1
|
Sun Y, Peng Y, Su Z, So KKH, Lu Q, Lyu M, Zuo J, Huang Y, Guan Z, Cheung KMC, Zheng Z, Zhang X, Leung VYL. Fibrocyte enrichment and myofibroblastic adaptation causes nucleus pulposus fibrosis and associates with disc degeneration severity. Bone Res 2025; 13:10. [PMID: 39828732 PMCID: PMC11743603 DOI: 10.1038/s41413-024-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 01/22/2025] Open
Abstract
Fibrotic remodeling of nucleus pulposus (NP) leads to structural and mechanical anomalies of intervertebral discs that prone to degeneration, leading to low back pain incidence and disability. Emergence of fibroblastic cells in disc degeneration has been reported, yet their nature and origin remain elusive. In this study, we performed an integrative analysis of multiple single-cell RNA sequencing datasets to interrogate the cellular heterogeneity and fibroblast-like entities in degenerative human NP specimens. We found that disc degeneration severity is associated with an enrichment of fibrocyte phenotype, characterized by CD45 and collagen I dual positivity, and expression of myofibroblast marker α-smooth muscle actin. Refined clustering and classification distinguished the fibrocyte-like populations as subtypes in the NP cells - and immunocytes-clusters, expressing disc degeneration markers HTRA1 and ANGPTL4 and genes related to response to TGF-β. In injury-induced mouse disc degeneration model, fibrocytes were found recruited into the NP undergoing fibrosis and adopted a myofibroblast phenotype. Depleting the fibrocytes in CD11b-DTR mice in which myeloid-derived lineages were ablated by diphtheria toxin could markedly attenuate fibrous modeling and myofibroblast formation in the NP of the degenerative discs, and prevent disc height loss and histomorphological abnormalities. Marker analysis supports that disc degeneration progression is dependent on a function of CD45+COL1A1+ and αSMA+ cells. Our findings reveal that myeloid-derived fibrocytes play a pivotal role in NP fibrosis and may therefore be a target for modifying disc degeneration and promoting its repair.
Collapse
Affiliation(s)
- Yi Sun
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yan Peng
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zezhuo Su
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Kyle K H So
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Qiuji Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Maojiang Lyu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianwei Zuo
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongcan Huang
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiping Guan
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhaomin Zheng
- Department of Spine Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Lykins J, Becker IC, Camacho V, Alfar HR, Park J, Italiano J, Whiteheart SW. Serglycin controls megakaryocyte retention of platelet factor 4 and influences megakaryocyte fate in bone marrow. Blood Adv 2025; 9:15-28. [PMID: 38941534 PMCID: PMC11732581 DOI: 10.1182/bloodadvances.2024012995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT Megakaryocytes (MKs) produce platelets, and similar to other hematopoietic progenitors, they are involved in homeostatic aspects of their bone marrow niche. MKs release and endocytose various factors, such as platelet factor 4 (PF4)/CXCL4. Here, we show that the intra-α-granular proteoglycan, serglycin (SRGN), plays a key role in this process by retaining PF4, and perhaps other factors, during MK maturation. Immature, SRGN-/- MKs released ∼80% of their PF4, and conditioned media from these cells negatively affected wild-type MK differentiation in vitro. This was replicated in wild-type MKs by treatment with the polycation surfen, a known inhibitor of glycosaminoglycan (GAG)/protein interactions. In vivo, SRGN-/- mice had an interstitial accumulation of PF4, transforming growth factor β1, interleukin-1β, and tumor necrosis factor α in their bone marrow and increased numbers of immature MKs, consistent with their mild thrombocytopenia. SRGN-/- mice also had reduced numbers of hematopoietic stem cells and multipotent progenitors, reduced laminin, and increased collagen I deposition. These findings demonstrate that MKs depend on SRGN and its charged GAGs to balance the distribution of PF4 and perhaps other factors between their α-granules and their adjacent extracellular spaces. Disrupting this balance negatively affects MK development and bone marrow microenvironment homeostasis.
