1
|
Gamal W, Mediavilla-Varela M, Kunta V, Sahakian E, Pinilla-Ibarz J. Impact of mitochondrial metabolism on T-cell dysfunction in chronic lymphocytic leukemia. Front Cell Dev Biol 2025; 13:1577081. [PMID: 40313718 PMCID: PMC12043688 DOI: 10.3389/fcell.2025.1577081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
T cells play a central role in anti-tumor immunity, yet their function is often compromised within the immunosuppressive tumor microenvironment, leading to cancer progression and resistance to immunotherapies. T-cell activation and differentiation require dynamic metabolic shifts, with mitochondrial metabolism playing a crucial role in sustaining their function. Research in cancer immunometabolism has revealed key mitochondrial abnormalities in tumor-infiltrating lymphocytes, including reduced mitochondrial capacity, depolarization, structural defects, and elevated reactive oxygen species. While these mitochondrial disruptions are well-characterized in solid tumors and linked to T-cell exhaustion, their impact on T-cell immunity in lymphoproliferative disorders remains underexplored. Chronic lymphocytic leukemia (CLL), the most prevalent chronic adult leukemia, is marked by profound T-cell dysfunction that limits the success of adoptive cell therapies. Emerging studies are shedding light on the role of mitochondrial disturbances in CLL-related T-cell dysfunction, but significant knowledge gaps remain. This review explores mitochondrial metabolism in T-cell exhaustion, emphasizing recent findings in CLL. We also discuss therapeutic strategies to restore T-cell mitochondrial function and identify key research gaps.
Collapse
Affiliation(s)
- Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Melanie Mediavilla-Varela
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Vishaal Kunta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
2
|
Lim YJ, Duckworth AD, Clarke K, Kennedy P, Karpha I, Oates M, Gornall M, Kalakonda N, Slupsky JR, Pettitt AR. Influence of polyfunctional Tbet + T cells on specific clinical events in chronic lymphocytic leukaemia. Front Immunol 2025; 16:1528405. [PMID: 40313965 PMCID: PMC12043603 DOI: 10.3389/fimmu.2025.1528405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/18/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction T-cell dysfunction is a hallmark of chronic lymphocytic leukemia (CLL), but the extent to which individual CD4+ or CD8+ T-cell subpopulations influence specific clinical events remains unclear. To address this knowledge gap, we utilised high-dimensional mass cytometry to profile circulating CD4+ and CD8+ T-cells in pre-treatment samples from a well-defined cohort of CLL patients undergoing initial therapy as part of a clinical trial. Methods Pre-treatment blood samples from 138 CLL patients receiving initial chemoimmunotherapy containing bendamustine or chlorambucil in the NCRI RIAltO trial (NCT01678430; EudraCT 2011-000919-22) were subjected to deep immunophenotyping by mass cytometry using a bespoke panel of 37 antibodies. T-cell clusters were identified through unsupervised clustering and related to treatment outcomes. Additionally, a randomly selected cohort of 30 CLL patients underwent T-cell stimulation with anti-CD3/CD28 microbeads, followed by cytokine analysis using a separate 36-antibody panel, which included seven cytokines. Results Seventeen CD4+ and 22 CD8+ T-cell clusters were identified in a discovery cohort of 79 patients. Three of these clusters, measured as a proportion of their parental CD4+ or CD8+ populations, correlated with a reduced risk of grade ≥3 infection, grade ≥3 second primary malignancy (SPM) and death, respectively. Three corresponding T-cell subpopulations prospectively defined by non-redundant markers and Boolean gating (ICOS+HLA-DR+PD1+TIGIT+Tbet+CD4+ T-helper cells; CD27+CD28-PD1+Tbet+Eomes+CD8+ cells; and CD27+CD28-GrymB+Tbet+Eomes+CD8+ terminal effector cells) showed the same clinical correlations as the clusters on which they were based. With the exception of SPM for which there were insufficient events, these correlations were confirmed in a separate validation cohort of 59 patients. In-vitro stimulation of a subset of CLL patients in the discovery cohort showed an enrichment of primed and polyfunctional cells in all three Tbet+ T-cell subpopulations of interest. Conclusion Our study provides new insights into the potential for Tbet+ T-cell subpopulations to influence and predict specific clinical events in CLL. This, in turn, raises the possibility that these respective subpopulations could play an important role in controlling infection, solid tumours and CLL itself. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier NCT01678430; https://www.isrctn.com/ISRCTN09988575, identifier EudraCT 2011-000919-22.
Collapse
Affiliation(s)
- Yeong Jer Lim
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Andrew D. Duckworth
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, United Kingdom
| | - Paul Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Indrani Karpha
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Melanie Oates
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Gornall
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, United Kingdom
| | - Nagesh Kalakonda
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Joseph R. Slupsky
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R. Pettitt
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
3
|
Langerbeins P, Robrecht S, Nieper P, Cramer P, Fürstenau M, Al-Sawaf O, Simon F, Fink AM, Kreuzer KA, Vehling-Kaiser U, Tausch E, Schneider C, Müller L, Eckart MJ, Schlag R, Freier W, Gaska T, Balser C, Reiser M, Stauch M, Zahn MO, Dörfel S, Staib P, Behlendorf T, Hensel M, Hebart H, Klaproth H, Block A, Liersch R, Hauch U, Heinrich B, Wendtner CM, Fischer K, Stilgenbauer S, Eichhorst B, Hallek M. Ibrutinib in Early-Stage Chronic Lymphocytic Leukemia: The Randomized, Placebo-Controlled, Double-Blind, Phase III CLL12 Trial. J Clin Oncol 2025; 43:392-402. [PMID: 39602678 DOI: 10.1200/jco.24.00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE The CLL12 trial reassesses the watch-and-wait consensus for early-stage chronic lymphocytic leukemia (CLL) in the context of targeted therapies. METHODS The German CLL Study Group conducted a randomized, double-blind, placebo-controlled phase III trial with 363 patients with asymptomatic, treatment-naïve Binet stage A CLL at increased risk of progression to receive ibrutinib (n = 182) at a daily dose of 420 mg or placebo (n = 181). Additionally, 152 low-risk patients were allocated to the watch-and-wait group. The final analysis included event-free survival, progression-free survival, time to next treatment, overall survival, and safety assessments. RESULTS Ibrutinib significantly delayed progression to symptomatic disease (P < .001; hazard ratio, 0.276 [95% CI, 0.188 to 0.407]), but no survival benefit was observed with 26 death cases (P = .562) at a median observation time of 69.3 months. Five-year survival rates were excellent: 93.3% (95% CI, 89.3 to 97.3) in the ibrutinib group, 93.6% (95% CI, 89.5 to 97.7) in the placebo group, and 97.9% (95% CI, 95.6 to 100) in the watch-and-wait cohort. Estimated 10-year survival rates from diagnosis were 86.5% (95% CI, 78.7 to 94.3, placebo), 89.8% (95% CI, 83.3 to 96.3, ibrutinib), and 95.3% (95% CI, 91.1 to 99.4, watch and wait). In the ibrutinib group, one of 12 deaths was CLL-associated, compared with four of 14 fatal cases of CLL progression or Richter transformation in the placebo group. Adverse and serious adverse events occurred in 99.4% and 60% of both treatment groups, respectively. The safety profile indicated increased cardiovascular toxicity in the ibrutinib group. CONCLUSION Ibrutinib treatment in early-stage CLL delayed disease progression compared with placebo. However, with the given observation time and few deaths, no survival benefit was demonstrated. In the era of targeted therapies, watch and wait remains the standard of care irrespective of risk factors.
Collapse
MESH Headings
- Humans
- Piperidines
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Adenine/analogs & derivatives
- Double-Blind Method
- Male
- Female
- Middle Aged
- Aged
- Pyrimidines/therapeutic use
- Pyrimidines/adverse effects
- Aged, 80 and over
- Pyrazoles/therapeutic use
- Pyrazoles/adverse effects
- Adult
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/adverse effects
- Progression-Free Survival
- Neoplasm Staging
- Watchful Waiting
- Disease Progression
Collapse
Affiliation(s)
- Petra Langerbeins
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pascal Nieper
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paula Cramer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Moritz Fürstenau
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Othman Al-Sawaf
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Simon
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna-Maria Fink
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Christof Schneider
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Lothar Müller
- Study Centrum Unter Ems, Practice for Oncology and Hematology, Leer, Germany
| | | | - Rudolf Schlag
- Practice for Oncology and Hematology, Würzburg, Germany
| | | | - Tobias Gaska
- Department of Hematology and Oncology, Brüderkrankenhaus, Paderborn, Germany
| | - Christina Balser
- Practice for Oncology and Hematology, Erlenring 9, Marburg, Germany
| | - Marcel Reiser
- Practice for Oncology and Hematology, Cologne, Germany
| | | | - Mark-Oliver Zahn
- Practice for Oncology and Hematology, Kösliner Straße 14, Goslar, Germany
| | - Steffen Dörfel
- Onkozentrum Dresden Freiberg, Leipziger Straße 118, Dresden, Germany
| | - Peter Staib
- St Antonius Hospital Eschweiler, Dechant-Deckers-Straße 8, Eschweiler, Germany
| | - Timo Behlendorf
- Practice for Oncology and Hematology, Niemeyerstraße Halle, Germany
| | - Manfred Hensel
- Practice for Oncology and Hematology, Q5, Mannheim, Germany
| | - Holger Hebart
- Stauferklinikum Schwäbisch Gmünd, Department for Internal Medicine, Hematology and Oncology, Wetzgauer Straße 85, Mutlangen, Germany
| | - Holger Klaproth
- Practice for Oncology and Hematology, Hebbelstraße 2, Neunkirchen, Germany
| | - Andreas Block
- Department II of Internal Medicine, University of Hamburg, Martinistraße 52, Hamburg, Germany
| | - Rüdiger Liersch
- Practice for Oncology and Hematology, Steinfurter Straße 60b, Münster, Germany
| | - Ulrich Hauch
- Practice for Oncology and Hematology, Neuwerkstraße 51, Erfurt, Germany
| | - Bernhard Heinrich
- Practice for Oncology and Hematology, Halderstr. 29, Augsburg, Germany
| | | | - Kirsten Fischer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Derigs P, Schubert ML, Dreger P, Schmitt A, Yousefian S, Haas S, Röthemeier C, Neuber B, Hückelhoven-Krauss A, Brüggemann M, Bernhard H, Kobbe G, Lindemann A, Rummel M, Michels B, Korell F, Ho AD, Müller-Tidow C, Schmitt M. Third-generation anti-CD19 CAR T cells for relapsed/refractory chronic lymphocytic leukemia: a phase 1/2 study. Leukemia 2024; 38:2419-2428. [PMID: 39192036 PMCID: PMC11519001 DOI: 10.1038/s41375-024-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Third-generation chimeric antigen receptor T cells (CARTs) for relapsed or refractory (r/r) chronic lymphocytic leukemia (CLL) may improve efficacy compared to second-generation CARTs due to their enhanced CAR design. We performed the first phase 1/2 investigator-initiated trial evaluating escalating doses of third-generation CARTs (HD-CAR-1) targeting CD19 in patients with r/r CLL and B-cell lymphoma. CLL eligibility criteria were failure to two therapy lines including at least one pathway inhibitor and/or allogeneic hematopoietic cell transplantation. Nine heavily pretreated patients received HD-CAR-1 at dose levels ranging from 1 × 106 to 200 × 106 CART/m2. In-house HD-CAR-1 manufacturing was successful for all patients. While neurotoxicity was absent, one case of grade 3 cytokine release syndrome was observed. By day 90, six patients (67%) attained a CR, five of these (83%) with undetectable MRD. With a median follow-up of 27 months, 2-year PFS and OS were 30% and 69%, respectively. HD-CAR-1 products of responders contained significantly more CD4 + T cells compared to non-responders. In non-responders, a strong enrichment of effector memory-like CD8 + T cells with high expression of CD39 and/or CD197 was observed. HD-CAR-1 demonstrated encouraging efficacy and exceptionally low treatment-specific toxicity, presenting new treatment options for patients with r/r CLL. Trial registration: #NCT03676504.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Antigens, CD19/immunology
