1
|
Harirah HAA, Mohammed MH, Basha SAZ, Uthirapathy S, Ganesan S, Shankhyan A, Sharma GC, Devi A, Kadhim AJ, S NH. Targeting EZH2 in autoimmune diseases: unraveling epigenetic regulation and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04127-6. [PMID: 40198399 DOI: 10.1007/s00210-025-04127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Approximately 8-10% of the global population is affected by autoimmune diseases (ADs), which encompass a wide array of idiopathic conditions resulting from dysregulated immune responses. The enzymatic component of the polycomb-repressive complex 2 (PRC2), enhancer of zeste homolog 2 (EZH2, also referred to as KMT6), functions as a methyltransferase possessing a SET domain that plays crucial roles in epigenetic regulation, explicitly facilitating the methylation of histone H3 at lysine 27. Notably, EZH2 is catalytically inactive and requires association with EED and SUZ12 to form an active PRC2 complex. Hyperactivation of EZH2 has been implicated in various malignancies, prompting the development of EZH2 inhibitors as therapeutic agents for several cancers, including lymphoma, prostate, breast, and colon cancer. The application of EZH2-targeting therapies has also been explored in the context of autoimmune diseases. While there have been advancements in certain ADs, responses can vary significantly, as evidenced by mixed outcomes in cases such as inflammatory bowel disease. Consequently, the dual role of EZH2 and the therapeutic potential of its inhibitors in the treatment of ADs remain nascent fields of study. This review will elucidate the interplay between EZH2 and autoimmune diseases, highlighting emerging insights and therapeutic avenues.
Collapse
Affiliation(s)
- Hashem Ahmed Abu Harirah
- Medical Laboratory Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | - Sami Ahmed Zaher Basha
- Physical Therapy Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
- Department of Cardiovascular Pulmonary and Geriatrics, Faculty of Physical Therapy, Pharos University, Alexandria, Egypt
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Naher H S
- Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Dong DL, Jin GZ. Targeting Chondrocyte Hypertrophy as Strategies for the Treatment of Osteoarthritis. Bioengineering (Basel) 2025; 12:77. [PMID: 39851351 PMCID: PMC11760869 DOI: 10.3390/bioengineering12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by pain and functional impairment, which severely impacts the quality of life of middle-aged and elderly individuals. During normal bone development, chondrocyte hypertrophy is a natural physiological process. However, in the progression of OA, chondrocyte hypertrophy becomes one of its key pathological features. Although there is no definitive evidence to date confirming that chondrocyte hypertrophy is the direct cause of OA, substantial experimental data indicate that it plays an important role in the disease's pathogenesis. In this review, we first explore the mechanisms underlying chondrocyte hypertrophy in OA and offer new insights. We then propose strategies for inhibiting chondrocyte hypertrophy from the perspectives of targeting signaling pathways and tissue engineering, ultimately envisioning the future prospects of OA treatment.
Collapse
Affiliation(s)
- Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
3
|
Lu W, Li H, Cao L, Xiong Y, Huang X, Liu J, Peng C, Shu J. Three new pterosins from Pteris semipinnata. Nat Prod Res 2024; 38:1591-1598. [PMID: 38573587 DOI: 10.1080/14786419.2022.2162895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023]
Abstract
Three new pterosins, named as semipterosin A (1), B (2) and C (3), together with 11 known pterosins (4-14), were isolated from the aerial parts of Pteris semipinnata. Their structures were elucidated by HRESI-MS, NMR spectral data, CD and literature comparisons. Three new pterosins were assessed for their anti-inflammatory activity. Compounds 1-3 inhibited the NF-kB induction by 40.7%, 61.9% and 34.0%, respectively. This is the first report of the isolation of compounds 6-14 from this plant.