Collapse
Affiliation(s)
- Joshua Lykins
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Isabelle C. Becker
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Virginia Camacho
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - JoonWoo Park
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Joseph Italiano
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| |
Collapse
|
3
|
Capitanio D, Calledda FR, Abbonante V, Cattaneo D, Moriggi M, Bartalucci N, Bucelli C, Tosi D, Gianelli U, Vannucchi AM, Iurlo A, Gelfi C, Balduini A, Malara A. Proteomic screening identifies PF4/Cxcl4 as a critical driver of myelofibrosis. Leukemia 2024; 38:1971-1984. [PMID: 39025985 DOI: 10.1038/s41375-024-02354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Despite increased understanding of the genomic landscape of Myeloproliferative Neoplasms (MPNs), the pathological mechanisms underlying abnormal megakaryocyte (Mk)-stromal crosstalk and fibrotic progression in MPNs remain unclear. We conducted mass spectrometry-based proteomics on mice with Romiplostim-dependent myelofibrosis to reveal alterations in signaling pathways and protein changes in Mks, platelets, and bone marrow (BM) cells. The chemokine Platelet Factor 4 (PF4)/Cxcl4 was up-regulated in all proteomes and increased in plasma and BM fluids of fibrotic mice. High TPO concentrations sustained in vitro PF4 synthesis and secretion in cultured Mks, while Ruxolitinib restrains the abnormal PF4 expression in vivo. We discovered that PF4 is rapidly internalized by stromal cells through surface glycosaminoglycans (GAGs) to promote myofibroblast differentiation. Cxcl4 gene silencing in Mks mitigated the profibrotic phenotype of stromal cells in TPO-saturated co-culture conditions. Consistently, extensive stromal PF4 uptake and altered GAGs deposition were detected in Romiplostim-treated, JAK2V617F mice and BM biopsies of MPN patients. BM PF4 levels and Mk/platelet CXCL4 expression were elevated in patients, exclusively in overt fibrosis. Finally, pharmacological inhibition of GAGs ameliorated in vivo fibrosis in Romiplostim-treated mice. Thus, our findings highlight the critical role of PF4 in the fibrosis progression of MPNs and substantiate the potential therapeutic strategy of neutralizing PF4-GAGs interaction.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Delfina Tosi
- Department of Health Sciences, University of Milan, S.C. di Anatomia Patologica, ASST-Santi Paolo e Carlo, Milan, Italy
| | - Umberto Gianelli
- Department of Health Sciences, University of Milan, S.C. di Anatomia Patologica, ASST-Santi Paolo e Carlo, Milan, Italy
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Tabata S, Yamashita Y, Inai Y, Morita S, Kosako H, Takagi T, Shide K, Manabe S, Matsuoka TA, Shimoda K, Sonoki T, Ihara Y, Tamura S. C-Mannosyl tryptophan is a novel biomarker for thrombocytosis of myeloproliferative neoplasms. Sci Rep 2024; 14:18858. [PMID: 39143127 PMCID: PMC11324734 DOI: 10.1038/s41598-024-69496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
C-Mannosyl tryptophan (CMW), a unique glycosylated amino acid, is considered to be produced by degradation of C-mannosylated proteins in living organism. Although protein C-mannosylation is involved in the folding and secretion of substrate proteins, the pathophysiological function in the hematological system is still unclear. This study aimed to assess CMW in the human hematological disorders. The serum CMW levels of 94 healthy Japanese workers were quantified using hydrophilic interaction liquid chromatography. Platelet count was positively correlated with serum CMW levels. The clinical significance of CMW in thrombocytosis of myeloproliferative neoplasms (T-MPN) including essential thrombocythemia (ET) were investigated. The serum CMW levels of the 34 patients with T-MPN who presented with thrombocytosis were significantly higher than those of the 52 patients with control who had other hematological disorders. In patients with T-MPN, serum CMW levels were inversely correlated with anemia, which was related to myelofibrosis (MF). Bone marrow biopsy samples were obtained from 18 patients with ET, and serum CMW levels were simultaneously measured. Twelve patients with bone marrow fibrosis had significantly higher CMW levels than 6 patients without bone marrow fibrosis. Collectively, these results suggested that CMW could be a novel biomarker to predict MF progression in T-MPN.
Collapse
Affiliation(s)
- Shotaro Tabata
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyuki Takagi
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
- Wakayama City Medical Association Seijinbyo Center, Wakayama, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shino Manabe
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Taka-Aki Matsuoka
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan.
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
5
|
Haage TR, Charakopoulos E, Bhuria V, Baldauf CK, Korthals M, Handschuh J, Müller P, Li J, Harit K, Nishanth G, Frey S, Böttcher M, Fischer KD, Dudeck J, Dudeck A, Lipka DB, Schraven B, Green AR, Müller AJ, Mougiakakos D, Fischer T. Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia. J Hematol Oncol 2024; 17:43. [PMID: 38853260 PMCID: PMC11163796 DOI: 10.1186/s13045-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.
Collapse
Affiliation(s)
- Tobias Ronny Haage
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Emmanouil Charakopoulos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Vikas Bhuria
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny K Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Mark Korthals
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Juliane Handschuh
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Müller
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Juan Li
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Kunjan Harit
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Gopala Nishanth
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Stephanie Frey
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Böttcher
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Anthony R Green
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Andreas J Müller
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
6
|
Verma T, Papadantonakis N, Peker Barclift D, Zhang L. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements. Cancers (Basel) 2024; 16:514. [PMID: 38339265 PMCID: PMC10854658 DOI: 10.3390/cancers16030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Myelofibrosis (MF) is an essential element of primary myelofibrosis, whereas secondary MF may develop in the advanced stages of other myeloid neoplasms, especially polycythemia vera and essential thrombocythemia. Over the last two decades, advances in molecular diagnostic techniques, particularly the integration of next-generation sequencing in clinical laboratories, have revolutionized the diagnosis, classification, and clinical decision making of myelofibrosis. Driver mutations involving JAK2, CALR, and MPL induce hyperactivity in the JAK-STAT signaling pathway, which plays a central role in cell survival and proliferation. Approximately 80% of myelofibrosis cases harbor additional mutations, frequently in the genes responsible for epigenetic regulation and RNA splicing. Detecting these mutations is crucial for diagnosing myeloproliferative neoplasms (MPNs), especially in cases where no mutations are present in the three driver genes (triple-negative MPNs). While fibrosis in the bone marrow results from the disturbance of inflammatory cytokines, it is fundamentally associated with mutation-driven hematopoiesis. The mutation profile and order of acquiring diverse mutations influence the MPN phenotype. Mutation profiling reveals clonal diversity in MF, offering insights into the clonal evolution of neoplastic progression. Prognostic prediction plays a pivotal role in guiding the treatment of myelofibrosis. Mutation profiles and cytogenetic abnormalities have been integrated into advanced prognostic scoring systems and personalized risk stratification for MF. Presently, JAK inhibitors are part of the standard of care for MF, with newer generations developed for enhanced efficacy and reduced adverse effects. However, only a minority of patients have achieved a significant molecular-level response. Clinical trials exploring innovative approaches, such as combining hypomethylation agents that target epigenetic regulators, drugs proven effective in myelodysplastic syndrome, or immune and inflammatory modulators with JAK inhibitors, have demonstrated promising results. These combinations may be more effective in patients with high-risk mutations and complex mutation profiles. Expanding mutation profiling studies with more sensitive and specific molecular methods, as well as sequencing a broader spectrum of genes in clinical patients, may reveal molecular mechanisms in cases currently lacking detectable driver mutations, provide a better understanding of the association between genetic alterations and clinical phenotypes, and offer valuable information to advance personalized treatment protocols to improve long-term survival and eradicate mutant clones with the hope of curing MF.