- Middle Aged
- Female
- Aged
- Receptors, Chimeric Antigen/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/therapy
- Adult
- Follow-Up Studies
Collapse
Affiliation(s)
- Patrick Derigs
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Maria-Luisa Schubert
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Dreger
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Schayan Yousefian
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Simon Haas
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Caroline Röthemeier
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Brigitte Neuber
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Monika Brüggemann
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Helga Bernhard
- Department of Internal Medicine V, Klinikum Darmstadt, Darmstadt, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Mathias Rummel
- Department of Internal Medicine IV, University Hospital Giessen, Giessen, Germany
| | - Birgit Michels
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Korell
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony D Ho
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
5
|
Stéphan P, Bouherrou K, Guillermin Y, Michallet AS, Grinberg-Bleyer Y. Immunophenotyping of Peripheral Blood Cells in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Cells 2024; 13:1458. [PMID: 39273028 PMCID: PMC11393851 DOI: 10.3390/cells13171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell-derived hematologic malignancy whose progression depends on active B-cell receptor (BCR) signaling. Despite the spectacular efficacy of Ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase (BTK), resistance can develop in CLL patients, and alternative therapeutic strategies are therefore required. Cancer immunotherapy has revolutionized cancer care and may be an attractive approach in this context. We speculated that characterizing the immune responses of CLL patients may highlight putative immunotherapeutic targets. Here, we used high-dimensional spectral flow cytometry to compare the distribution and phenotype of non-B-cell immune populations in the circulating blood of CLL patients treated with Ibrutinib displaying a complete response or secondary progression. Although no drastic changes were observed in the composition of their immune subsets, the Ibrutinib-resistant group showed increased cycling of CD8+ T cells, leading to their overabundance at the expense of dendritic cells. In addition, the expression of 11 different surface checkpoints was similar regardless of response status. Together, this suggests that CLL relapse upon Ibrutinib treatment may not lead to major alterations in the peripheral immune response.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Adenine/pharmacology
- Piperidines/therapeutic use
- Piperidines/pharmacology
- Immunophenotyping
- Male
- Female
- Aged
- Middle Aged
- Aged, 80 and over
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Blood Cells/drug effects
- Blood Cells/metabolism
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Drug Resistance, Neoplasm/drug effects
Collapse
Affiliation(s)
- Pierre Stéphan
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEV2CAN, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (K.B.)
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEV2CAN, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (K.B.)
| | - Yann Guillermin
- Hematology Department-Centre Léon Bérard, 69008 Lyon, France; (Y.G.); (A.-S.M.)
| | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEV2CAN, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (K.B.)
| |
Collapse
|
6
|
Bonato A, Chakraborty S, Bomben R, Canarutto G, Felician G, Martines C, Zucchetto A, Pozzo F, Vujovikj M, Polesel J, Chiarenza A, Del Principe MI, Del Poeta G, D'Arena G, Marasca R, Tafuri A, Laurenti L, Piazza S, Dimovski AJ, Gattei V, Efremov DG. NFKBIE mutations are selected by the tumor microenvironment and contribute to immune escape in chronic lymphocytic leukemia. Leukemia 2024; 38:1511-1521. [PMID: 38486128 PMCID: PMC11216988 DOI: 10.1038/s41375-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Loss-of-function mutations in NFKBIE, which encodes for the NF-κB inhibitor IκBε, are frequent in chronic lymphocytic leukemia (CLL) and certain other B-cell malignancies and have been associated with accelerated disease progression and inferior responses to chemotherapy. Using in vitro and in vivo murine models and primary patient samples, we now show that NFKBIE-mutated CLL cells are selected by microenvironmental signals that activate the NF-κB pathway and induce alterations within the tumor microenvironment that can allow for immune escape, including expansion of CD8+ T-cells with an exhausted phenotype and increased PD-L1 expression on the malignant B-cells. Consistent with the latter observations, we find increased expression of exhaustion markers on T-cells from patients with NFKBIE-mutated CLL. In addition, we show that NFKBIE-mutated murine CLL cells display selective resistance to ibrutinib and report inferior outcomes to ibrutinib treatment in NFKBIE-mutated CLL patients. These findings suggest that NFKBIE mutations can contribute to CLL progression through multiple mechanisms, including a bidirectional crosstalk with the microenvironment and reduced sensitivity to BTK inhibitor treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adenine/analogs & derivatives
- Adenine/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mutation
- NF-kappa B/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Tumor Escape/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Alice Bonato
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Supriya Chakraborty
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Giulia Canarutto
- Computational Biology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Felician
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Claudio Martines
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Marija Vujovikj
- Research Center for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Jerry Polesel
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | | | | | - Giovanni Del Poeta
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni D'Arena
- Hematology and Stem Cell Transplantation Unit, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Roberto Marasca
- Division of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Agostino Tafuri
- Division of Hematology, University Hospital Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | - Luca Laurenti
- Hematology Unit, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Silvano Piazza
- Computational Biology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Aleksandar J Dimovski
- Research Center for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
- Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Dimitar G Efremov
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy.
- Macedonian Academy of Sciences and Arts, Skopje, North Macedonia.
| |
Collapse
|
7
|
Floerchinger A, Seiffert M. Lessons learned from the Eµ-TCL1 mouse model of CLL. Semin Hematol 2024; 61:194-200. [PMID: 38839457 DOI: 10.1053/j.seminhematol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Mice
- Disease Models, Animal
- Humans
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Tumor Microenvironment/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Alessia Floerchinger
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Camerini E, Amsen D, Kater AP, Peters FS. The complexities of T-cell dysfunction in chronic lymphocytic leukemia. Semin Hematol 2024; 61:163-171. [PMID: 38782635 DOI: 10.1053/j.seminhematol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by profound alterations and defects in the T-cell compartment. This observation has gained renewed interest as T-cell treatment strategies, which are successfully applied in more aggressive B-cell malignancies, have yielded disappointing results in CLL. Despite ongoing efforts to understand and address the observed T-cell defects, the exact mechanisms and nature underlying this dysfunction remain largely unknown. In this review, we examine the supporting signals from T cells to CLL cells in the lymph node niche, summarize key findings on T-cell functional defects, delve into potential underlying causes, and explore novel strategies for reversing these deficiencies. Our goal is to identify strategies aimed at resolving CLL-induced T-cell dysfunction which, in the future, will enhance the efficacy of autologous T-cell-based therapies for CLL patients.
Collapse
Affiliation(s)
- Elena Camerini
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Derk Amsen
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Landsteiner Laboratory for Blood Cell Research at Sanquin, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Fleur S Peters
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Smith AL, Skupa SA, Eiken AP, Reznicek TE, Schmitz E, Williams N, Moore DY, D’Angelo CR, Kallam A, Lunning MA, Bociek RG, Vose JM, Mohamed E, Mahr AR, Denton PW, Powell B, Bollag G, Rowley MJ, El-Gamal D. BET inhibition reforms the immune microenvironment and alleviates T cell dysfunction in chronic lymphocytic leukemia. JCI Insight 2024; 9:e177054. [PMID: 38775157 PMCID: PMC11141939 DOI: 10.1172/jci.insight.177054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eμ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Nolan Williams
- Eppley Institute for Research in Cancer and Allied Diseases
| | - Dalia Y. Moore
- Eppley Institute for Research in Cancer and Allied Diseases
| | - Christopher R. D’Angelo
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Avyakta Kallam
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Matthew A. Lunning
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - R. Gregory Bociek
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julie M. Vose
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Eslam Mohamed
- College of Medicine and College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Anna R. Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Paul W. Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Ben Powell
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| |
Collapse
|
10
|
Vitale C, Griggio V, Perutelli F, Coscia M. CAR-modified Cellular Therapies in Chronic Lymphocytic Leukemia: Is the Uphill Road Getting Less Steep? Hemasphere 2023; 7:e988. [PMID: 38044959 PMCID: PMC10691795 DOI: 10.1097/hs9.0000000000000988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
The clinical development of chimeric antigen receptor (CAR) T-cell therapy has been more challenging for chronic lymphocytic leukemia (CLL) compared to other settings. One of the main reasons is the CLL-associated state of immune dysfunction that specifically involves patient-derived T cells. Here, we provide an overview of the clinical results obtained with CAR T-cell therapy in CLL, describing the identified immunologic reasons for the inferior efficacy. Novel CAR T-cell formulations, such as lisocabtagene maraleucel, administered alone or in combination with the Bruton tyrosine kinase inhibitor ibrutinib, are currently under investigation. These approaches are based on the rationale that improving the quality of the T-cell source and of the CAR T-cell product may deliver a more functional therapeutic weapon. Further strategies to boost the efficacy of CAR T cells should rely not only on the production of CAR T cells with an improved cellular composition but also on additional changes. Such alterations could include (1) the coadministration of immunomodulatory agents capable of counteracting CLL-related immunological alterations, (2) the design of improved CAR constructs (such as third- and fourth-generation CARs), (3) the incorporation into the manufacturing process of immunomodulatory compounds overcoming the T-cell defects, and (4) the use of allogeneic CAR T cells or alternative CAR-modified cellular vectors. These strategies may allow to develop more effective CAR-modified cellular therapies capable of counteracting the more aggressive and still incurable forms of CLL.