Collapse
Affiliation(s)
- Weiren Lu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Huajun Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Lan Cao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Yanfen Xiong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Xiaobin Huang
- The 908 Hospital of Joint Logistic Support Force, Nanchang, Jiangxi, PR China
| | - Jianqun Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Caiying Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Jicheng Shu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| |
Collapse
|
4
|
Xu JX, Xu FZ, Furbish A, Braxton AM, Brumfield B, Helke KL, Peterson YK. Inhibition of complement C3 prevents osteoarthritis progression in guinea pigs by blocking STAT1 activation. Commun Biol 2024; 7:370. [PMID: 38538870 PMCID: PMC10973449 DOI: 10.1038/s42003-024-06051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 12/14/2024] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability, affecting over 500 million adults worldwide. Previous studies have found that various inflammatory factors can contribute to the pathogenesis of OA, including complement factors in the synovial fluid of OA patients. However, the pathogenesis of this disease is still not known, and the only therapy of severe OA is total joint replacements. Total joint replacements are invasive, expensive, and affect quality of life. Here we show that when human articular chondrocytes are stimulated with pro-inflammatory mediator interleukin-1β (IL-1β) there is an increase in inflammatory factors including complement component 3 (C3). We also found the transcription factor, signal transducer and activator of transcription 1 (STAT1), is responsible for increased C3 expression after IL-1β stimulation in human articular chondrocytes. A specific STAT1 inhibitor, fludarabine, attenuates the hyper-expression of C3 and delays/prevents spontaneous OA in Dunkin-Hartley guinea pigs. Since fludarabine is already clinically used for chemotherapy, this study has great translational potential as a unique disease-modifying osteoarthritis drug (DMOAD) in treating primary OA.
Collapse
Affiliation(s)
- Jen X Xu
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA.
| | - Frank Z Xu
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
- UAB Heersink School of Medicine, Alabama, AL, 35233, USA
| | - Amelia Furbish
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
| | - Alicia M Braxton
- Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA
| | - Brook Brumfield
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA.
| |
Collapse
|
5
|
Thielen NGM, van Caam APM, V Beuningen HM, Vitters EL, van den Bosch MHJ, Koenders MI, van de Loo FAJ, Blaney Davidson EN, van der Kraan PM. Separating friend from foe: Inhibition of TGF-β-induced detrimental SMAD1/5/9 phosphorylation while maintaining protective SMAD2/3 signaling in OA chondrocytes. Osteoarthritis Cartilage 2023; 31:1481-1490. [PMID: 37652257 DOI: 10.1016/j.joca.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-β can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-β-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling. DESIGN Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-β. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-β-induced chondrocyte hypertrophy. RESULTS Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-β, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-β-induced RUNX2 than blocking both SMAD pathways. CONCLUSION Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-β's detrimental from protective function in chondrocytes.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arjan P M van Caam
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk M V Beuningen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elly L Vitters
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn H J van den Bosch
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons A J van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esmeralda N Blaney Davidson
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Ma Z, Chen L, Wang Y, Zhang S, Zheng J, Luo Y, Wang C, Zeng H, Xue L, Tan Z, Wang D. Novel insights of EZH2-mediated epigenetic modifications in degenerative musculoskeletal diseases. Ageing Res Rev 2023; 90:102034. [PMID: 37597667 DOI: 10.1016/j.arr.2023.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Degenerative musculoskeletal diseases (Osteoporosis, Osteoarthritis, Degenerative Spinal Disease and Sarcopenia) are pathological conditions that affect the function and pain of tissues such as bone, cartilage, and muscles, and are closely associated with ageing and long-term degeneration. Enhancer of zeste homolog 2 (EZH2), an important epigenetic regulator, regulates gene expression mainly through the PRC2-dependent trimethylation of histone H3 at lysine 27 (H3K27me3). Increasing evidence suggests that EZH2 is involved in several biological processes closely related to degenerative musculoskeletal diseases, such as osteogenic-adipogenic differentiation of bone marrow mesenchymal stem cells, osteoclast activation, chondrocyte functional status, and satellite cell proliferation and differentiation, mainly through epigenetic regulation (H3K27me3). Therefore, the synthesis and elucidation of the role of EZH2 in degenerative musculoskeletal diseases have attracted increasing attention. In addition, although EZH2 inhibitors have been approved for clinical use, whether they can be repurposed for the treatment of degenerative musculoskeletal diseases needs to be considered. Here, we reviewed the role of EZH2 in the development of degenerative musculoskeletal diseases and brought forward prospects of its pharmacological inhibitors in the improvement of the treatment of the diseases.