Collapse
Affiliation(s)
- Tanvi Verma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Verstovsek S, Foltz L, Gupta V, Hasserjian R, Manshouri T, Mascarenhas J, Mesa R, Pozdnyakova O, Ritchie E, Veletic I, Gamel K, Hamidi H, Han L, Higgins B, Trunzer K, Uguen M, Wang D, El-Galaly TC, Todorov B, Gotlib J. Safety and efficacy of zinpentraxin alfa as monotherapy or in combination with ruxolitinib in myelofibrosis: stage I of a phase II trial. Haematologica 2023; 108:2730-2742. [PMID: 37165840 PMCID: PMC10543197 DOI: 10.3324/haematol.2022.282411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
Pentraxin 2 (PTX-2; serum amyloid P component), a circulating endogenous regulator of the inflammatory response to tissue injury and fibrosis, is reduced in patients with myelofibrosis (MF). Zinpentraxin alfa (RO7490677, PRM-151) is a recombinant form of PTX-2 that has shown preclinical antifibrotic activity and no dose-limiting toxicities in phase I trials. We report results from stage 1 of a phase II trial of zinpentraxin alfa in patients with intermediate-1/2 or high-risk MF. Patients (n=27) received intravenous zinpentraxin α weekly (QW) or every 4 weeks (Q4W), as monotherapy or an additional therapy for patients on stable-dose ruxolitinib. The primary endpoint was overall response rate (ORR; investigatorassessed) adapted from International Working Group-Myeloproliferative Neoplasms Research and Treatment criteria. Secondary endpoints included modified Myeloproliferative Neoplasm-Symptom Assessment Form Total Symptom Score (MPN-SAF TSS) change, bone marrow (BM) MF grade reduction, pharmacokinetics, and safety. ORR at week 24 was 33% (n=9/27) and varied across individual cohorts (QW: 38% [3/8]; Q4W: 14% [1/7]; QW+ruxolitinib: 33% [2/6]; Q4W+ruxolitinib: 50% [3/6]). Five of 18 evaluable patients (28%) experienced a ≥50% reduction in MPN-SAF TSS, and six of 17 evaluable patients (35%) had a ≥1 grade improvement from baseline in BM fibrosis at week 24. Most treatment-emergent adverse events (AE) were grade 1-2, most commonly fatigue. Among others, anemia and thrombocytopenia were infrequent (n=3 and n=1, respectively). Treatment-related serious AE occurred in four patients (15%). Overall, zinpentraxin alfa showed evidence of clinical activity and tolerable safety as monotherapy and in combination with ruxolitinib in this open-label, non-randomized trial (clinicaltrials gov. Identifier: NCT01981850).
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Lynda Foltz
- St Paul's Hospital, University of British Columbia, Vancouver
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University of Toronto, Toronto
| | | | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruben Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX
| | - Olga Pozdnyakova
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | - Dao Wang
- F. Hoffmann-La Roche, Ltd., Basel
| | - Tarec Christoffer El-Galaly
- F. Hoffmann-La Roche, Ltd., Basel, Switzerland; Current affiliation: Department of Hematology, Aalborg University Hospital, Aalborg
| | | | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
9
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Dunbar AJ, Kim D, Lu M, Farina M, Bowman RL, Yang JL, Park Y, Karzai A, Xiao W, Zaroogian Z, O’Connor K, Mowla S, Gobbo F, Verachi P, Martelli F, Sarli G, Xia L, Elmansy N, Kleppe M, Chen Z, Xiao Y, McGovern E, Snyder J, Krishnan A, Hill C, Cordner K, Zouak A, Salama ME, Yohai J, Tucker E, Chen J, Zhou J, McConnell T, Migliaccio AR, Koche R, Rampal R, Fan R, Levine RL, Hoffman R. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and is a therapeutic target in myelofibrosis. Blood 2023; 141:2508-2519. [PMID: 36800567 PMCID: PMC10273167 DOI: 10.1182/blood.2022015418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.