Collapse
Affiliation(s)
- Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| |
Collapse
|
11
|
Gamal W, Sahakian E, Pinilla-Ibarz J. The role of Th17 cells in chronic lymphocytic leukemia: friend or foe? Blood Adv 2023; 7:2401-2417. [PMID: 36574293 PMCID: PMC10238851 DOI: 10.1182/bloodadvances.2022008985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
T helper 17 (Th17) cells have a prominent role in autoimmune diseases. In contrast, the nature of these cells in cancer is controversial, with either pro- or antitumorigenic activities depending on various cancer settings. Chronic lymphocytic leukemia (CLL), a B-cell malignancy, is characterized by an imbalance in T-cell immune responses that contributes to disease progression and increased mortality. Many clinical reports indicate an increase in Th17 cells and/or interleukin 17 serum cytokine levels in patients with CLL compared with healthy individuals, which correlates with various prognostic markers and significant changes in the tumor microenvironment. The exact mechanisms by which Th17 cells might contribute to CLL progression remain poorly investigated. In this review, we provide an updated presentation of the clinical information related to the significance of Th17 cells in CLL and their interaction with the complex leukemic microenvironment, including various mediators, immune cells, and nonimmune cells. We also address the available data regarding the effects of CLL-targeted therapies on Th17 cells and the potential of using these cells in adoptive cell therapies. Having a sound understanding of the role played by Th17 cells in CLL is crucial for designing novel therapies that can achieve immune homeostasis and maximize clinical benefits.
Collapse
Affiliation(s)
- Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
12
|
Rubino V, Carriero F, Palatucci AT, Giovazzino A, Leone S, Nicolella V, Calabrò M, Montanaro R, Brancaleone V, Pane F, Chiurazzi F, Ruggiero G, Terrazzano G. Adaptive and Innate Cytotoxic Effectors in Chronic Lymphocytic Leukaemia (CLL) Subjects with Stable Disease. Int J Mol Sci 2023; 24:9596. [PMID: 37298547 PMCID: PMC10253385 DOI: 10.3390/ijms24119596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by the expansion of a neoplastic mature B cell clone. CLL clinical outcome is very heterogeneous, with some subjects never requiring therapy and some showing an aggressive disease. Genetic and epigenetic alterations and pro-inflammatory microenvironment influence CLL progression and prognosis. The involvement of immune-mediated mechanisms in CLL control needs to be investigated. We analyse the activation profile of innate and adaptive cytotoxic immune effectors in a cohort of 26 CLL patients with stable disease, as key elements for immune-mediated control of cancer progression. We observed an increase in CD54 expression and interferon (IFN)-γ production by cytotoxic T cells (CTL). CTL ability to recognise tumour-targets depends on human leukocyte antigens (HLA)-class I expression. We observed a decreased expression of HLA-A and HLA-BC on B cells of CLL subjects, associated with a significant reduction in intracellular calnexin that is relevant for HLA surface expression. Natural killer (NK) cells and CTL from CLL subjects show an increased expression of the activating receptor KIR2DS2 and a reduction of 3DL1 and NKG2A inhibiting molecules. Therefore, an activation profile characterises CTL and NK cells of CLL subjects with stable disease. This profile is conceivable with the functional involvement of cytotoxic effectors in CLL control.
Collapse
Affiliation(s)
- Valentina Rubino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Flavia Carriero
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Anna Teresa Palatucci
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Stefania Leone
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Valerio Nicolella
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Martina Calabrò
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Fabrizio Pane
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Federico Chiurazzi
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| |
Collapse
|
13
|
Simultaneous Inhibition of PI3Kgamma and PI3Kdelta Deteriorates T-cell Function With Implications for Chronic Lymphocytic Leukemia. Hemasphere 2023; 7:e840. [PMID: 36844182 PMCID: PMC9949793 DOI: 10.1097/hs9.0000000000000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a common and incurable B-cell malignancy. Recent therapeutic approaches that target the B-cell receptor signaling pathway include inhibition of phosphatidylinositol-3-kinase (PI3K). The PI3K isoform delta is constitutively active in CLL, making it an attractive therapeutic target. However, the expression of PI3K isoforms is not exclusive to leukemic cells, as other immune cells in the tumor microenvironment also rely on PI3K activity. Subsequently, therapeutic inhibition of PI3K causes immune-related adverse events (irAEs). Here, we analyzed the impact of the clinically approved PI3Kδ inhibitors idelalisib and umbralisib, the PI3Kγ inhibitor eganelisib, and the dual-γ and -δ inhibitor duvelisib on the functional capacity of T cells. All investigated inhibitors reduced T-cell activation and proliferation in vitro, which is in line with PI3K being a crucial signaling component of the T-cell receptor signaling. Further, dual inhibition of PI3Kγ and PI3Kδ showed strong additive effects suggesting a role also for PI3Kγ in T cells. Extrapolation of this data to a clinical setting could provide an explanation for the observed irAEs in CLL patients undergoing treatment with PI3K inhibitors. Consequently, this highlights the need for a close monitoring of patients treated with PI3K inhibitors, and particularly duvelisib, due to their potentially increased risk of T-cell deficiencies and associated infections.
Collapse
|
14
|
Gao L, Hong Z, Lei G, Guo AL, Wang FS, Jiao YM, Fu J. Decreased granzyme-B expression in CD11c +CD8 + T cells associated with disease progression in patients with HBV-related hepatocellular carcinoma. Front Immunol 2023; 14:1107483. [PMID: 36798119 PMCID: PMC9927008 DOI: 10.3389/fimmu.2023.1107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction CD11c+CD8+ T cells are an unconventional CD8+ T cell subset that exerts antiviral activity in infectious diseases. However, its characteristics in hepatocellular carcinoma (HCC) have not been elucidated. Methods Twenty-six patients with hepatitis B virus (HBV)-related HCC and 25 healthy controls (HC) were enrolled. The frequency and phenotype of CD11c+CD8+ T cells in peripheral blood and tumors in situ were detected by flow cytometry and immunohistochemistry. Results Both the HCC group and HC group had similar frequency and phenotype characteristics of CD11c+CD8+ T cells in the periphery. CD11c+CD8+ T cells were mainly composed of effector T cells, most of which were CD45RA+CCR7-. Compared with CD11c-CD8+ T cells, CD11c+CD8+ T cells had a higher proportion of CD38 and HLA-DR double positive, and expressed high levels of granzyme-B (GB) and degranulation marker CD107a, and produced high levels of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ). However, the ability of degranulation and TNF-α production of CD11c+CD8+ T cells in patients with HCC were significantly lower than that in healthy controls. The GB expression level of peripheral CD11c+CD8+ T cells in patients with advanced stage of HCC was significantly lower than that in patients with early stage of HCC, and the GB expression level of liver-infiltrating CD11c+CD8+ T cells in tumor tissues was lower than that in non-tumor tissues. More importantly, the GB expression level of peripheral CD11c+CD8+ T cells was negatively correlated with tumor volume. Conclusions These findings indicate that CD11c+CD8+ T cells may have potential anti-tumor activity and that GB+CD11c+CD8+ T cells are associated with disease progression in patients with HBV-related HCC.
Collapse
Affiliation(s)
- Lin Gao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,Department of Infectious Disease and Hepatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhixian Hong
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guanglin Lei
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - An-Liang Guo
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,*Correspondence: Junliang Fu, ; Yan-Mei Jiao,
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,*Correspondence: Junliang Fu, ; Yan-Mei Jiao,
| |
Collapse
|
15
|
Nagler A, Wu CJ. The end of the beginning: application of single-cell sequencing to chronic lymphocytic leukemia. Blood 2023; 141:369-379. [PMID: 36095842 PMCID: PMC9936302 DOI: 10.1182/blood.2021014669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Single-cell analysis has emerged over the past decade as a transformative technology informative for the systematic analysis of complex cell populations such as in cancers and the tumor immune microenvironment. The methodologic and analytical advancements in this realm have evolved rapidly, scaling from but a few cells at its outset to the current capabilities of processing and analyzing hundreds of thousands of individual cells at a time. The types of profiling attainable at individual cell resolution now range from genetic and transcriptomic characterization and extend to epigenomic and spatial analysis. Additionally, the increasing ability to achieve multiomic integration of these data layers now yields ever richer insights into diverse molecular disease subtypes and the patterns of cellular circuitry on a per-cancer basis. Over the years, chronic lymphocytic leukemia (CLL) consistently has been at the forefront of genomic investigation, given the ready accessibility of pure leukemia cells and immune cells from circulating blood of patients with this disease. Herein, we review the recent forays into the application of single-cell analysis to CLL, which are already revealing a new understanding of the natural progression of CLL, the impact of novel therapies, and the interactions with coevolving nonmalignant immune cell populations. As we emerge from the end of the beginning of this technologic revolution, CLL stands poised to reap the benefits of single-cell analysis from the standpoints of uncovering fresh fundamental biological knowledge and of providing a path to devising regimens of personalized diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
16
|
Oumeslakht L, Aziz AI, Bensussan A, Ben Mkaddem S. CD160 receptor in CLL: Current state and future avenues. Front Immunol 2022; 13:1028013. [PMID: 36420268 PMCID: PMC9676924 DOI: 10.3389/fimmu.2022.1028013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 08/01/2023] Open
Abstract
CD160 is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein expressed on cytotoxic natural killer (NK) cells and T-cell subsets. It plays a crucial role in the activation of NK-cell cytotoxicity and cytokine production. It also modulates the immune system and is involved in some pathologies, such as cancer. CD160 is abnormally expressed in B-cell chronic lymphocytic leukemia (CLL) but not expressed in normal B lymphocytes. Its expression in CLL enhances tumor cell proliferation and resistance to apoptosis. CD160 is also a potential prognostic marker for the detection of minimal residual disease (MRD) in CLL, which is important for the clinical management of CLL, the prevention of disease relapse, and the achievement of complete remission. In this review, we present an overview of CD160 and its involvement in the pathophysiology of CLL. We also discuss its use as a prognostic marker for the assessment of MRD in CLL.
Collapse
Affiliation(s)
- Loubna Oumeslakht
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Abdel-ilah Aziz
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Armand Bensussan
- INSERM U976, Université de Paris, Hôpital Saint Louis, Paris, France
- Institut Jean Godinot, Centre de Lutte Contre le Cancer, Reims, France
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
17
|
Liu Y, Song Y, Yin Q. Effects of ibrutinib on T-cell immunity in patients with chronic lymphocytic leukemia. Front Immunol 2022; 13:962552. [PMID: 36059445 PMCID: PMC9437578 DOI: 10.3389/fimmu.2022.962552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), a highly heterogeneous B-cell malignancy, is characterized by tumor microenvironment disorder and T-cell immune dysfunction, which play a major role in the proliferation and survival of CLL cells. Ibrutinib is the first irreversible inhibitor of Bruton’s tyrosine kinase (BTK). In addition to targeting B-cell receptor (BCR) signaling to kill tumor cells, increasing evidence has suggested that ibrutinib regulates the tumor microenvironment and T-cell immunity in a direct and indirect manner. For example, ibrutinib not only reverses the tumor microenvironment by blocking cytokine networks and toll-like receptor signaling but also regulates T cells in number, subset distribution, T-cell receptor (TCR) repertoire and immune function by inhibiting interleukin-2 inducible T-cell kinase (ITK) and reducing the expression of inhibitory receptors, and so on. In this review, we summarize the current evidence for the effects of ibrutinib on the tumor microenvironment and cellular immunity of patients with CLL, particularly for the behavior and function of T cells, explore its potential mechanisms, and provide a basis for the clinical benefits of long-term ibrutinib treatment and combined therapy based on T-cell-based immunotherapies.
