cell line LC14d, we found out that positive ICG uptake cells were located in the area of low cell density, while positive PAS stained cells were mainly concentrated in the area where cells were overlapped, indicating that different cell confluence might affect the outcomes of ICG uptake and PAS staining. A manual wound healing of Ad-BMP9 induced HP14-19 cells was made, the crawling cells were stained positive for ICG but not for PAS. Therefore, our finding may provide evidence for better application of PAS staining and ICG uptake assay in functional detection of mature hepatocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00453-8.
Collapse
Affiliation(s)
- Li Tao
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shu-Yu Fang
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Zhao
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Yun He
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Bi
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
38
|
Li R, Zhang W, Yan Z, Liu W, Fan J, Feng Y, Zeng Z, Cao D, Haydon RC, Luu HH, Deng ZL, He TC, Zou Y. Long non-coding RNA (LncRNA) HOTAIR regulates BMP9-induced osteogenic differentiation by targeting the proliferation of mesenchymal stem cells (MSCs). Aging (Albany NY) 2021; 13:4199-4214. [PMID: 33461171 PMCID: PMC7906180 DOI: 10.18632/aging.202384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Long non-coding RNAs are important regulators of biological processes, but their roles in the osteogenic differentiation of mesenchymal stem cells (MSCs) remain unclear. Here we investigated the role of murine HOX transcript antisense RNA (mHotair) in BMP9-induced osteogenic differentiation of MSCs using immortalized mouse adipose-derived cells (iMADs). Touchdown quantitative polymerase chain reaction analysis found increased mHotair expression in bones in comparison with most other tissues. Moreover, the level of mHotair in femurs peaked at the age of week-4, a period of fast skeleton development. BMP9 could induce earlier peak expression of mHotair during in vitro iMAD osteogenesis. Silencing mHotair diminished BMP9-induced ALP activity, matrix mineralization, and expression of osteogenic, chondrogenic and adipogenic markers. Cell implantation experiments further confirmed that knockdown of mHotair attenuated BMP9-induced ectopic bone formation and mineralization of iMADs, leading to more undifferentiated cells. Crystal violet staining and cell cycle analysis revealed that silencing of mHotair promoted the proliferation of iMAD cells regardless of BMP9 induction. Moreover, ectopic bone masses developed from mHotair-knockdown iMAD cells exhibited higher expression of PCNA than the control group. Taken together, our results demonstrated that murine mHotair is an important regulator of BMP9-induced MSC osteogenesis by targeting cell cycle and proliferation.
Collapse
Affiliation(s)
- Ruidong Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Obstetrics and Gynecology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Zhengjian Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Daigui Cao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing 400021, China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhong-Liang Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yulong Zou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Wang Z, Wang W, Yang A, Zhao W, Yang J, Wang Z, Wang W, Su X, Wang J, Song J, Li L, Lv W, Li D, Liu H, Wang C, Hao M. Lower dietary mineral intake is significantly associated with cervical cancer risk in a population-based cross-sectional study. J Cancer 2021; 12:111-123. [PMID: 33391407 PMCID: PMC7738836 DOI: 10.7150/jca.39806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Population-based studies investigating the association between dietary mineral intake and risk of cervical intraepithelial neoplasia (CIN) or cervical cancer in Chinese women are few. We performed a cross-sectional analysis of screening data obtained from 2,304 women in 2014 within an ongoing cohort study comprising 40,000 women in China. Dietary intake was assessed using a semiquantitative food frequency questionnaire. Nutrition intake was calculated using a 26-item list of food sources drawn from a validated, comprehensive database. All participants were surveyed through in-person interviews, physical examinations, and laboratory tests. The Pearson chi-square test was used for categorical variables. Multivariable logistic regression models were used to evaluate the relationship between dietary mineral intake and CIN+ risk. The food frequency questionnaire exhibited acceptable reproducibility and reasonable validity in assessing nutrient intakes among these women. After adjusting for multiple potential confounders, low dietary calcium intake was associated with CIN2+ risk (first versus fourth quartile: odds ratio [OR]=1.52, 95% confidence interval [CI]: 1.01-2.32). Similar for magnesium (OR=1.80, 95% CI: 1.20-2.68), phosphorus (OR=1.69, 95% CI: 1.12-2.55), zinc (OR=1.55, 95% CI: 1.03-2.34), and potassium (OR=1.92, 95% CI: 1.28-2.88). Low dietary intakes of calcium and potassium were significantly associated with CIN1 risk. Increased CIN2+ risk correlated with rates of no oral contraceptives and lower levels of dietary Potassium. These results thus proposed that low dietary mineral intake was an independent risk factor, potential synergy may exist between low dietary mineral levels and oral contraceptives contribute to the development of higher-grade CIN and cervical cancer.