Collapse
Affiliation(s)
- Andrew J. Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Min Lu
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mirko Farina
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Blood Diseases and Bone Marrow Transplantation Unit, Cell Therapies and Hematology Research Program, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie L. Yang
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abdul Karzai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zach Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Lijuan Xia
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nada Elmansy
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Erin McGovern
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jenna Snyder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Corrine Hill
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Keith Cordner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anouar Zouak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohamed E. Salama
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Mayo Clinic School of Medicine, Rochester, MN
| | - Jayden Yohai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Anna R. Migliaccio
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Altius Institute for Biomedical Sciences, Seattle, WA
- Unit of Microscopic and Ultrastructural Anatomy, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Richard Koche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronald Hoffman
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
11
|
Reynolds SB, Pettit K. New approaches to tackle cytopenic myelofibrosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:235-244. [PMID: 36485113 PMCID: PMC9820710 DOI: 10.1182/hematology.2022000340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm characterized by constitutional symptoms, splenomegaly, and risks of marrow failure or leukemic transformation and is universally driven by Jak/STAT pathway activation. Despite sharing this pathogenic feature, MF disease behavior can vary widely. MF can generally be categorized into 2 distinct subgroups based on clinical phenotype: proliferative MF and cytopenic (myelodepletive) MF. Compared to proliferative phenotypes, cytopenic MF is characterized by lower blood counts (specifically anemia and thrombocytopenia), more frequent additional somatic mutations outside the Jak/STAT pathway, and a worse prognosis. Cytopenic MF presents unique therapeutic challenges. The first approved Jak inhibitors, ruxolitinib and fedratinib, can both improve constitutional symptoms and splenomegaly but carry on-target risks of worsening anemia and thrombocytopenia, limiting their use in patients with cytopenic MF. Supportive care measures that aim to improve anemia or thrombocytopenia are often ineffective. Fortunately, new treatment strategies for cytopenic MF are on the horizon. Pacritinib, selective Jak2 inhibitor, was approved in 2022 to treat patients with symptomatic MF and a platelet count lower than 50 × 109/L. Several other Jak inhibitors are in development to extend therapeutic benefits to those with either anemia or thrombocytopenia. While many other novel non-Jak inhibitor therapies are in development for MF, most carry a risk of hematologic toxicities and often exclude patients with baseline thrombocytopenia. As a result, significant unmet needs remain for cytopenic MF. Here, we discuss clinical implications of the cytopenic MF phenotype and present existing and future strategies to tackle this challenging disease.
Collapse
Affiliation(s)
- Samuel B Reynolds
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Kristen Pettit
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Pettit K, Rezazadeh A, Atallah EL, Radich J. Management of Myeloproliferative Neoplasms in the Molecular Era: From Research to Practice. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35658498 DOI: 10.1200/edbk_349615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 1960 discovery of the Philadelphia chromosome in chronic myeloid leukemia (CML) marked the beginning of the modern genomic era of oncology. In the following years, the molecular underpinnings of CML were unraveled, culminating in the development of the first molecularly targeted therapy: imatinib. Imatinib revolutionized CML management, inducing deep molecular responses for most patients and aligning survival curves with those of age-matched control participants. Five additional tyrosine kinase inhibitors are now approved for CML: dasatinib, nilotinib, bosutinib, ponatinib, and asciminib (approved October 2021). The 2005 discovery of JAK2 mutations in myelofibrosis (MF) sparked enthusiasm that molecularly targeted therapies could have a similar impact in that disease. Three JAK inhibitors are now available for MF: ruxolitinib, fedratinib, and pacritinib (approved February 2022). JAK inhibitors are helpful for improving symptoms and splenomegaly but still only scratch the surface of MF pathophysiology. Clinical research testing novel agents, next-generation JAK inhibitors, and combinations of JAK inhibitors plus novel agents is moving at a tremendous pace in the hope that outcomes for patients with MF may mirror those with CML one day. This review provides an update on the status of clinical care and research for MF and addresses ongoing issues related to CML management.
Collapse
Affiliation(s)
| | | | | | - Jerald Radich
- Global Oncology Program and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
13
|
Leiva O, Hobbs G, Ravid K, Libby P. Cardiovascular Disease in Myeloproliferative Neoplasms: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:166-182. [PMID: 35818539 PMCID: PMC9270630 DOI: 10.1016/j.jaccao.2022.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloproliferative neoplasms are associated with increased risk for thrombotic complications. These conditions most commonly involve somatic mutations in genes that lead to constitutive activation of the Janus-associated kinase signaling pathway (eg, Janus kinase 2, calreticulin, myeloproliferative leukemia protein). Acquired gain-of-function mutations in these genes, particularly Janus kinase 2, can cause a spectrum of disorders, ranging from clonal hematopoiesis of indeterminate potential, a recently recognized age-related promoter of cardiovascular disease, to frank hematologic malignancy. Beyond thrombosis, patients with myeloproliferative neoplasms can develop other cardiovascular conditions, including heart failure and pulmonary hypertension. The authors review the pathophysiologic mechanisms of cardiovascular complications of myeloproliferative neoplasms, which involve inflammation, prothrombotic and profibrotic factors (including transforming growth factor-beta and lysyl oxidase), and abnormal function of circulating clones of mutated leukocytes and platelets from affected individuals. Anti-inflammatory therapies may provide cardiovascular benefit in patients with myeloproliferative neoplasms, a hypothesis that requires rigorous evaluation in clinical trials.