Collapse
|
18
|
Allard D, Chrobak P, Bareche Y, Allard B, Tessier P, Bergeron MA, Johnson NA, Stagg J. CD73 Promotes Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14133130. [PMID: 35804900 PMCID: PMC9264813 DOI: 10.3390/cancers14133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Many patients with chronic lymphocytic leukemia (CLL) still fail current therapies. CD73 is a novel therapeutic target for solid tumors, but its role in CLL remains unclear. The aim of our study was to investigate the therapeutic potential of targeting CD73 in CLL. Using genetically engineered mice, our study reports a pro-leukemic role for CD73 in an autochthonous mouse model of CLL. Furthermore, we observed an association between PD-L1 expression on CLL cells and adenosine signaling according to sex. Our findings provide a rationale for targeting CD73 in CLL in combination with anti-PD-1/PD-L1 immunotherapies and suggest that sex may contribute to responses to adenosine-targeting agents. Abstract The ecto-nucleotidase CD73 is an important immune checkpoint in tumor immunity that cooperates with CD39 to hydrolyze pro-inflammatory extracellular ATP into immunosuppressive adenosine. While the role of CD73 in immune evasion of solid cancers is well established, its role in leukemia remains unclear. To investigate the role of CD73 in the pathogenesis of chronic lymphocytic leukemia (CLL), Eµ-TCL1 transgenic mice that spontaneously develop CLL were crossed with CD73−/− mice. Disease progression in peripheral blood and spleen, and CLL markers were evaluated by flow cytometry and survival was compared to CD73-proficient Eµ-TCL1 transgenic mice. We observed that CD73 deficiency significantly delayed CLL progression and prolonged survival in Eµ-TCL1 transgenic mice, and was associated with increased accumulation of IFN-γ+ T cells and effector-memory CD8+ T cells. Neutralizing IFN-γ abrogated the survival advantage of CD73-deficient Eµ-TCL1 mice. Intriguingly, the beneficial effects of CD73 deletion were restricted to male mice. In females, CD73 deficiency was uniquely associated with the upregulation of CD39 in normal lymphocytes and sustained high PD-L1 expression on CLL cells. In vitro studies revealed that adenosine signaling via the A2a receptor enhanced PD-L1 expression on Eµ-TCL1-derived CLL cells, and a genomic analysis of human CLL samples found that PD-L1 correlated with adenosine signaling. Our study, thus, identified CD73 as a pro-leukemic immune checkpoint in CLL and uncovered a previously unknown sex bias for the CD73-adenosine pathway.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Yacine Bareche
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Priscilla Tessier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Marjorie A. Bergeron
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie A. Johnson
- Department of Medicine, Jewish General Hospital, Montréal, QC H3T 1E2, Canada;
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
19
|
Goral A, Firczuk M, Fidyt K, Sledz M, Simoncello F, Siudakowska K, Pagano G, Moussay E, Paggetti J, Nowakowska P, Gobessi S, Barankiewicz J, Salomon-Perzynski A, Benvenuti F, Efremov DG, Juszczynski P, Lech-Maranda E, Muchowicz A. A Specific CD44lo CD25lo Subpopulation of Regulatory T Cells Inhibits Anti-Leukemic Immune Response and Promotes the Progression in a Mouse Model of Chronic Lymphocytic Leukemia. Front Immunol 2022; 13:781364. [PMID: 35296093 PMCID: PMC8918500 DOI: 10.3389/fimmu.2022.781364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) are capable of inhibiting the proliferation, activation and function of T cells and play an important role in impeding the immune response to cancer. In chronic lymphocytic leukemia (CLL) a dysfunctional immune response and elevated percentage of effector-like phenotype Tregs have been described. In this study, using the Eµ-TCL1 mouse model of CLL, we evaluated the changes in the Tregs phenotype and their expansion at different stages of leukemia progression. Importantly, we show that Tregs depletion in DEREG mice triggered the expansion of new anti-leukemic cytotoxic T cell clones leading to leukemia eradication. In TCL1 leukemia-bearing mice we identified and characterized a specific Tregs subpopulation, the phenotype of which suggests its role in the formation of an immunosuppressive microenvironment, supportive for leukemia survival and proliferation. This observation was also confirmed by the gene expression profile analysis of these TCL1-specific Tregs. The obtained data on Tregs are consistent with those described so far, however, above all show that the changes in the Tregs phenotype described in CLL result from the formation of a specific, described in this study Tregs subpopulation. In addition, functional tests revealed the ability of Tregs to inhibit T cells that recognize model antigens expressed by leukemic cells. Moreover, inhibition of Tregs with a MALT1 inhibitor provided a therapeutic benefit, both as monotherapy and also when combined with an immune checkpoint inhibitor. Altogether, activation of Tregs appears to be crucial for CLL progression.
Collapse
Affiliation(s)
- Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Sledz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Francesca Simoncello
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Giulia Pagano
- Tumor-Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Stefania Gobessi
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Joanna Barankiewicz
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Lech-Maranda
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Angelika Muchowicz,
| |
Collapse
|
20
|
Kwok M, Wu CJ. Clonal Evolution of High-Risk Chronic Lymphocytic Leukemia: A Contemporary Perspective. Front Oncol 2021; 11:790004. [PMID: 34976831 PMCID: PMC8716560 DOI: 10.3389/fonc.2021.790004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Clonal evolution represents the natural process through which cancer cells continuously search for phenotypic advantages that enable them to develop and expand within microenvironmental constraints. In chronic lymphocytic leukemia (CLL), clonal evolution underpins leukemic progression and therapeutic resistance, with differences in clonal evolutionary dynamics accounting for its characteristically diverse clinical course. The past few years have witnessed profound changes in our understanding of CLL clonal evolution, facilitated by a maturing definition of high-risk CLL and an increasing sophistication of next-generation sequencing technology. In this review, we offer a modern perspective on clonal evolution of high-risk CLL, highlighting recent discoveries, paradigm shifts and unresolved questions. We appraise recent advances in our understanding of the molecular basis of CLL clonal evolution, focusing on the genetic and non-genetic sources of intratumoral heterogeneity, as well as tumor-immune dynamics. We review the technological innovations, particularly in single-cell technology, which have fostered these advances and represent essential tools for future discoveries. In addition, we discuss clonal evolution within several contexts of particular relevance to contemporary clinical practice, including the settings of therapeutic resistance to CLL targeted therapy and immunotherapy, as well as Richter transformation of CLL to high-grade lymphoma.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Interleukin-10 receptor signaling promotes the maintenance of a PD-1 int TCF-1 + CD8 + T cell population that sustains anti-tumor immunity. Immunity 2021; 54:2825-2841.e10. [PMID: 34879221 DOI: 10.1016/j.immuni.2021.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
T cell exhaustion limits anti-tumor immunity and responses to immunotherapy. Here, we explored the microenvironmental signals regulating T cell exhaustion using a model of chronic lymphocytic leukemia (CLL). Single-cell analyses identified a subset of PD-1hi, functionally impaired CD8+ T cells that accumulated in secondary lymphoid organs during disease progression and a functionally competent PD-1int subset. Frequencies of PD-1int TCF-1+ CD8+ T cells decreased upon Il10rb or Stat3 deletion, leading to accumulation of PD-1hi cells and accelerated tumor progression. Mechanistically, inhibition of IL-10R signaling altered chromatin accessibility and disrupted cooperativity between the transcription factors NFAT and AP-1, promoting a distinct NFAT-associated program. Low IL10 expression or loss of IL-10R-STAT3 signaling correlated with increased frequencies of exhausted CD8+ T cells and poor survival in CLL and in breast cancer patients. Thus, balance between PD-1hi, exhausted CD8+ T cells and functional PD-1int TCF-1+ CD8+ T cells is regulated by cell-intrinsic IL-10R signaling, with implications for immunotherapy.
Collapse
|
22
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Kwok M, Agathanggelou A, Davies N, Stankovic T. Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4681. [PMID: 34572908 PMCID: PMC8468925 DOI: 10.3390/cancers13184681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The p53 pathway is a desirable therapeutic target, owing to its critical role in the maintenance of genome integrity. This is exemplified in chronic lymphocytic leukemia (CLL), one of the most common adult hematologic malignancies, in which functional loss of p53 arising from genomic aberrations are frequently associated with clonal evolution, disease progression, and therapeutic resistance, even in the contemporary era of CLL targeted therapy and immunotherapy. Targeting the 'undruggable' p53 pathway therefore arguably represents the holy grail of cancer research. In recent years, several strategies have been proposed to exploit p53 pathway defects for cancer treatment. Such strategies include upregulating wild-type p53, restoring tumor suppressive function in mutant p53, inducing synthetic lethality by targeting collateral genome maintenance pathways, and harnessing the immunogenicity of p53 pathway aberrations. In this review, we will examine the biological and clinical implications of p53 pathway defects, as well as our progress towards development of therapeutic approaches targeting the p53 pathway, specifically within the context of CLL. We will appraise the opportunities and pitfalls associated with these therapeutic strategies, and evaluate their place amongst the array of new biological therapies for CLL.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2SY, UK
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| |
Collapse
|
24
|
Rezazadeh H, Astaneh M, Tehrani M, Hossein-Nataj H, Zaboli E, Shekarriz R, Asgarian-Omran H. Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8 + T cells in early clinical stages of chronic lymphocytic leukemia. Immunol Res 2021; 68:269-279. [PMID: 32710227 DOI: 10.1007/s12026-020-09146-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blocking antibodies targeting immune checkpoint molecules achieved invaluable success in tumor therapy and amazing clinical responses in a variety of cancers. Although common treatment protocols have improved overall survival in patients with chronic lymphocytic leukemia (CLL), they continue to relapse and progress. In the present in vitro study, the application of anti-PD-1 and anti-TIM-3 blocking antibodies was studied to restore the function of exhausted CD8+ T cells in CLL. CD8+ T cells were isolated from peripheral blood of 20 patients with CLL, treated with blocking antibodies, and cocultured with mitomycin-frozen non-CD8+ T cell fraction as target cells. Cultures were stimulated with anti-CD3/CD28 antibodies to assess the proliferation of CD8+ T cells by MTT and stimulated with PMA/ionomycin to measure the levels of CD107a expression and cytokine production by flow cytometry and ELISA, respectively. Our results showed that the blockade of PD-1 and TIM-3 does not improve the proliferation of CD8+ T cells in CLL patients. No significant difference was found between control and blocked groups in terms of degranulation properties and production of IFN-γ, TNF-α, IL-2, and IL-10 by CD8+ T cells. We observed that pre-treatment of CD8+ T cells with blocking antibodies in CLL patients at early clinical stages had no effects on restoring their functional properties. Further in vitro and in vivo complementary studies are required to more explore the utility of checkpoint inhibitors for CLL patients.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/immunology
- Cell Proliferation/drug effects
- Coculture Techniques
- Cytokines/metabolism
- Drug Screening Assays, Antitumor
- Female
- Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphocyte Activation/drug effects
- Male
- Middle Aged
- Neoplasm Staging
- Primary Cell Culture
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
Collapse
Affiliation(s)
- Hadiseh Rezazadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojgan Astaneh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hossein-Nataj
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ramin Shekarriz
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
25
|
Roessner PM, Llaó Cid L, Lupar E, Roider T, Bordas M, Schifflers C, Arseni L, Gaupel AC, Kilpert F, Krötschel M, Arnold SJ, Sellner L, Colomer D, Stilgenbauer S, Dietrich S, Lichter P, Izcue A, Seiffert M. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:2311-2324. [PMID: 33526861 PMCID: PMC8324479 DOI: 10.1038/s41375-021-01136-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Interferon-gamma
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Mice
- Mice, Inbred C57BL
- Prognosis
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Llaó Cid
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ekaterina Lupar
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Cellzome, Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Christoph Schifflers
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cell Biology Research Unit (URBC)-Namur Research Institute of Life Science (Narilis), University of Namur, Namur, Belgium
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Kilpert
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Essen University Hospital, Institute of Human Genetics, Genome Informatics, Essen, Germany
| | - Marit Krötschel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- BioMed X Institute, Heidelberg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Leopold Sellner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Impact of Immune Parameters and Immune Dysfunctions on the Prognosis of Patients with Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13153856. [PMID: 34359757 PMCID: PMC8345723 DOI: 10.3390/cancers13153856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. Abstract Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis.