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenhao Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Aimin Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR
| | - Weihong Zhao
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhilian Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqiang Su
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jinghui Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Li Li
- Department of Obstetrics and Gynecology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Weiguo Lv
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongyan Li
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huiqiang Liu
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chen Wang
- Department of pathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Min Hao
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
40
|
Zhong J, Kang Q, Cao Y, He B, Zhao P, Gou Y, Luo Y, He TC, Fan J. BMP4 augments the survival of hepatocellular carcinoma (HCC) cells under hypoxia and hypoglycemia conditions by promoting the glycolysis pathway. Am J Cancer Res 2021; 11:793-811. [PMID: 33791154 PMCID: PMC7994163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 04/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide although its pathogenic mechanism remains to be fully understood. Unlike normal cells, most cancer cells rely on aerobic glycolysis and are more adaptable to the microenvironment of hypoxia and hypoglycemia. Bone Morphogenetic Protein 4 (BMP4) plays important roles in regulating proliferation, differentiation, invasion and migration of HCC cells. We have recently shown that BMP4 plays an important role in regulating glucose metabolism although the effect of BMP4 on glucose metabolic reprogramming of HCC is poorly understood. In this study, we found that BMP4 was highly expressed in HCC tumor tissues, as well as HCC cell lines that were tolerant to hypoxia and hypoglycemia. Mechanistically, we demonstrated that BMP4 protected HCC cells from hypoxia and hypoglycemia by promoting glycolysis since BMP4 up-regulated glucose uptake, the lactic acid production, the ATP level, and the activities of rate limiting enzymes of glycolysis (including HK2, PFK and PK). Furthermore, we demonstrated that BMP4 up-regulated HK2, PFKFB3 and PKM2 through the canonical Smad signal pathway as SMAD5 directly bound to the promoter of PKM. Collectively, our findings shown that BMP4 may play an important role in regulating glycolysis of HCC cells under hypoxia and hypoglycemia condition, indicating that novel therapeutics may be developed to target BMP4-regulated glucose metabolic reprogramming in HCC.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - Quan Kang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Youde Cao
- Department of Pathology, Chongqing Medical UniversityChongqing 400016, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical UniversityChongqing 400016, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - Yetao Luo
- Clinical Epidemiology and Biostatistics Department, Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
41
|
Seong CH, Chiba N, Kusuyama J, Subhan Amir M, Eiraku N, Yamashita S, Ohnishi T, Nakamura N, Matsuguchi T. Bone morphogenetic protein 9 (BMP9) directly induces Notch effector molecule Hes1 through the SMAD signaling pathway in osteoblasts. FEBS Lett 2020; 595:389-403. [PMID: 33264418 DOI: 10.1002/1873-3468.14016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic protein (BMP) 9 is one of the most osteogenic BMPs, but its mechanism of action has not been fully elucidated. Hes1, a transcriptional regulator with a basic helix-loop-helix domain, is a well-known effector of Notch signaling. Here, we find that BMP9 induces periodic increases of Hes1 mRNA and protein expression in osteoblasts, presumably through an autocrine negative feedback mechanism. BMP9-mediated Hes1 induction is significantly inhibited by an ALK inhibitor and overexpression of Smad7, an inhibitory Smad. Luciferase and ChIP assays revealed that two Smad-binding sites in the 5' upstream region of the mouse Hes1 gene are essential for transcriptional activation by BMP9. Thus, our data indicate that BMP9 induces Hes1 expression in osteoblasts via the Smad signaling pathway.