Collapse
Key Words
- ASXL1, additional sex Combs-like 1
- CHIP, clonal hematopoiesis of indeterminate potential
- DNMT3a, DNA methyltransferase 3 alpha
- IL, interleukin
- JAK, Janus-associated kinase
- JAK2, Janus kinase 2
- LOX, lysyl oxidase
- MPL, myeloproliferative leukemia protein
- MPN, myeloproliferative neoplasm
- STAT, signal transducer and activator of transcription
- TET2, tet methylcytosine dioxygenase 2
- TGF, transforming growth factor
- atherosclerosis
- cardiovascular complications
- clonal hematopoiesis
- myeloproliferative neoplasms
- thrombosis
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela Hobbs
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Manshouri T, Veletic I, Li P, Yin CC, Post SM, Verstovsek S, Estrov Z. GLI1 activates pro-fibrotic pathways in myelofibrosis fibrocytes. Cell Death Dis 2022; 13:481. [PMID: 35595725 PMCID: PMC9122946 DOI: 10.1038/s41419-022-04932-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF. Multiplexed fluorescence immunohistochemistry analysis of MF patients' BM detected high levels of GLI1 in MF fibrocytes compared to MSCs or normal fibrocytes. Immunostaining, RNA in situ hybridization, gene expression analysis, and western immunoblotting detected high levels of GLI1 and GLI1-induced matrix metalloproteases (MMP) 2 and 9 in MF patients BM-derived cultured fibrocytes. Similarly, MF patients' BM-derived GLI1+ fibrocytes were found in BMs and spleens of MF xenograft mice. GLI1 silencing reduced the levels of MMP2/9, phosphorylated SMAD2/3, and procollagen-I, and knockdown or inhibition of GLI1 decreased fibrocyte formation and induced apoptosis of both fibrocytes and fibrocyte progenitors. Because Janus kinase (JAK)2-induced STAT3 is constitutively activated in MF and because STAT3 induces GLI1 expression, we sought to determine whether STAT3 activates GLI1 in MF fibrocytes. Imaging analysis detected phosphotyrosine STAT3 in MF patients' BM fibrocytes, and transfection of fibrocytes with STAT3-siRNA or treatment with a JAK1/2 inhibitor ruxolitinib reduced GLI1 and MMP2/9 levels. Chromatin immunoprecipitation and a luciferase assay revealed that STAT3 induced the expression of the GLI1 gene in both MF BM fibrocytes and fibrocyte progenitors. Together, our data suggest that STAT3-activated GLI1 contributes to the induction of BM fibrosis in MF.
Collapse
Affiliation(s)
- Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
15
|
Chifotides HT, Bose P, Masarova L, Pemmaraju N, Verstovsek S. SOHO State of the Art Updates and Next Questions: Novel Therapies in Development for Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:210-223. [PMID: 34840087 DOI: 10.1016/j.clml.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Myeloproliferative neoplasms research has entered a dynamic and exciting era as we witness exponential growth of novel agents in advanced/early phase clinical trials for myelofibrosis (MF). Building on the success and pivotal role of ruxolitinib, many novel agents, spanning a wide range of mechanisms/targets (epigenetic regulation, apoptotic/intracellular signaling pathways, telomerase, bone marrow fibrosis) are in clinical development; several are studied in registrational trials and hold great potential to expand the therapeutic arsenal/shift the treatment paradigm if regulatory approval is granted. Insight into MF pathogenesis and its molecular underpinnings, preclinical studies demonstrating synergism of ruxolitinib with investigational agents, urgent unmet clinical needs (cytopenias, loss of response to JAK inhibitors); and progressive disease fueled the rapid rise of innovative therapeutics. New strategies include pairing ruxolitinib with erythroid maturation agents to manage anemia (luspatercept), designing rational combinations with ruxolitinib to boost responses in both the frontline and suboptimal response settings (pelabresib, navitoclax, parsaclisib), treatment with non-JAK inhibitor monotherapy in the second-line setting (navtemadlin, imetelstat), novel JAK inhibitors tailored to subgroups with challenging unmet needs (momelotinib and pacritinib for anemia and thrombocytopenia, respectively); and agents potentially enhancing longevity (imetelstat). Beyond typical endpoints evaluated in MF clinical trials (spleen volume reduction ≥ 35%, total symptom score reduction ≥ 50%) thus far, emerging endpoints include overall survival, progression-free survival, transfusion independence, anemia benefits, bone marrow fibrosis and driver mutation allele burden reduction. Novel biomarkers and additional clinical features are being sought to assess new agents and tailor emerging therapies to appropriate patients. New strategies are needed to optimize the design of clinical trials comparing novel combinations to standard agent monotherapy.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Lucia Masarova
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
16
|
Kawano N, Saito N, Yoshida S, Kitanaka A, Shide K, Marutsuka K, Ohshima K, Shimoda K. Immunohistopathological Analysis of Extramedullary Hematopoiesis and Angiogenesis of Spleen in a Case of Primary Myelofibrosis with Huge Splenomegaly. TOHOKU J EXP MED 2022; 256:119-125. [PMID: 35173090 DOI: 10.1620/tjem.256.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although splenomegaly is one of the important signs of primary myelofibrosis, the differential diagnosis varies from malignant disorders to benign disorders, including malignant lymphoma and sarcoidosis. The patient was a 67-year-old male who developed anemia and huge splenomegaly. The laboratory findings include human T-cell leukemia virus type 1 (HTLV-1) antibody, elevated soluble interleukin-2 receptor, hypocellular bone marrow, and uptake in the spleen on positron emission tomography/computed tomography scan. Additionally, we performed laparoscopic splenectomy to alleviate the clinical symptoms and to rule out malignant lymphoma. Histological findings revealed extramedullary hematopoiesis, characterized by the presence of erythroid islands and clusters of dysplastic megakaryocytes with increased reticulin fibrosis. Immunohistochemical staining revealed the presence of von Willebrand factor, dysplastic megakaryocytes, myeloperoxidase, myeloid-predominant proliferations, and CD34 immature myeloid cells. Furthermore, regarding the angiogenesis in the spleen, the endothelial cells of the capillaries and those of the sinusoidal vascular system that were reactive for CD34 and CD8, respectively, were also detected. Consequently, the histological findings revealed both extramedullary hematopoiesis and angiogenesis in spleen. Based on the histological findings and the identification of Janus activating kinase 2 (JAK-2) mutation, the patient was diagnosed with primary myelofibrosis. Splenectomy reduces blood transfusion requirements after surgery. The patient was carefully followed-up without further treatments. Thus, primary myelofibrosis is the crucial differential diagnosis of huge splenomegaly.