Collapse
Affiliation(s)
- Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Lei Chen
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China; Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Yushun Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Sheng Zhang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Yuhong Luo
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Chao Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, People's Republic of China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| |
Collapse
|
7
|
Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022; 11:cells11244034. [PMID: 36552796 PMCID: PMC9777397 DOI: 10.3390/cells11244034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.
Collapse
|
8
|
Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, Fan S, Wu P, Fu Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol 2022; 111:109129. [PMID: 35961266 DOI: 10.1016/j.intimp.2022.109129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis, and is characterized by inflammation and cartilage degradation. Chicoric acid (CA), a bioactive caffeic acid derivative isolated from the root of Taraxacum mongolicumHand. - Mazz., has been reported to have anti-inflammatory effects. However, the therapeutic effects of CA on chondrocyte inflammation remain unknown. Our study aimed to explore the effect of CA on OA both in vivo and in vitro. In vitro, CA treatment significantly suppressed the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and IL-12 in tumor necrosis factor alpha (TNF-α)-induced human C28/I2 chondrocytes. Moreover, CA attenuated TNF-α induced degradation of the extracellular matrix (ECM) by upregulating the expression of collagen Ⅱ and aggrecan, and downregulating ADAMTS-5 and matrix metalloproteinases (MMPs). Additionally, CA treatment inhibited apoptosis in C28/I2 cells by upregulating of Bcl-2 levels, downregulating Bax and ROS levels, and activating the Nrf2/HO-1 pathway. Mechanistically, CA exerted an anti-inflammatory effect by inhibiting the PI3K/AKT and NF-κB signaling pathways, enhancing Nrf-2/HO-1 to limit the activation of NF-κB. In vivo experiments also proved the therapeutic effects of CA on OA in rats. These findings indicate that CA may become a new drug for the treatment of OA.
Collapse
Affiliation(s)
- Yuhan Qu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Li Teng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuting Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xi Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shengli Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ping Wu
- Department of Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610041, China.
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
9
|
Xu WD, Huang Q, Huang AF. Emerging role of EZH2 in rheumatic diseases: A comprehensive review. Int J Rheum Dis 2022; 25:1230-1238. [PMID: 35933601 DOI: 10.1111/1756-185x.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/03/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methylated enzyme. It trimethylates histone 3 lysine 27 (H3K27) to regulate epigenetic processes. Recently, studies showed excessive expression of EZH2 in rheumatic diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, and systemic sclerosis. Moreover, epigenetic modification of EZH2 regulates differentiation and proliferation of different immune cells. Therefore, in this review, we comprehensively discuss the role of EZH2 in rheumatic diseases. Collection of the evidence may provide a basis for further understanding the role of EZH2 and give potential for targeting these diseases.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM, van der Kraan PM. Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells 2022; 11:cells11071232. [PMID: 35406794 PMCID: PMC8998018 DOI: 10.3390/cells11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes.