Collapse
Affiliation(s)
- Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA, USA.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Nahoko Eiraku
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Sachiko Yamashita
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
42
|
Zhao L, Huang L, Zhang J, Fan J, He F, Zhao X, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Pakvasa M, Fu K, Tucker AB, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, Qi H, He TC. The inhibition of BRAF activity sensitizes chemoresistant human ovarian cancer cells to paclitaxel-induced cytotoxicity and tumor growth inhibition. Am J Transl Res 2020; 12:8084-8098. [PMID: 33437383 PMCID: PMC7791515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Ovarian cancer is one of the most common cancers in women and the second most common cause of gynecologic cancer death in women worldwide. While ovarian cancer is highly heterogeneous in histological subtypes and molecular genetic makeup, epithelial ovarian cancer is the most common subtype. The clinical outcomes of ovarian cancer largely depend on early detection and access to appropriate surgery and systemic therapy. While combination therapy with platinum-based drugs and paclitaxel (PTX) remains the first-line systemic therapy for ovarian cancer, many patients experience recurrence and die of progressive chemoresistance. Thus, there is an unmet clinical need to overcome recurrent disease due to resistance to chemotherapies of ovarian cancer. Here, we investigated whether BRAF inhibitors (BRAFi) could sensitize PTX-resistant ovarian cancer cells to PTX, and thus would overcome the resistance to chemotherapies. We found that BRAF and several members of the RAS/MAPK pathways were upregulated upon PTX treatment in ovarian cancer cells, and that BRAF expression was significantly elevated in the PTX-resistant ovarian cancer cells. While the BRAFi vemurafenib (VEM) alone did not cause any significant cytotoxicity in PTX-resistant ovarian cancer cells, VEM significantly enhanced PTX-induced growth inhibition and apoptosis in a dose-dependent manner. Furthermore, VEM and PTX were shown to synergistically inhibit tumor growth and cell proliferation of PTX-resistant human ovarian cancer cells in vivo. Collectively, these findings strongly suggest that BRAFi may be exploited as synergistic sensitizers of paclitaxel in treating chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Zhao
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Linjuan Huang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jing Zhang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Fang He
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430072, China
| | - Andrew B Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hongbo Qi
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
43
|
He F, Ni N, Zeng Z, Wu D, Feng Y, Li AJ, Luu B, Li AF, Qin K, Wang E, Wang X, Wu X, Luo H, Zhang J, Zhang M, Mao Y, Pakvasa M, Wagstaff W, Zhang Y, Niu C, Wang H, Huang L, Shi D, Liu Q, Zhao X, Fu K, Reid RR, Wolf JM, Lee MJ, Hynes K, Strelzow J, El Dafrawy M, Gan H, He TC, Fan J. FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:885-899. [PMID: 33230483 PMCID: PMC7658575 DOI: 10.1016/j.omtn.2020.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is mediated by an ∼21-nt double-stranded small interfering RNA (siRNA) and shows great promise in delineating gene functions and in developing therapeutics for human diseases. However, effective gene silencing usually requires the delivery of multiple siRNAs for a given gene, which is often technically challenging and time-consuming. In this study, by exploiting the type IIS restriction endonuclease-based synthetic biology methodology, we developed the fast assembly of multiplex siRNAs (FAMSi) system. In our proof-of-concept experiments, we demonstrated that multiple fragments containing three, four, or five siRNA sites targeting common Smad4 and/or BMPR-specific Smad1, Smad5, and Smad8 required for BMP9 signaling could be assembled efficiently. The constructed multiplex siRNAs effectively knocked down the expression of Smad4 and/or Smad1, Smad5, and Smad8 in mesenchymal stem cells (MSCs), and they inhibited all aspects of BMP9-induced osteogenic differentiation in bone marrow MSCs (BMSCs), including decreased expression of osteogenic regulators/markers, reduced osteogenic marker alkaline phosphatase (ALP) activity, and diminished in vitro matrix mineralization and in vivo ectopic bone formation. Collectively, we demonstrate that the engineered FAMSi system provides a fast-track platform for assembling multiplexed siRNAs in a single vector, and thus it may be a valuable tool to study gene functions or to develop novel siRNA-based therapeutics.