Collapse
Affiliation(s)
- Noriaki Kawano
- Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital
| | - Noriyuki Saito
- Department of Hematology, Saiseikai Fukuoka General Hospital
| | - Shuro Yoshida
- Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital
| | - Akira Kitanaka
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | | | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
17
|
Khatib-Massalha E, Méndez-Ferrer S. Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Front Oncol 2022; 12:840044. [PMID: 35186768 PMCID: PMC8854253 DOI: 10.3389/fonc.2022.840044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) rely on local interactions in the bone marrow (BM) microenvironment with stromal cells and other hematopoietic cells that facilitate their survival and proliferation, and also regulate their functions. HSCs and multipotent progenitor cells differentiate into lineage-specific progenitors that generate all blood and immune cells. Megakaryocytes (Mks) are hematopoietic cells responsible for producing blood platelets, which are essential for normal hemostasis and blood coagulation. Although the most prominent function of Mks is platelet production (thrombopoiesis), other increasingly recognized functions include HSC maintenance and host immune response. However, whether and how these diverse programs are executed by different Mk subpopulations remains poorly understood. This Perspective summarizes our current understanding of diversity in ontogeny, functions and cell-cell interactions. Cumulative evidence suggests that BM microenvironment dysfunction, partly caused by mutated Mks, can induce or alter the progression of a variety of hematologic malignancies, including myeloproliferative neoplasms (MPNs) and other disorders associated with tissue scarring (fibrosis). Therefore, as an example of the heterogeneous functions of Mks in malignant hematopoiesis, we will discuss the role of Mks in the onset and progression of BM fibrosis. In this regard, abnormal interactions between of Mks and other immune cells might directly contribute to fibrotic diseases. Overall, further understanding of megakaryopoiesis and how Mks interact with HSCs and immune cells has potential clinical implications for stem cell transplantation and other therapies for hematologic malignancies, as well as for treatments to stimulate platelet production and prevent thrombocytopenia.
Collapse
Affiliation(s)
- Eman Khatib-Massalha
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Simón Méndez-Ferrer
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Instituto de Biomedicina de Sevilla-IBiS, Hospitales Universitarios Virgen del Rocío y Macarena/Spanish National Research Council (CSIC)/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
Saito N, Yamauchi T, Kawano N, Ono R, Yoshida S, Miyamoto T, Kamimura T, Shultz LD, Saito Y, Takenaka K, Shimoda K, Harada M, Akashi K, Ishikawa F. Circulating CD34+ cells of primary myelofibrosis patients contribute to myeloid-dominant hematopoiesis and bone marrow fibrosis in immunodeficient mice. Int J Hematol 2022; 115:198-207. [PMID: 34773575 PMCID: PMC8905546 DOI: 10.1007/s12185-021-03239-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Primary myelofibrosis (PMF) is a clonal stem cell disorder characterized by myeloid dominant hematopoiesis and dysregulated proliferation of fibroblasts in the bone marrow. However, how these aberrant myeloid cells and fibroblasts are produced remains unclear. AIM AND METHODS In this study, we examined in vivo engraftment kinetics of PMF patient-derived CD34+ cells in immunecompromised NOD/SCID/IL2rgKO (NSG) mice. Engrafted human cells were analyzed with flow cytometry, and proliferation of fibroblastic cells and bone marrow fibrosis were assessed with the histo-pathological examination. RESULTS Transplantation of PMF patient-derived circulating CD34+ fractions into NSG newborns recapitulates clinical features of human PMF. Engraftment of human CD45+ leukocytes resulted in anemia and myeloid hyperplasia accompanied by bone marrow fibrosis by six months post-transplantation. Fibrotic bone marrow contained CD45-vimentin+ cells of both human and mouse origin, suggesting that circulating malignant CD34+ subsets contribute to myelofibrotic changes in PMF through direct and indirect mechanisms. CONCLUSION A patient-derived xenotransplantation (PDX) model of PMF allows in vivo examination of disease onset and propagation originating from immature CD34+ cells and will support the investigation of pathogenesis and development of therapeutic modalities for the disorder.