Collapse
|
27
|
CD4+ T cells sustain aggressive chronic lymphocytic leukemia in Eμ-TCL1 mice through a CD40L-independent mechanism. Blood Adv 2021; 5:2817-2828. [PMID: 34269799 DOI: 10.1182/bloodadvances.2020003795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the progressive accumulation of mature CD5+ B cells in secondary lymphoid organs. In vitro data suggest that CD4+ T lymphocytes also sustain survival and proliferation of CLL clones through CD40L/CD40 interactions. In vivo data in animal models are conflicting. To clarify this clinically relevant biological issue, we generated genetically modified Eμ-TCL1 mice lacking CD4+ T cells (TCL1+/+AB0), CD40 (TCL1+/+CD40-/-), or CD8+ T cells (TCL1+/+TAP-/-), and we monitored the appearance and progression of a disease that mimics aggressive human CLL by flow cytometry and immunohistochemical analyses. Findings were confirmed by adoptive transfer of leukemic cells into mice lacking CD4+ T cells or CD40L or mice treated with antibodies depleting CD4 T cells or blocking CD40L/CD40 interactions. CLL clones did not proliferate in mice lacking or depleted of CD4+ T cells, thus confirming that CD4+ T cells are essential for CLL development. By contrast, CD8+ T cells exerted an antitumor activity, as indicated by the accelerated disease progression in TCL1+/+TAP-/- mice. Antigen specificity of CD4+ T cells was marginal for CLL development, because CLL clones efficiently proliferated in transgenic mice whose CD4 T cells had a T-cell receptor with CLL-unrelated specificities. Leukemic clones also proliferated when transferred into wild-type mice treated with monoclonal antibodies blocking CD40 or into CD40L-/- mice, and TCL1+/+CD40-/- mice developed frank CLL. Our data demonstrate that CD8+ T cells restrain CLL progression, whereas CD4+ T cells support the growth of leukemic clones in TCL1 mice through CD40-independent and apparently noncognate mechanisms.
Collapse
|
28
|
Vlachonikola E, Stamatopoulos K, Chatzidimitriou A. T Cell Defects and Immunotherapy in Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:3255. [PMID: 34209724 PMCID: PMC8268526 DOI: 10.3390/cancers13133255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/31/2022] Open
Abstract
In the past few years, independent studies have highlighted the relevance of the tumor microenvironment (TME) in cancer, revealing a great variety of TME-related predictive markers, as well as identifying novel therapeutic targets in the TME. Cancer immunotherapy targets different components of the immune system and the TME at large in order to reinforce effector mechanisms or relieve inhibitory and suppressive signaling. Currently, it constitutes a clinically validated treatment for many cancers, including chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes with great dependency on microenvironmental signals. Although immunotherapy represents a promising therapeutic option with encouraging results in CLL, the dysfunctional T cell compartment remains a major obstacle in such approaches. In the scope of this review, we outline the current immunotherapeutic treatment options in CLL in the light of recent immunogenetic and functional evidence of T cell impairment. We also highlight possible approaches for overcoming T cell defects and invigorating potent anti-tumor immune responses that would enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Elisavet Vlachonikola
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece; (E.V.); (K.S.)
- Department of Genetics and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece; (E.V.); (K.S.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece; (E.V.); (K.S.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
29
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
30
|
Jiménez I, Tazón-Vega B, Abrisqueta P, Nieto JC, Bobillo S, Palacio-García C, Carabia J, Valdés-Mas R, Munuera M, Puigdefàbregas L, Parra G, Esteve-Codina A, Franco-Jarava C, Iacoboni G, Terol MJ, García-Marco JA, Crespo M, Bosch F. Immunological and genetic kinetics from diagnosis to clinical progression in chronic lymphocytic leukemia. Biomark Res 2021; 9:37. [PMID: 34016160 PMCID: PMC8138982 DOI: 10.1186/s40364-021-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mechanisms driving the progression of chronic lymphocytic leukemia (CLL) from its early stages are not fully understood. The acquisition of molecular changes at the time of progression has been observed in a small fraction of patients, suggesting that CLL progression is not mainly driven by dynamic clonal evolution. In order to shed light on mechanisms that lead to CLL progression, we investigated longitudinal changes in both the genetic and immunological scenarios. METHODS We performed genetic and immunological longitudinal analysis using paired primary samples from untreated CLL patients that underwent clinical progression (sampling at diagnosis and progression) and from patients with stable disease (sampling at diagnosis and at long-term asymptomatic follow-up). RESULTS Molecular analysis showed limited and non-recurrent molecular changes at progression, indicating that clonal evolution is not the main driver of clinical progression. Our analysis of the immune kinetics found an increasingly dysfunctional CD8+ T cell compartment in progressing patients that was not observed in those patients that remained asymptomatic. Specifically, terminally exhausted effector CD8+ T cells (T-betdim/-EomeshiPD1hi) accumulated, while the the co-expression of inhibitory receptors (PD1, CD244 and CD160) increased, along with an altered gene expression profile in T cells only in those patients that progressed. In addition, malignant cells from patients at clinical progression showed enhanced capacity to induce exhaustion-related markers in CD8+ T cells ex vivo mainly through a mechanism dependent on soluble factors including IL-10. CONCLUSIONS Altogether, we demonstrate that the interaction with the immune microenvironment plays a key role in clinical progression in CLL, thereby providing a rationale for the use of early immunotherapeutic intervention.
Collapse
Affiliation(s)
- Isabel Jiménez
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Bárbara Tazón-Vega
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Pau Abrisqueta
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Juan C Nieto
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sabela Bobillo
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Carles Palacio-García
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Júlia Carabia
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Magdalena Munuera
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lluís Puigdefàbregas
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Genís Parra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra, 08002, Barcelona, Spain
| | - Anna Esteve-Codina
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra, 08002, Barcelona, Spain
| | - Clara Franco-Jarava
- Servei d'Immunologia, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Gloria Iacoboni
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - María José Terol
- Department of Hematology, Clínic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Marta Crespo
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, C/Natzaret 115-117, 08035, Barcelona, Spain.,Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Francesc Bosch
- Department de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
31
|
Arruga F, Serra S, Vitale N, Guerra G, Papait A, Baffour Gyau B, Tito F, Efremov D, Vaisitti T, Deaglio S. Targeting of the A2A adenosine receptor counteracts immunosuppression in vivo in a mouse model of chronic lymphocytic leukemia. Haematologica 2021; 106:1343-1353. [PMID: 32299906 PMCID: PMC8094100 DOI: 10.3324/haematol.2019.242016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 11/09/2022] Open
Abstract
Tumor immunosuppression is a major cause for treatment failure and disease relapse, both in solid tumors and leukemia. Local hypoxia is among the conditions that cause immunosuppression, acting at least in part through the upregulation of extracellular adenosine levels, which potently suppress T cell responses and skew macrophages towards an M2 phenotype. Hence, there is intense investigation to identify drugs that target this axis. By using the TCL1 adoptive transfer CLL mouse model, we show that adenosine production and signaling are upregulated in the hypoxic lymphoid niches, where intense colonization of leukemic cells occurs. This leads to a progressive remodeling of the immune system towards tolerance, with expansion of T regulatory cells (Tregs), loss of CD8+ T cell cytotoxicity and differentiation of murine macrophages towards the patrolling (M2-like) subset. In vivo administration of SCH58261, an inhibitor the A2A adenosine receptor, re-awakens T cell responses, while limiting Tregs expansion, and re-polarizes monocytes towards the inflammatory (M1-like) phenotype. These results show for the first time the in vivo contribution of adenosine signaling to immune tolerance in CLL, and the translational implication of drugs interrupting this pathway. Although the effects of SCH58261 on leukemic cells are limited, interfering with adenosine signaling may represent an appealing strategy for combination-based therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Arruga
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara Serra
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Vitale
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Guerra
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Papait
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benjamin Baffour Gyau
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesco Tito
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Tiziana Vaisitti
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Peters FS, Strefford JC, Eldering E, Kater AP. T-cell dysfunction in chronic lymphocytic leukemia from an epigenetic perspective. Haematologica 2021; 106:1234-1243. [PMID: 33691381 PMCID: PMC8586819 DOI: 10.3324/haematol.2020.267914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular immunotherapeutic approaches such as chimeric antigen receptor (CAR) T-cell therapy in chronic lymphocytic leukemia (CLL) thus far have not met the high expectations. Therefore it is essential to better understand the molecular mechanisms of CLLinduced T-cell dysfunction. Even though a significant number of studies are available on T-cell function and dysfunction in CLL patients, none examine dysfunction at the epigenomic level. In non-malignant T-cell research, epigenomics is widely employed to define the differentiation pathway into T-cell exhaustion. Additionally, metabolic restrictions in the tumor microenvironment that cause T-cell dysfunction are often mediated by epigenetic changes. With this review paper we argue that understanding the epigenetic (dys)regulation in T cells of CLL patients should be leveled to the knowledge we currently have of the neoplastic B cells themselves. This will permit a complete understanding of how these immune cell interactions regulate T- and B-cell function. Here we relate the cellular and phenotypic characteristics of CLL-induced T-cell dysfunction to epigenetic studies of T-cell regulation emerging from chronic viral infection and tumor models. This paper proposes a framework for future studies into the epigenetic regulation of CLL-induced Tcell dysfunction, knowledge that will help to guide improvements in the utility of autologous T-cell based therapies in CLL.