Collapse
|
11
|
Brochard S, Pontin J, Bernay B, Boumediene K, Conrozier T, Baugé C. The benefit of combining curcumin, bromelain and harpagophytum to reduce inflammation in osteoarthritic synovial cells. BMC Complement Med Ther 2021; 21:261. [PMID: 34649531 PMCID: PMC8515758 DOI: 10.1186/s12906-021-03435-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people worldwide and characterised by joint pain and inflammation. It is a complex disease involving inflammatory factors and affecting the whole joint, including the synovial membrane. Since drug combination is widely used to treat chronic inflammatory diseases, a similar strategy of designing plant-derived natural products to reduce inflammation in OA joints may be of interest. In this study, we characterised the response of OA synovial cells to lipopolysaccharide (LPS) and investigated the biological action of the combination of curcumin, bromelain and harpagophytum in this original in vitro model of osteoarthritis. METHODS Firstly, human synovial cells from OA patients were stimulated with LPS and proteomic analysis was performed. Bioinformatics analyses were performed using Cytoscape App and SkeletalVis databases. Additionally, cells were treated with curcumin, bromelain and harpagophytum alone or with the three vegetal compounds together. The gene expression involved in inflammation, pain or catabolism was determined by RT-PCR. The release of the encoded proteins by these genes and of prostaglandin E2 (PGE2) were also assayed by ELISA. RESULTS Proteomic analysis demonstrated that LPS induces the expression of numerous proteins involved in the OA process in human OA synovial cells. In particular, it stimulates inflammation through the production of pro-inflammatory cytokines (Interleukin-6, IL-6), catabolism through an increase of metalloproteases (MMP-1, MMP-3, MMP-13), and the production of pain-mediating neurotrophins (Nerve Growth Factor, NGF). These increases were observed in terms of mRNA levels and protein release. LPS also increases the amount of PGE2, another inflammation and pain mediator. At the doses tested, vegetal extracts had little effect: only curcumin slightly counteracted the effects of LPS on NGF and MMP-13 mRNA, and PGE2, IL-6 and MMP-13 release. In contrast, the combination of curcumin with bromelain and harpagophytum reversed lots of effects of LPS in human OA synovial cells. It significantly reduced the gene expression and/or the release of proteins involved in catabolism (MMP-3 and -13), inflammation (IL-6) and pain (PGE2 and NGF). CONCLUSION We have shown that the stimulation of human OA synovial cells with LPS can induce protein changes similar to inflamed OA synovial tissues. In addition, using this model, we demonstrated that the combination of three vegetal compounds, namely curcumin, bromelain and harpagophytum, have anti-inflammatory and anti-catabolic effects in synovial cells and may thus reduce OA progression and related pain.
Collapse
Affiliation(s)
- Sybille Brochard
- EA7451 BioConnect, Université de Caen Normandie, UNICAEN, 14032, Caen, France
| | - Julien Pontin
- Proteogen platform, Normandie Univ, UNICAEN, Caen, France
| | - Benoit Bernay
- Proteogen platform, Normandie Univ, UNICAEN, Caen, France
| | - Karim Boumediene
- EA7451 BioConnect, Université de Caen Normandie, UNICAEN, 14032, Caen, France
| | - Thierry Conrozier
- Rheumatology Department, Nord Franche-Comté Hospital, Trevenans, France
| | - Catherine Baugé
- EA7451 BioConnect, Université de Caen Normandie, UNICAEN, 14032, Caen, France.
| |
Collapse
|
12
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. Adv Healthc Mater 2021; 10:e2100961. [PMID: 34302436 DOI: 10.1002/adhm.202100961] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by progressive degeneration of osteochondral tissues. Current treatment is restricted to the reduction of pain and loss of function of the joint. To better comprehend the OA pathophysiological conditions, several models are employed, however; there is no consensus on a suitable model. In this review, different in vitro models being developed for possible therapeutic intervention of OA are outlined. Herein, various in vitro OA models starting from 2D model, co-culture model, 3D models, dynamic culture model to advanced technologies-based models such as 3D bioprinting, bioassembly, organoids, and organ-on-chip-based models are discussed with their advantages and disadvantages. Besides, different growth factors, cytokines, and chemicals being utilized for induction of OA condition are reviewed in detail. Furthermore, there is focus on scrutinizing different molecular and possible therapeutic targets for better understanding the mechanisms and OA therapeutics. Finally, the underlying challenges associated with in vitro models are discussed followed by future prospective. Taken together, a comprehensive overview of in vitro OA models, factors to induce OA-like conditions, and intricate molecular targets with the potential to develop personalized osteoarthritis therapeutics in the future with clinical translation is provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Nandana Bhardwaj