Collapse
Affiliation(s)
- Fang He
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Di Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Benjamin Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alissa F. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yongtao Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Diagnostic Medicine, The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital, Chongqing 400021, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hua Gan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
44
|
An L, Shi Q, Zhu Y, Wang H, Peng Q, Wu J, Cheng Y, Zhang W, Yi Y, Bao Z, Zhang H, Luo Y, Fan J. Bone morphogenetic protein 4 (BMP4) promotes hepatic glycogen accumulation and reduces glucose level in hepatocytes through mTORC2 signaling pathway. Genes Dis 2020; 8:531-544. [PMID: 34179315 PMCID: PMC8209350 DOI: 10.1016/j.gendis.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Liver is an important organ for regulating glucose and lipid metabolism. Recent studies have shown that bone morphogenetic proteins (BMPs) may play important roles in regulating glucose and lipid metabolism. In our previous studies, we demonstrated that BMP4 significantly inhibits hepatic steatosis and lowers serum triglycerides, playing a protective role against the progression of non-alcoholic fatty liver disease (NAFLD). However, the direct impact of BMP4 on hepatic glucose metabolism is poorly understood. Here, we investigated the regulatory roles of BMP4 in hepatic glucose metabolism. Through a comprehensive analysis of the 14 types of BMPs, we found that BMP4 was one of the most potent BMPs in promoting hepatic glycogen accumulation, reducing the level of glucose in hepatocytes and effecting the expression of genes related to glucose metabolism. Mechanistically, we demonstrated that BMP4 reduced the hepatic glucose levels through the activation of mTORC2 signaling pathway in vitro and in vivo. Collectively, our findings strongly suggest that BMP4 may play an essential role in regulating hepatic glucose metabolism. This knowledge should aid us to understand the molecular pathogenesis of NAFLD, and may lead to the development of novel therapeutics by exploiting the inhibitory effects of BMPs on hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying Zhu
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qi Peng
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Wei Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanyu Yi
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zihao Bao
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hui Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yetao Luo
- Clinical Epidemiology and Biostatistics Department, Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
- Corresponding author. Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
45
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
46
|
BMP9 exhibits dual and coupled roles in inducing osteogenic and angiogenic differentiation of mesenchymal stem cells. Biosci Rep 2020; 40:225099. [PMID: 32478395 PMCID: PMC7295632 DOI: 10.1042/bsr20201262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenetic protein (BMP) 9 (BMP9) is one of most potent BMPs in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Recently, evidence has shown that osteogenesis and angiogenesis are coupled, however, it is unclear whether BMP9 induces MSC differentiation into endothelial-like cells and further promotes blood vessel formation. In the present study, we explored the potential of BMP9-induced angiogenic differentiation of MSCs, and the relationship between BMP9-induced osteogenic and angiogenic differentiation of MSCs. Osteogenic activities and angiogenic differentiation markers were analyzed at mRNA and protein levels. In vivo osteogenic and angiogenic differentiation of MSCs were tested by the ectopic bone formation model. We identified that adenoviral vectors effectively transduced in immortalized mouse embryonic fibroblasts (iMEFs) and expressed BMP9 with high efficiency. We found that BMP9 induces early and late osteogenic differentiation, and it up-regulated osteogenic marker expression in MSCs. Meanwhile, BMP9 induces angiogenic differentiation of MSCs via the expression of vascular endothelial growth factor a (VEGFa) and CD31 at both mRNA and protein levels. CD31-positive cells were also increased with the stimulation of BMP9. The ectopic bone formation tests found that BMP9-induced trabecular bone formation was coupled with the expression of blood vessel formation markers and sinusoid capillary formation. These findings suggest that BMP9 exhibits dual and coupled roles in inducing osteogenic and angiogenic differentiation of MSCs.