Collapse
Affiliation(s)
- Fleur S Peters
- Experimental Immunology; Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and.
| | - Jonathan C Strefford
- Departments of Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eric Eldering
- Experimental Immunology; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands
| | - Arnon P Kater
- Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and
| |
Collapse
|
33
|
Bozorgmehr N, Okoye I, Oyegbami O, Xu L, Fontaine A, Cox-Kennett N, Larratt LM, Hnatiuk M, Fagarasanu A, Brandwein J, Peters AC, Elahi S. Expanded antigen-experienced CD160 +CD8 +effector T cells exhibit impaired effector functions in chronic lymphocytic leukemia. J Immunother Cancer 2021; 9:jitc-2020-002189. [PMID: 33931471 PMCID: PMC8098955 DOI: 10.1136/jitc-2020-002189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background T cell exhaustion compromises antitumor immunity, and a sustained elevation of co-inhibitory receptors is a hallmark of T cell exhaustion in solid tumors. Similarly, upregulation of co-inhibitory receptors has been reported in T cells in hematological cancers such as chronic lymphocytic leukemia (CLL). However, the role of CD160, a glycosylphosphatidylinositol-anchored protein, as one of these co-inhibitory receptors has been contradictory in T cell function. Therefore, we decided to elucidate how CD160 expression and/or co-expression with other co-inhibitory receptors influence T cell effector functions in patients with CLL. Methods We studied 56 patients with CLL and 25 age-matched and sex-matched healthy controls in this study. The expression of different co-inhibitory receptors was analyzed in T cells obtained from the peripheral blood or the bone marrow. Also, we quantified the properties of extracellular vesicles (EVs) in the plasma of patients with CLL versus healthy controls. Finally, we measured 29 different cytokines, chemokines or other biomarkers in the plasma specimens of patients with CLL and healthy controls. Results We found that CD160 was the most upregulated co-inhibitory receptor in patients with CLL. Its expression was associated with an exhausted T cell phenotype. CD160+CD8+ T cells were highly antigen-experienced/effector T cells, while CD160+CD4+ T cells were more heterogeneous. In particular, we identified EVs as a source of CD160 in the plasma of patients with CLL that can be taken up by T cells. Moreover, we observed a dominantly proinflammatory cytokine profile in the plasma of patients with CLL. In particular, interleukin-16 (IL-16) was highly elevated and correlated with the advanced clinical stage (Rai). Furthermore, we observed that the incubation of T cells with IL-16 results in the upregulation of CD160. Conclusions Our study provides a novel insight into the influence of CD160 expression/co-expression with other co-inhibitory receptors in T cell effector functions in patients with CLL. Besides, IL-16-mediated upregulation of CD160 expression in T cells highlights the importance of IL-16/CD160 as potential immunotherapy targets in patients with CLL. Therefore, our findings propose a significant role for CD160 in T cell exhaustion in patients with CLL.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Okoye
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Olaide Oyegbami
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lai Xu
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amelie Fontaine
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nanette Cox-Kennett
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Loree M Larratt
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Hnatiuk
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei Fagarasanu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Brandwein
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthea C Peters
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada .,Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Baptista MJ, Baskar S, Gaglione EM, Keyvanfar K, Ahn IE, Wiestner A, Sun C. Select Antitumor Cytotoxic CD8 + T Clonotypes Expand in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin Cancer Res 2021; 27:4624-4633. [PMID: 33875521 DOI: 10.1158/1078-0432.ccr-20-4894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In chronic lymphocytic leukemia (CLL), the T-cell receptor (TCR) repertoire is skewed and tumor-derived antigens are hypothesized as drivers of oligoclonal expansion. Ibrutinib, a standard treatment for CLL, inhibits not only Bruton tyrosine kinase of the B-cell receptor signaling pathway, but also IL2-inducible kinase of the TCR signaling pathway. T-cell polarization and activation are affected by ibrutinib, but it is unknown whether T cells contribute to clinical response. EXPERIMENTAL DESIGN High-throughput TCRβ sequencing was performed in 77 longitudinal samples from 26 patients with CLL treated with ibrutinib. TCRβ usage in CD4+ and CD8+ T cells and granzyme B expression were assessed by flow cytometric analysis. Antitumor cytotoxicity of T cells expanded with autologous CLL cells or with antigen-independent anti-CD3/CD28/CD137 beads was tested. RESULTS The clonality of the TCR repertoire increased at the time of response. With extended treatment, TCR clonality remained stable in patients with sustained remission and decreased in patients with disease progression. Expanded clonotypes were rarely shared between patients, indicating specificity for private antigens. Flow cytometry demonstrated a predominance of CD8+ cells among expanded clonotypes. Importantly, bulk T cells from responding patients were cytotoxic against autologous CLL cells in vitro and selective depletion of major expanded clonotypes reduced CLL cell killing. CONCLUSIONS In patients with CLL, established T-cell responses directed against tumor are suppressed by disease and reactivated by ibrutinib.See related commentary by Zent, p. 4465.
Collapse
Affiliation(s)
- Maria Joao Baptista
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.,Lymphoid Neoplasms, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
35
|
Öztürk S, Kalter V, Roessner PM, Sunbul M, Seiffert M. IDO1-Targeted Therapy Does Not Control Disease Development in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13081899. [PMID: 33920868 PMCID: PMC8071295 DOI: 10.3390/cancers13081899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The tryptophan-catabolizing enzyme IDO1 and its metabolite kynurenine were shown to be enhanced in patients with chronic lymphocytic leukemia (CLL), and their involvement in T cell suppression and immune escape was suggested. As we have observed increased IDO1 expression and kynurenine serum levels in the Eµ-TCL1 mouse model of CLL, we evaluated the therapeutic potential of targeting IDO1 in preclinical treatment studies with two IDO1 inhibitors in mice developing CLL. As both studies revealed only minor effects of IDO1 inhibition on leukemia development and the immune compartment at early time points of treatment which disappeared over time, our data suggest that even though IDO1 might be involved in immunosuppressive mechanisms in CLL, its targeting is not sufficient for preventing immune escape. Thus, compensatory mechanisms beyond IDO1 seem to be of relevance to prevent clinically relevant benefits with IDO1-targeting drugs. Abstract Indoleamine-2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme producing metabolites such as kynurenine (Kyn), is expressed by myeloid-derived suppressor cells (MDSCs) and associated with cancer immune escape. IDO1-expressing monocytic MDSCs were shown to accumulate in patients with chronic lymphocytic leukemia (CLL) and to suppress T cell activity and induce suppressive regulatory T cells (Tregs) in vitro. In the Eµ-TCL1 mouse model of CLL, we observed a strong upregulation of IDO1 in monocytic and granulocytic MDSCs, and a significantly increased Kyn to Trp serum ratio. To explore the potential of IDO1 as a therapeutic target for CLL, we treated mice after adoptive transfer of Eµ-TCL1 leukemia cells with the IDO1 modulator 1-methyl-D-tryptophan (1-MT) which resulted in a minor reduction in leukemia development which disappeared over time. 1-MT treatment further led to a partial rescue of the immune cell changes that are induced with CLL development. Similarly, treatment of leukemic mice with the clinically investigated IDO1 inhibitor epacadostat reduced the frequency of Tregs and initially delayed CLL development slightly, an effect that was, however, lost at later time points. In sum, despite the observed upregulation of IDO1 in CLL, its inhibition is not sufficient to control leukemia development in the Eµ-TCL1 adoptive transfer model.
Collapse
Affiliation(s)
- Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
| | - Verena Kalter
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
| | - Philipp M. Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany;
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
- Correspondence:
| |
Collapse
|
36
|
BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13081766. [PMID: 33917094 PMCID: PMC8067870 DOI: 10.3390/cancers13081766] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) represents the most frequent B cell malignancy in Western countries and still remains as an incurable disease. Despite recent advances in targeted therapies including ibrutinib, idelalisib or venetoclax, resistance mechanisms have been described and patients develop a progressive immunosuppression. Since immune checkpoint blockade has demonstrated to reinvigorate T and NK cell-mediated anti-tumor responses, the aim of this work was to elucidate whether this immunosuppression relies, at least in part, in BTLA/HVEM axis in patients with CLL. Our results demonstrate that BTLA and HVEM expression is deeply dysregulated on leukemic and NK cells and correlates with poor outcome. Moreover, soluble BTLA levels correlated with adverse cytogenetics and shorter time to treatment. BTLA blockade restored, at least in part, NK cell-mediated responses in patients with CLL. Altogether, our results provide the rationale to further investigate the role of BTLA/HVEM axis in the pathogenesis of CLL. Abstract Chronic lymphocytic leukemia (CLL) is characterized by progressive immunosuppression and diminished cancer immunosurveillance. Immune checkpoint blockade (ICB)-based therapies, a major breakthrough against cancer, have emerged as a powerful tool to reinvigorate antitumor responses. Herein, we analyzed the role of the novel inhibitory checkpoint BTLA and its ligand, HVEM, in the regulation of leukemic and natural killer (NK) cells in CLL. Flow cytometry analyses showed that BTLA expression is upregulated on leukemic cells and NK cells from patients with CLL, whereas HVEM is downregulated only in leukemic cells, especially in patients with advanced Rai-Binet stage. In silico analysis revealed that increased HVEM, but not BTLA, mRNA expression in leukemic cells correlated with diminished overall survival. Further, soluble BTLA (sBTLA) was found to be increased in the sera of patients with CLL and highly correlated with poor prognostic markers and shorter time to treatment. BTLA blockade with an anti-BTLA monoclonal antibody depleted leukemic cells and boosted NK cell-mediated responses ex vivo by increasing their IFN-γ production, cytotoxic capability, and antibody-dependent cytotoxicity (ADCC). In agreement with an inhibitory role of BTLA in NK cells, surface BTLA expression on NK cells was associated with poor outcome in patients with CLL. Overall, this study is the first to bring to light a role of BTLA/HVEM in the suppression of NK cell-mediated immune responses in CLL and its impact on patient’s prognosis, suggesting that BTLA/HVEM axis may be a potential therapeutic target in this disease.
Collapse
|
37
|
Hanna BS, Yazdanparast H, Demerdash Y, Roessner PM, Schulz R, Lichter P, Stilgenbauer S, Seiffert M. Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in Em-TCL1 mice. Haematologica 2021; 106:968-977. [PMID: 32139435 PMCID: PMC8017821 DOI: 10.3324/haematol.2019.238154] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Ibrutinib is a Bruton’s tyrosine kinase (BTK) inhibitor approved for the treatment of multiple B-cell malignancies, including chronic lymphocytic leukemia (CLL). In addition to blocking B-cell receptor signaling and chemokine receptor-mediated pathways in CLL cells, that are known drivers of disease, ibrutinib also affects the microenvironment in CLL via targeting BTK in myeloid cells and IL-2–inducible T-cell kinase (ITK) in T cells. These non-BTK effects were suggested to contribute to the success of ibrutinib in CLL. By using the Eμ-TCL1 adoptive transfer mouse model of CLL, we observed that ibrutinib effectively controls leukemia development, but also results in significantly lower numbers of CD8+ effector T cells, with lower expression of activation markers, as well as impaired proliferation and effector function. Using CD8+ T cells from a T-cell receptor (TCR) reporter mouse, we verified that this is due to a direct effect of ibrutinib on TCR activity, and demonstrate that co-stimulation via CD28 overcomes these effects. Most interestingly, combination of ibrutinib with blocking antibodies targeting PD-1/PD-L1 axis in vivo improved CD8+ T-cell effector function and control of CLL. In summary, these data emphasize the strong immunomodulatory effects of ibrutinib and the therapeutic potential of its combination with immune checkpoint blockade in CLL.