- Department of Science and Mathematics Indian Institute of Information Technology Guwahati Bongora Guwahati Assam 781015 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
13
|
Park S, Bello A, Arai Y, Ahn J, Kim D, Cha KY, Baek I, Park H, Lee SH. Functional Duality of Chondrocyte Hypertrophy and Biomedical Application Trends in Osteoarthritis. Pharmaceutics 2021; 13:pharmaceutics13081139. [PMID: 34452101 PMCID: PMC8400409 DOI: 10.3390/pharmaceutics13081139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chondrocyte hypertrophy is one of the key indicators in the progression of osteoarthritis (OA). However, compared with other OA indications, such as cartilage collapse, sclerosis, inflammation, and protease activation, the mechanisms by which chondrocyte hypertrophy contributes to OA remain elusive. As the pathological processes in the OA cartilage microenvironment, such as the alterations in the extracellular matrix, are initiated and dictated by the physiological state of the chondrocytes, in-depth knowledge of chondrocyte hypertrophy is necessary to enhance our understanding of the disease pathology and develop therapeutic agents. Chondrocyte hypertrophy is a factor that induces OA progression; it is also a crucial factor in the endochondral ossification. This review elaborates on this dual functionality of chondrocyte hypertrophy in OA progression and endochondral ossification through a description of the characteristics of various genes and signaling, their mechanism, and their distinguishable physiological effects. Chondrocyte hypertrophy in OA progression leads to a decrease in chondrogenic genes and destruction of cartilage tissue. However, in endochondral ossification, it represents an intermediate stage at the process of differentiation of chondrocytes into osteogenic cells. In addition, this review describes the current therapeutic strategies and their mechanisms, involving genes, proteins, cytokines, small molecules, three-dimensional environments, or exosomes, against the OA induced by chondrocyte hypertrophy. Finally, this review proposes that the contrasting roles of chondrocyte hypertrophy are essential for both OA progression and endochondral ossification, and that this cellular process may be targeted to develop OA therapeutics.
Collapse
Affiliation(s)
- Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Alvin Bello
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Jinsung Ahn
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Kyung-Yup Cha
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Hansoo Park
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Correspondence: ; Tel.: +82-31-961-5153; Fax: +82-31-961-5108
| |
Collapse
|
14
|
Allas L, Brochard S, Rochoux Q, Ribet J, Dujarrier C, Veyssiere A, Aury-Landas J, Grard O, Leclercq S, Vivien D, Ea HK, Maubert E, Cohen-Solal M, Boumediene K, Agin V, Baugé C. EZH2 inhibition reduces cartilage loss and functional impairment related to osteoarthritis. Sci Rep 2020; 10:19577. [PMID: 33177650 PMCID: PMC7658239 DOI: 10.1038/s41598-020-76724-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1β. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1β in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1β effects. Ex vivo, EZH2 inhibition decreased IL-1β-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.
Collapse
Affiliation(s)
- Lyess Allas
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Sybille Brochard
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Quitterie Rochoux
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Rhumatologie, CHU, Caen, France
| | - Jules Ribet
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Rhumatologie, CHU, Caen, France
| | - Cleo Dujarrier
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | - Alexis Veyssiere
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Chirurgie Maxillo-Faciale, CHU, Caen, France
| | | | - Ophélie Grard
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Sylvain Leclercq
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
- Service de Chirurgie Orthopédique, Clinique Saint-Martin, Caen, France
| | - Denis Vivien
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
- Department of Clinical Research, CHU Caen-Normandie, Caen, France
| | - Hang-Korng Ea
- UMR-1132 BIOSCAR, INSERM, Université de Paris, Paris, France
| | - Eric Maubert
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | | | - Karim Boumediene
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France
| | - Véronique Agin
- UMRS1237 PhIND, INSERM, Normandie Univ, Institut Blood and Brain @ Caen-Normandie, Université de Caen, Caen, France
| | - Catherine Baugé
- EA7451 BioConnect, Normandie Univ, Université de Caen, 14032, Caen, France.