Collapse
Affiliation(s)
- Noriyuki Saito
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Hematology, Saiseikai Fukuoka General Hospital, 1-3-46 Tenjin, Chuo-ku, Fukuoka, 810-0001, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriaki Kawano
- Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Rintaro Ono
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuro Yoshida
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | - Yoriko Saito
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mine Harada
- Karatsu Higashimatsuura Medical Center, Karatsu, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
19
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
20
|
Zhou J, Guo C, Wu H, Li B, Zhou LL, Liang AB, Fu JF. Dnmt3a is downregulated by Stat5a and mediates G0/G1 arrest by suppressing the miR-17-5p/Cdkn1a axis in Jak2 V617F cells. BMC Cancer 2021; 21:1213. [PMID: 34773997 PMCID: PMC8590245 DOI: 10.1186/s12885-021-08915-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
Background Despite of the frequently reported Dnmt3a abormality in classical myeloproliferative neoplasms (cMPNs) patients, few research explores how the Dnmt3a is regulated by Jak2V617F mutation. In this study, we have investigated how the Dnmt3a is regulated by Jak2V617F mutation and its effects on downstream signaling pathways in cMPNs. Methods Specimens of Jak2V617F positive cMPN patients and normal controls were collected. Murine BaF3 cell line was used to construct cell models. Dual-Glo luciferase assays and chromatin immunoprecipitation (ChIP)-qPCR were performed to detect the impact of Stat5a on transcription activity of Dnmt3a. Soft agar colony formation assay and cell counting assay were performed to detect cell proliferation. BrdU staining and flow cytometry were used to investigate cell cycle distribution. Western blotting and quantitative reverse-transcription PCR (qPCR) were performed to detect the expression levels of genes. Results Firstly, the results of western blotting and qPCR revealed that compared with the control samples, Dnmt3a is downregulated in Jak2V617F positive samples. Then we explored the mechanism behind it and found that Dnmt3a is a downstream target of Stat5a, the transcription and translation of Dnmt3a is suppressed by the binding of aberrantly activated Stat5a with Dnmt3a promoter in Jak2V617F positive samples. We further revealed the region approximately 800 bp upstream of the first exon of the Dnmt3a promoter, which includes a gamma-activated sequence (GAS) motif of Stat5a, is the specific site that Stat5a binds to. Soft agar colony formation assay, cell counting assay, and BrdU staining and flow cytometry assay found that Dnmt3a in Jak2V617F-BaF3 cells significantly affected the cell proliferation capacity and cell cycle distribution by suppressing Cdkn1a via miR-17-5p/Cdkn1a axis and mediated G0/G1 arrest. Conclusions Transcription and translation of Dnmt3a is downregulated by the binding of Stat5a with Dnmt3a promoter in Jak2V617F cells. The GAS motif at promoter of Dnmt3a is the exact site where the Stat5a binds to. Dnmt3a conducted G0/G1 arrest through regulating miR-17-5p/Cdkn1a axis. The axis of Stat5a/Dnmt3a/miR-17-5p/Cdkn1a potentially provides a treatment target for cMPNs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08915-0.
Collapse
Affiliation(s)
- Jie Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Cheng Guo
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Hao Wu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China
| | - Bing Li
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China
| | - Li-Li Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China
| | - Ai-Bin Liang
- Tongji University School of Medicine, Shanghai, 200092, China. .,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China.
| | - Jian-Fei Fu
- Tongji University School of Medicine, Shanghai, 200092, China. .,Department of Hematology, Tongji Hospital of Tongji University, Tongji University School of Medicine, No.389 Xincun Road, Putuo District, Shanghai, 200065, China.
| |
Collapse
|
21
|
Bone marrow microenvironment of MPN cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 34756245 DOI: 10.1016/bs.ircmb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this chapter, we will discuss the current knowledge concerning the alterations of the cellular components in the bone marrow niche in Myeloproliferative Neoplasms (MPNs), highlighting the central role of the megakaryocytes in MPN progression, and the extracellular matrix components characterizing the fibrotic bone marrow.
Collapse
|
22
|
Fibrocytes in primary myelofibrosis. Oncotarget 2021; 12:2101-2103. [PMID: 34611483 PMCID: PMC8487717 DOI: 10.18632/oncotarget.27971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/03/2022] Open
|
23
|
Zuo S, Wang B, Liu J, Kong D, Cui H, Jia Y, Wang C, Xu X, Chen G, Wang Y, Yang L, Zhang K, Ai D, Du J, Shen Y, Yu Y. ER-anchored CRTH2 antagonizes collagen biosynthesis and organ fibrosis via binding LARP6. EMBO J 2021; 40:e107403. [PMID: 34223653 PMCID: PMC8365266 DOI: 10.15252/embj.2020107403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Shengkai Zuo
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Bei Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Deping Kong
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hui Cui
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yaonan Jia
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenyao Wang
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Xin Xu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Guilin Chen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yuanyang Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Linlin Yang
- Department of PharmacologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Kai Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yujun Shen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
24
|
Baumeister J, Maié T, Chatain N, Gan L, Weinbergerova B, de Toledo MAS, Eschweiler J, Maurer A, Mayer J, Kubesova B, Racil Z, Schuppert A, Costa I, Koschmieder S, Brümmendorf TH, Gezer D. Early and late stage MPN patients show distinct gene expression profiles in CD34 + cells. Ann Hematol 2021; 100:2943-2956. [PMID: 34390367 PMCID: PMC8592960 DOI: 10.1007/s00277-021-04615-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing–associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.