Collapse
Affiliation(s)
- Bola S Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yasmin Demerdash
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralph Schulz
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
38
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Interleukin-10 suppression enhances T-cell antitumor immunity and responses to checkpoint blockade in chronic lymphocytic leukemia. Leukemia 2021; 35:3188-3200. [PMID: 33731852 PMCID: PMC8446094 DOI: 10.1038/s41375-021-01217-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
T-cell dysfunction is a hallmark of B-cell Chronic Lymphocytic Leukemia (CLL), where CLL cells downregulate T-cell responses through regulatory molecules including programmed death ligand-1 (PD-L1) and Interleukin-10 (IL-10). Immune checkpoint blockade (ICB) aims to restore T-cell function by preventing the ligation of inhibitory receptors like PD-1. However, most CLL patients do not respond well to this therapy. Thus, we investigated whether IL-10 suppression could enhance antitumor T-cell activity and responses to ICB. Since CLL IL-10 expression depends on Sp1, we utilized a novel, better tolerated analogue of the Sp1 inhibitor mithramycin (MTMox32E) to suppress CLL IL-10. MTMox32E treatment inhibited mouse and human CLL IL-10 production and maintained T-cell effector function in vitro. In the Eμ-Tcl1 mouse model, treatment reduced plasma IL-10 and CLL burden and increased CD8+ T-cell proliferation, effector and memory cell prevalence, and interferon-γ production. When combined with ICB, suppression of IL-10 improved responses to anti-PD-L1 as shown by a 4.5-fold decrease in CLL cell burden compared to anti-PD-L1 alone. Combination therapy also produced more interferon-γ+, cytotoxic effector KLRG1+, and memory CD8+ T-cells, and fewer exhausted T-cells. Since current therapies for CLL do not target IL-10, this provides a novel strategy to improve immunotherapies.
Collapse
|
40
|
Llaó-Cid L, Roessner PM, Chapaprieta V, Öztürk S, Roider T, Bordas M, Izcue A, Colomer D, Dietrich S, Stilgenbauer S, Hanna B, Martín-Subero JI, Seiffert M. EOMES is essential for antitumor activity of CD8 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:3152-3162. [PMID: 33731848 PMCID: PMC8550953 DOI: 10.1038/s41375-021-01198-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies identified a single-nucleotide polymorphism (SNP) affecting the transcription factor Eomesodermin (EOMES) associated with a significantly increased risk to develop chronic lymphocytic leukemia (CLL). Epigenetic analyses, RNA sequencing, and flow cytometry revealed that EOMES is not expressed in CLL cells, but in CD8+ T cells for which EOMES is a known master regulator. We thus hypothesized that the increased CLL risk associated with the EOMES SNP might be explained by its negative impact on CD8+ T-cell-mediated immune control of CLL. Flow cytometry analyses revealed a higher EOMES expression in CD8+ T cells of CLL patients compared to healthy individuals, and an accumulation of PD-1+ EOMES+ CD8+ T cells in lymph nodes rather than blood or bone marrow in CLL. This was in line with an observed expansion of EOMES+ CD8+ T cells in the spleen of leukemic Eµ-TCL1 mice. As EOMES expression was highest in CD8+ T cells that express inhibitory receptors, an involvement of EOMES in T-cell exhaustion and dysfunction seems likely. Interestingly, Eomes-deficiency in CD8+ T cells resulted in their impaired expansion associated with decreased CLL control in mice. Overall, these observations suggest that EOMES is essential for CD8+ T-cell expansion and/or maintenance, and therefore involved in adaptive immune control of CLL.
Collapse
Affiliation(s)
- Laura Llaó-Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Hematopathology Section, Hospital Clinic, Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Bola Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
Aydin E, Faehling S, Saleh M, Llaó Cid L, Seiffert M, Roessner PM. Phosphoinositide 3-Kinase Signaling in the Tumor Microenvironment: What Do We Need to Consider When Treating Chronic Lymphocytic Leukemia With PI3K Inhibitors? Front Immunol 2021; 11:595818. [PMID: 33552053 PMCID: PMC7857022 DOI: 10.3389/fimmu.2020.595818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.
Collapse
Affiliation(s)
- Ebru Aydin
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Faehling
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Mariam Saleh
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Molecular Medicine, Ulm University, Ulm, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Vlachonikola E, Stamatopoulos K, Chatzidimitriou A. T Cells in Chronic Lymphocytic Leukemia: A Two-Edged Sword. Front Immunol 2021; 11:612244. [PMID: 33552073 PMCID: PMC7857025 DOI: 10.3389/fimmu.2020.612244] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature, antigen-experienced B lymphocytes. Despite great progress recently achieved in the management of CLL, the disease remains incurable, underscoring the need for further investigation into the underlying pathophysiology. Microenvironmental crosstalk has an established role in CLL pathogenesis and progression. Indeed, the malignant CLL cells are strongly dependent on interactions with other immune and non-immune cell populations that shape a highly orchestrated network, the tumor microenvironment (TME). The composition of the TME, as well as the bidirectional interactions between the malignant clone and the microenvironmental elements have been linked to disease heterogeneity. Mounting evidence implicates T cells present in the TME in the natural history of the CLL as well as in the establishment of certain CLL hallmarks e.g. tumor evasion and immune suppression. CLL is characterized by restrictions in the T cell receptor gene repertoire, T cell oligoclonal expansions, as well as shared T cell receptor clonotypes amongst patients, strongly alluding to selection by restricted antigenic elements of as yet undisclosed identity. Further, the T cells in CLL exhibit a distinctive phenotype with features of “exhaustion” likely as a result of chronic antigenic stimulation. This might be relevant to the fact that, despite increased numbers of oligoclonal T cells in the periphery, these cells are incapable of mounting effective anti-tumor immune responses, a feature perhaps also linked with the elevated numbers of T regulatory subpopulations. Alterations of T cell gene expression profile are associated with defects in both the cytoskeleton and immune synapse formation, and are generally induced by direct contact with the malignant clone. That said, these abnormalities appear to be reversible, which is why therapies targeting the T cell compartment represent a reasonable therapeutic option in CLL. Indeed, novel strategies, including CAR T cell immunotherapy, immune checkpoint blockade and immunomodulation, have come to the spotlight in an attempt to restore the functionality of T cells and enhance targeted cytotoxic activity against the malignant clone.
Collapse
Affiliation(s)
- Elisavet Vlachonikola
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece.,Department of Genetics and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Antibody Peptides as Cancer Vaccine—Turning Weapons to Targets. Clin Cancer Res 2020; 27:659-661. [DOI: 10.1158/1078-0432.ccr-20-3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
|
44
|
Maharaj K, Powers JJ, Mediavilla-Varela M, Achille A, Gamal W, Quayle S, Jones SS, Sahakian E, Pinilla-Ibarz J. HDAC6 Inhibition Alleviates CLL-Induced T-Cell Dysfunction and Enhances Immune Checkpoint Blockade Efficacy in the Eμ-TCL1 Model. Front Immunol 2020; 11:590072. [PMID: 33329575 PMCID: PMC7719839 DOI: 10.3389/fimmu.2020.590072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Development of chronic lymphocytic leukemia (CLL) is associated with severe immune dysfunction. T-cell exhaustion, immune checkpoint upregulation, and increase of regulatory T cells contribute to an immunosuppressive tumor microenvironment. As a result, CLL patients are severely susceptible to infectious complications that increase morbidity and mortality. CLL B-cell survival is highly dependent upon interaction with the supportive tumor microenvironment. It has been postulated that the reversal of T-cell dysfunction in CLL may be beneficial to reduce tumor burden. Previous studies have also highlighted roles for histone deacetylase 6 (HDAC6) in regulation of immune cell phenotype and function. Here, we report for the first time that HDAC6 inhibition exerts beneficial immunomodulatory effects on CLL B cells and alleviates CLL-induced immunosuppression of CLL T cells. In the Eμ-TCL1 adoptive transfer murine model, genetic silencing or inhibition of HDAC6 reduced surface expression of programmed death-ligand 1 (PD-L1) on CLL B cells and lowered interleukin-10 (IL-10) levels. This occurred concurrently with a bolstered T-cell phenotype, demonstrated by alteration of coinhibitory molecules and activation status. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. The data reported here suggest that CLL B cell phenotype may be altered by HDAC6-mediated hyperacetylation of the chaperone heat shock protein 90 (HSP90) and subsequent inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Based on the beneficial immunomodulatory activity of HDAC6 inhibition, we rationalized that HDAC6 inhibitors could enhance immune checkpoint blockade in CLL. Conclusively, combination treatment with ACY738 augmented the antitumor efficacy of anti-PD-1 and anti-PD-L1 monoclonal antibodies in the Eμ-TCL1 adoptive transfer murine model. These combinatorial antitumor effects coincided with an increased cytotoxic CD8+ T-cell phenotype. Taken together, these data highlight a role for HDAC inhibitors in combination with immunotherapy and provides the rationale to investigate HDAC6 inhibition together with immune checkpoint blockade for treatment of CLL patients.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Cancer Biology PhD Program, University of South Florida & H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Melanie Mediavilla-Varela
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Alex Achille
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - Simon S Jones
- Regenacy Pharmaceuticals, Inc., Waltham, MA, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
45
|
Griggio V, Perutelli F, Salvetti C, Boccellato E, Boccadoro M, Vitale C, Coscia M. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:594556. [PMID: 33312177 PMCID: PMC7708380 DOI: 10.3389/fimmu.2020.594556] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by a wide range of tumor-induced alterations, which affect both the innate and adaptive arms of the immune response, and accumulate during disease progression. In recent years, the development of targeted therapies, such as the B-cell receptor signaling inhibitors and the Bcl-2 protein inhibitor venetoclax, has dramatically changed the treatment landscape of CLL. Despite their remarkable anti-tumor activity, targeted agents have some limitations, which include the development of drug resistance mechanisms and the inferior efficacy observed in high-risk patients. Therefore, additional treatments are necessary to obtain deeper responses and overcome drug resistance. Allogeneic hematopoietic stem cell transplantation (HSCT), which exploits immune-mediated graft-versus-leukemia effect to eradicate tumor cells, currently represents the only potentially curative therapeutic option for CLL patients. However, due to its potential toxicities, HSCT can be offered only to a restricted number of younger and fit patients. The growing understanding of the complex interplay between tumor cells and the immune system, which is responsible for immune escape mechanisms and tumor progression, has paved the way for the development of novel immune-based strategies. Despite promising preclinical observations, results from pilot clinical studies exploring the safety and efficacy of novel immune-based therapies have been sometimes suboptimal in terms of long-term tumor control. Therefore, further advances to improve their efficacy are needed. In this context, possible approaches include an earlier timing of immunotherapy within the treatment sequencing, as well as the possibility to improve the efficacy of immunotherapeutic agents by administering them in combination with other anti-tumor drugs. In this review, we will provide a comprehensive overview of main immune defects affecting patients with CLL, also describing the complex networks leading to immune evasion and tumor progression. From the therapeutic standpoint, we will go through the evolution of immune-based therapeutic approaches over time, including i) agents with broad immunomodulatory effects, such as immunomodulatory drugs, ii) currently approved and next-generation monoclonal antibodies, and iii) immunotherapeutic strategies aiming at activating or administering immune effector cells specifically targeting leukemic cells (e.g. bi-or tri-specific antibodies, tumor vaccines, chimeric antigen receptor T cells, and checkpoint inhibitors).