| |
Collapse
|
15
|
Targeting miR-18a sensitizes chondrocytes to anticytokine therapy to prevent osteoarthritis progression. Cell Death Dis 2020; 11:947. [PMID: 33144571 PMCID: PMC7609664 DOI: 10.1038/s41419-020-03155-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Inflammation participates in the development of OA and targeting inflammatory signaling pathways is a potential strategy for OA treatment. IL-1β is one of the most important inflammatory factors to trigger the activation of NF-κB signaling and accelerate OA progression, whereas OA patients could hardly benefit from inhibiting IL-1β in clinic, suggesting the importance to further explore the details of OA inflammation. We here showed that expression of miR-18a in chondrocytes was specifically induced in response to IL-1β in vitro as well as in rat model of OA during which NF-κB signaling was involved, and that nuclear-translocated p65 directly upregulated miR-18a expression at transcriptional level. Further, increased miR-18a mediated hypertrophy of chondrocytes, resulting in OA degeneration, by targeting TGFβ1, SMAD2, and SMAD3 and subsequently leading to repression of TGF-β signaling. And the level of serum miR-18a was positively correlated to severity of OA. Interestingly, other than IL-1β, pro-inflammation cytokines involving TNFα could also remarkably upregulate miR-18a via activating NF-κB signaling and subsequently induce chondrocytes hypertrophy, suggesting a pivotal central role of miR-18a in inflammatory OA progression. Thus, our study revealed a novel convergence of NF-κB and TGF-β signaling mediated by miR-18a, and a novel mechanism underlying inflammation-regulated OA dependent of NF-κB/miR-18a/TGF-β axis. Notably, in vivo assay showed that targeting miR-18a sensitized OA chondrocytes to IL-1β inhibitor as targeting IL-1β and miR-18a simultaneously had much stronger inhibitory effects on OA progression than suppressing IL-1β alone. Therefore, the diagnostic and therapeutic potentials of miR-18a for OA were also revealed.
Collapse
|
16
|
Wang C, Gao Y, Zhang Z, Chen C, Chi Q, Xu K, Yang L. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-κB/NLRP3 inflammasome pathway and ameliorates osteoarthritis. Biomed Pharmacother 2020; 130:110568. [PMID: 32745911 DOI: 10.1016/j.biopha.2020.110568] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/05/2023] Open
Abstract
Inflammation and poor viability of chondrocytes result in the degradation of cartilage as osteoarthritis (OA) progresses. The purpose of the present study was to investigate whether ursolic acid (UA) can protect chondrocytes and alleviate OA. Following stimulation with tumor necrosis factor-α (TNF-α), 5 μM UA displayed no cytotoxicity and reversed the up-regulation of the inflammatory factors MMP13, IL-1β, IL-6 and PTGS2, and down-regulation of the cartilaginous genes/proteins type II collagen and Aggrecan. RNA sequencing identified 533 common deferentially expressed genes (DEGs) of which TNF, PI3K-AKT, NOD-like receptor, cytokine receptor interaction and NF-κB pathways were of potential importance. Further notable DEGs in the most-highly expressed 10 pathways contributed to maintenance of cartilaginous ECM homeostasis and were involved in an inflammatory response. The expression of these most-enriched DEGs was reversed by UA following stimulation with TNF-α. Additional investigation demonstrated that treatment with UA inhibited TNF-α-induced nuclear translocation of p65 and phosphorylation of IκBα and AKT, and reversed TNF-α-induced up-regulation of P20, ACS and NLRP3. Furthermore, rat anterior cruciate ligament transection (ACLT) induced-OA was ameliorated by treatment with UA. In conclusion, these results suggest that UA activates chondrocytes through the NF-κB/NLRP3 inflammasome pathway, thus preventing cartilage degeneration in osteoarthritis.
Collapse
Affiliation(s)
- Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yan Gao
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zike Zhang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Cheng Chen
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qingjia Chi
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, China
| | - Kang Xu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|