Collapse
Affiliation(s)
- Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tiago Maié
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Lin Gan
- IZKF Genomics Core Facility, RWTH Aachen University Medical School, Aachen, Germany
| | - Barbora Weinbergerova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopedic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Blanka Kubesova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Andreas Schuppert
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Ivan Costa
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany. .,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
25
|
Mabuchi Y, Okawara C, Méndez-Ferrer S, Akazawa C. Cellular Heterogeneity of Mesenchymal Stem/Stromal Cells in the Bone Marrow. Front Cell Dev Biol 2021; 9:689366. [PMID: 34295894 PMCID: PMC8291416 DOI: 10.3389/fcell.2021.689366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are present in various body tissues and help in maintaining homeostasis. The stemness of MSCs has been evaluated in vitro. In addition, analyses of cell surface antigens and gene expression patterns have shown that MSCs comprise a heterogeneous population, and the diverse and complex nature of MSCs makes it difficult to identify the specific roles in diseases. There is a lack of understanding regarding the classification of MSC properties. In this review, we explore the characteristics of heterogeneous MSC populations based on their markers and gene expression profiles. We integrated the contents of previously reported single-cell analysis data to better understand the properties of mesenchymal cell populations. In addition, the cell populations involved in the development of myeloproliferative neoplasms (MPNs) are outlined. Owing to the diversity of terms used to describe MSCs, we used the text mining technology to extract topics from MSC research articles. Recent advances in technology could improve our understanding of the diversity of MSCs and help us evaluate cell populations.
Collapse
Affiliation(s)
- Yo Mabuchi
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, NHS Blood and Transplant, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chikako Okawara
- Development of Innovation in Fundamental and Scientific Nursing Care, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, NHS Blood and Transplant, University of Cambridge, Cambridge, United Kingdom
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Intractable Disease Research Centre, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Bose P, Masarova L, Verstovsek S. Novel Concepts of Treatment for Patients with Myelofibrosis and Related Neoplasms. Cancers (Basel) 2020; 12:cancers12102891. [PMID: 33050168 PMCID: PMC7599937 DOI: 10.3390/cancers12102891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Myelofibrosis (MF) is an advanced form of a group of rare, related bone marrow cancers termed myeloproliferative neoplasms (MPNs). Some patients develop myelofibrosis from the outset, while in others, it occurs as a complication of the more indolent MPNs, polycythemia vera (PV) or essential thrombocythemia (ET). Patients with PV or ET who require drug treatment are typically treated with the chemotherapy drug hydroxyurea, while in MF, the targeted therapies termed Janus kinase (JAK) inhibitors form the mainstay of treatment. However, these and other drugs (e.g., interferons) have important limitations. No drug has been shown to reliably prevent the progression of PV or ET to MF or transformation of MPNs to acute myeloid leukemia. In PV, it is not conclusively known if JAK inhibitors reduce the risk of blood clots, and in MF, these drugs do not improve low blood counts. New approaches to treating MF and related MPNs are, therefore, necessary. Abstract Janus kinase (JAK) inhibition forms the cornerstone of the treatment of myelofibrosis (MF), and the JAK inhibitor ruxolitinib is often used as a second-line agent in patients with polycythemia vera (PV) who fail hydroxyurea (HU). In addition, ruxolitinib continues to be studied in patients with essential thrombocythemia (ET). The benefits of JAK inhibition in terms of splenomegaly and symptoms in patients with MF are undeniable, and ruxolitinib prolongs the survival of persons with higher risk MF. Despite this, however, “disease-modifying” effects of JAK inhibitors in MF, i.e., bone marrow fibrosis and mutant allele burden reduction, are limited. Similarly, in HU-resistant/intolerant PV, while ruxolitinib provides excellent control of the hematocrit, symptoms and splenomegaly, reduction in the rate of thromboembolic events has not been convincingly demonstrated. Furthermore, JAK inhibitors do not prevent disease evolution to MF or acute myeloid leukemia (AML). Frontline cytoreductive therapy for PV generally comprises HU and interferons, which have their own limitations. Numerous novel agents, representing diverse mechanisms of action, are in development for the treatment of these three classic myeloproliferative neoplasms (MPNs). JAK inhibitor-based combinations, all of which are currently under study for MF, have been covered elsewhere in this issue. In this article, we focus on agents that have been studied as monotherapy in patients with MF, generally after JAK inhibitor resistance/intolerance, as well as several novel compounds in development for PV/ET.
Collapse
|
27
|
Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 2020; 17:611-629. [PMID: 32514148 DOI: 10.1038/s41571-020-0382-2] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy based on immune-checkpoint inhibition or adoptive cell therapy has revolutionized cancer care. Nevertheless, a large proportion of patients do not benefit from such treatments. Over the past decade, remarkable progress has been made in the development of 'next-generation' therapeutics in immuno-oncology, with inhibitors of extracellular adenosine (eADO) signalling constituting an expanding class of agents. Induced by tissue hypoxia, inflammation, tissue repair and specific oncogenic pathways, the adenosinergic axis is a broadly immunosuppressive pathway that regulates both innate and adaptive immune responses. Inhibition of eADO-generating enzymes and/or eADO receptors can promote antitumour immunity through multiple mechanisms, including enhancement of T cell and natural killer cell function, suppression of the pro-tumourigenic effects of myeloid cells and other immunoregulatory cells, and promotion of antigen presentation. With several clinical trials currently evaluating inhibitors of the eADO pathway in patients with cancer, we herein review the pathophysiological function of eADO with a focus on effects on antitumour immunity. We also discuss the treatment opportunities, potential limitations and biomarker-based strategies related to adenosine-targeted therapy in oncology.
Collapse
Affiliation(s)
- Bertrand Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - David Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Laurence Buisseret
- Department of Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|