Collapse
Affiliation(s)
- Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Salvetti
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elia Boccellato
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mario Boccadoro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
46
|
Delgado J, Nadeu F, Colomer D, Campo E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica 2020; 105:2205-2217. [PMID: 33054046 PMCID: PMC7556519 DOI: 10.3324/haematol.2019.236000] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukemia is a well-defined lymphoid neoplasm with very heterogeneous biological and clinical behavior. The last decade has been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease including mechanisms of genetic susceptibility, insights into the relevance of immunogenetic factors driving the disease, profiling of genomic alterations, epigenetic subtypes, global epigenomic tumor cell reprogramming, modulation of tumor cell and microenvironment interactions, and dynamics of clonal evolution from early steps in monoclonal B cell lymphocytosis to progression and transformation into diffuse large B-cell lymphoma. All this knowledge has offered new perspectives that are being exploited therapeutically with novel target agents and management strategies. In this review we provide an overview of these novel advances and highlight questions and perspectives that need further progress to translate into the clinics the biological knowledge and improve the outcome of the patients.
Collapse
Affiliation(s)
- Julio Delgado
- Department of Hematology, Hospital Clínic, University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Dolors Colomer
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell 2020; 182:1252-1270.e34. [PMID: 32818467 DOI: 10.1016/j.cell.2020.07.038] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.
Collapse
|
48
|
Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease? Leukemia 2020; 34:2012-2024. [PMID: 32457353 PMCID: PMC8318881 DOI: 10.1038/s41375-020-0873-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy, which is associated with profound alterations and defects in the immune system and a prevalent dependency on the microenvironmental niche. An abnormal T-cell compartment in the blood of CLL patients was already reported 40 years ago. Since then, our knowledge of T-cell characteristics in CLL has grown steadily, but the question of whether T-cells act as pro-tumoral bystander cells or possess anti-tumoral activity is still under debate. Increased numbers of CD4+ T-helper cell subsets are present in the blood of CLL patients, and T-helper cell cytokines have been shown to stimulate CLL cell survival and proliferation in vitro. In line with this, survival and growth of CLL cells in murine xenograft models have been shown to rely on activated CD4+ T-cells. This led to the hypothesis that T-cells are tumor-supportive in CLL. In recent years, evidence for an enrichment of antigen-experienced CD8+ T-cells in CLL has accumulated, and these cells have been shown to control leukemia in a CLL mouse model. Based on this, it was suggested that CD8+ T-cells recognize CLL-specific antigens and exert an anti-leukemia function. As described for other cancer entities, T-cells in CLL express multiple inhibitory receptors, such as PD-1, and lose their functional capacity, leading to an exhaustion phenotype which has been shown to be more severe in T-cells from secondary lymphoid organs compared with peripheral blood. This exhausted phenotype has been suggested to be causative for the poor response of CLL patients to CAR T-cell therapies. In addition, T-cells have been shown to be affected by drugs that are used to treat CLL, which likely impacts therapy response. This review provides an overview of the current knowledge about alterations of T-cells in CLL, including their distribution, function, and exhaustion state in blood and lymphoid organs, and touches also on the topic of how CLL drugs impact on the T-cell compartment and recent results of T-cell-based immunotherapy. We will discuss potential pathological roles of T-cell subsets in CLL and address the question of whether they foster progression or control of disease.
Collapse
Affiliation(s)
- Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
49
|
Vardi A, Vlachonikola E, Papazoglou D, Psomopoulos F, Kotta K, Ioannou N, Galigalidou C, Gemenetzi K, Pasentsis K, Kotouza M, Koravou E, Scarfó L, Iskas M, Stavroyianni N, Ghia P, Anagnostopoulos A, Kouvatsi A, Ramsay AG, Stamatopoulos K, Chatzidimitriou A. T-Cell Dynamics in Chronic Lymphocytic Leukemia under Different Treatment Modalities. Clin Cancer Res 2020; 26:4958-4969. [PMID: 32616500 DOI: 10.1158/1078-0432.ccr-19-3827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Using next-generation sequencing (NGS), we recently documented T-cell oligoclonality in treatment-naïve chronic lymphocytic leukemia (CLL), with evidence indicating T-cell selection by restricted antigens. EXPERIMENTAL DESIGN Here, we sought to comprehensively assess T-cell repertoire changes during treatment in relation to (i) treatment type [fludarabine-cyclophosphamide-rituximab (FCR) versus ibrutinib (IB) versus rituximab-idelalisib (R-ID)], and (ii) clinical response, by combining NGS immunoprofiling, flow cytometry, and functional bioassays. RESULTS T-cell clonality significantly increased at (i) 3 months in the FCR and R-ID treatment groups, and (ii) over deepening clinical response in the R-ID group, with a similar trend detected in the IB group. Notably, in constrast to FCR that induced T-cell repertoire reconstitution, B-cell receptor signaling inhibitors (BcRi) preserved pretreatment clones. Extensive comparisons both within CLL as well as against T-cell receptor sequence databases showed little similarity with other entities, but instead revealed major clonotypes shared exclusively by patients with CLL, alluding to selection by conserved CLL-associated antigens. We then evaluated the functional effect of treatments on T cells and found that (i) R-ID upregulated the expression of activation markers in effector memory T cells, and (ii) both BcRi improved antitumor T-cell immune synapse formation, in marked contrast to FCR. CONCLUSIONS Taken together, our NGS immunoprofiling data suggest that BcRi retain T-cell clones that may have developed against CLL-associated antigens. Phenotypic and immune synapse bioassays support a concurrent restoration of functionality, mostly evident for R-ID, arguably contributing to clinical response.
Collapse
Affiliation(s)
- Anna Vardi
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.,Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Elisavet Vlachonikola
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.,Faculty of Sciences, Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Papazoglou
- Lymphoma Immunology Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kostantia Kotta
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Nikolaos Ioannou
- Lymphoma Immunology Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Chrysi Galigalidou
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.,Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Katerina Gemenetzi
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.,Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | | | - Maria Kotouza
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Evdoxia Koravou
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Lydia Scarfó
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michail Iskas
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Niki Stavroyianni
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Paolo Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Anastasia Kouvatsi
- Faculty of Sciences, Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alan G Ramsay
- Lymphoma Immunology Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Wierzbinska JA, Toth R, Ishaque N, Rippe K, Mallm JP, Klett LC, Mertens D, Zenz T, Hielscher T, Seifert M, Küppers R, Assenov Y, Lutsik P, Stilgenbauer S, Roessner PM, Seiffert M, Byrd J, Oakes CC, Plass C, Lipka DB. Methylome-based cell-of-origin modeling (Methyl-COOM) identifies aberrant expression of immune regulatory molecules in CLL. Genome Med 2020; 12:29. [PMID: 32188505 PMCID: PMC7081711 DOI: 10.1186/s13073-020-00724-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background In cancer, normal epigenetic patterns are disturbed and contribute to gene expression changes, disease onset, and progression. The cancer epigenome is composed of the epigenetic patterns present in the tumor-initiating cell at the time of transformation, and the tumor-specific epigenetic alterations that are acquired during tumor initiation and progression. The precise dissection of these two components of the tumor epigenome will facilitate a better understanding of the biological mechanisms underlying malignant transformation. Chronic lymphocytic leukemia (CLL) originates from differentiating B cells, which undergo extensive epigenetic programming. This poses the challenge to precisely determine the epigenomic ground state of the cell-of-origin in order to identify CLL-specific epigenetic aberrations. Methods We developed a linear regression model, methylome-based cell-of-origin modeling (Methyl-COOM), to map the cell-of-origin for individual CLL patients based on the continuum of epigenomic changes during normal B cell differentiation. Results Methyl-COOM accurately maps the cell-of-origin of CLL and identifies CLL-specific aberrant DNA methylation events that are not confounded by physiologic epigenetic B cell programming. Furthermore, Methyl-COOM unmasks abnormal action of transcription factors, altered super-enhancer activities, and aberrant transcript expression in CLL. Among the aberrantly regulated transcripts were many genes that have previously been implicated in T cell biology. Flow cytometry analysis of these markers confirmed their aberrant expression on malignant B cells at the protein level. Conclusions Methyl-COOM analysis of CLL identified disease-specific aberrant gene regulation. The aberrantly expressed genes identified in this study might play a role in immune-evasion in CLL and might serve as novel targets for immunotherapy approaches. In summary, we propose a novel framework for in silico modeling of reference DNA methylomes and for the identification of cancer-specific epigenetic changes, a concept that can be broadly applied to other human malignancies. Electronic supplementary material Supplementary information accompanies this paper at 10.1186/s13073-020-00724-7.
Collapse
Affiliation(s)
- Justyna A Wierzbinska
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,The German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Reka Toth
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Naveed Ishaque
- The German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Karsten Rippe
- The German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Chromatin Networks, DKFZ, Heidelberg, Germany
| | - Jan-Philipp Mallm
- The German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Chromatin Networks, DKFZ, Heidelberg, Germany
| | - Lara C Klett
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Chromatin Networks, DKFZ, Heidelberg, Germany
| | - Daniel Mertens
- The German Cancer Consortium (DKTK), Heidelberg, Germany.,Mechanisms of Leukemogenesis, DKFZ, Heidelberg, Germany
| | - Thorsten Zenz
- Experimental Hematology Lab, University Hospital Zurich, Zurich, Switzerland
| | | | - Marc Seifert
- Group Molecular Genetics, Essen University Hospital, Essen, Germany
| | - Ralf Küppers
- Group Molecular Genetics, Essen University Hospital, Essen, Germany
| | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | - John Byrd
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, USA
| | - Christopher C Oakes
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, USA
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,The German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Daniel B Lipka
- The German Cancer Consortium (DKTK), Heidelberg, Germany. .,Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Faculty of Medicine, Medical Center, Otto-von-Guericke-University, 39120, Magdeburg, Germany.
| |
Collapse
|