Collapse
|
47
|
BMP9 is a potential therapeutic agent for use in oral and maxillofacial bone tissue engineering. Biochem Soc Trans 2020; 48:1269-1285. [PMID: 32510140 DOI: 10.1042/bst20200376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Oral and maxillofacial surgery is often challenging due to defective bone healing owing to the microbial environment of the oral cavity, the additional involvement of teeth and esthetic concerns. Insufficient bone volume as a consequence of aging and some oral and maxillofacial surgical procedures, such as tumor resection of the jaw, may further impact facial esthetics and cause the failure of certain procedures, such as oral and maxillofacial implantation. Bone morphogenetic protein (BMP) 9 (BMP9) is one of the most effective BMPs to induce the osteogenic differentiation of different stem cells. A large cross-talk network that includes the BMP9, Wnt/β, Hedgehog, EGF, TGF-β and Notch signaling pathways finely regulates osteogenesis induced by BMP9. Epigenetic control during BMP9-induced osteogenesis is mainly dependent on histone deacetylases (HDACs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which adds another layer of complexity. As a result, all these factors work together to orchestrate the molecular and cellular events underlying BMP9-related tissue engineering. In this review, we summarize our current understanding of the SMAD-dependent and SMAD-independent BMP9 pathways, with a particular focus on cross-talk and cross-regulation between BMP9 and other major signaling pathways in BMP9-induced osteogenesis. Furthermore, recently discovered epigenetic regulation of BMP9 pathways and the molecular and cellular basis of the application of BMP9 in tissue engineering in current oral and maxillofacial surgery and other orthopedic-related clinical settings are also discussed.
Collapse
|
48
|
Zhou YM, Yang YY, Jing YX, Yuan TJ, Sun LH, Tao B, Liu JM, Zhao HY. BMP9 Reduces Bone Loss in Ovariectomized Mice by Dual Regulation of Bone Remodeling. J Bone Miner Res 2020; 35:978-993. [PMID: 31914211 DOI: 10.1002/jbmr.3957] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022]
Abstract
Bone remodeling is dynamic and is tightly regulated through bone resorption dominated by osteoclasts and bone formation dominated by osteoblasts. Imbalances in this process can cause various pathological conditions, such as osteoporosis. Bone morphogenetic protein 9 (BMP9), a biomolecule produced and secreted by the liver, has many pharmacological effects, including anti-liver fibrosis, antitumor, anti-heart failure, and antidiabetic activities. However, the effects of BMP9 on the regulation of osteoblast and osteoclast functions and the underlying molecular mechanism(s) have not yet been investigated. In this study, BMP9 increased the expression of osteoblastogenic gene markers, such as ALP, Cola1, OCN, RUNX2, and OSX, and ALP activity in MC3T3-E1 cells by upregulating LGR6 and activating the Wnt/β-catenin pathway. BMP9 also suppressed receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages (BMMs) by inhibiting the Akt-NF-κB-NFATc1 pathway. More importantly, in an ovariectomy (OVX) mouse model, BMP9 attenuated bone loss and improved bone biomechanical properties in vivo by increasing bone-forming activity and suppressing bone resorption activity. Accordingly, our current work highlights the dual regulatory effects that BMP9 exerts on bone remodeling by promoting bone anabolic activity and inhibiting osteoclast differentiation in OVX mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yan-Man Zhou
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Yi-Xuan Jing
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Tian-Jiao Yuan
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
49
|
KATİCA M, TEPEKOY F. The effect of Calcitriol 1,25 (OH)2 - D3 on osteoblast-like cell proliferation during in vitro cultivation. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2020. [DOI: 10.24880/maeuvfd.653000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
50
|
Safarova Y, Umbayev B, Hortelano G, Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med 2020; 15:1579-1594. [PMID: 32297546 DOI: 10.2217/rme-2019-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.
Collapse
Affiliation(s)
- Yuliya Safarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- School of Sciences & Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|