1
|
Letai A, de The H. Conventional chemotherapy: millions of cures, unresolved therapeutic index. Nat Rev Cancer 2025; 25:209-218. [PMID: 39681637 DOI: 10.1038/s41568-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent decades, millions of patients with cancer have been cured by chemotherapy alone. By 'cure', we mean that patients with cancers that would be fatal if left untreated receive a time-limited course of chemotherapy and their cancer disappears, never to return. In an era when hundreds of thousands of cancer genomes have been sequenced, a remarkable fact persists: in most patients who have been cured, we still do not fully understand the mechanisms underlying the therapeutic index by which the tumour cells are killed, but normal cells are somehow spared. In contrast, in more recent years, patients with cancer have benefited from targeted therapies that usually do not cure but whose mechanisms of therapeutic index are, at least superficially, understood. In this Perspective, we will explore the various and sometimes contradictory models that have attempted to explain why chemotherapy can cure some patients with cancer, and what gaps in our understanding of the therapeutic index of chemotherapy remain to be filled. We will summarize principles which have benefited curative conventional chemotherapy regimens in the past, principles which might be deployed in constructing combinations that include modern targeted therapies.
Collapse
Affiliation(s)
- Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Hugues de The
- College de France, CIRB, INSERM, CNRS, Université PSL Paris, Paris, France.
- Hematology Laboratory, St Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
- IRSL, INSERM, CNRS, Université Paris-Cité, Paris, France.
| |
Collapse
|
2
|
Chiu SK, Ferrari E, Oommen J, Malinge S, Cheung LC, Kotecha RS. Preclinical Assessment of Dactinomycin in KMT2A-Rearranged Infant Acute Lymphoblastic Leukemia. Cancers (Basel) 2025; 17:527. [PMID: 39941894 PMCID: PMC11816686 DOI: 10.3390/cancers17030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Infants with KMT2A-rearranged B-cell acute lymphoblastic leukemia (ALL) have high rates of relapse and poor survival compared with children. Few new therapies have been identified over the past twenty years. The aim of this study was to identify existing anti-cancer agents that have the potential to be repurposed for the treatment of infant ALL. Methods: Eight extensively characterized infant ALL cell lines were treated with 62 anti-neoplastic drugs in vitro to identify agents that exhibit significant cytotoxicity. From this screen, we selected the most effective and clinically translatable agent for further in vitro and in vivo assessment to determine the potential for use in the clinical setting. Results: Our anti-cancer drug screen revealed significant activity of dactinomycin across all infant ALL cell lines. Further in vitro testing identified low half-maximal inhibitory concentrations (IC50) across our infant ALL cell lines in the nanomolar range. Combination testing with the conventional chemotherapeutic agents currently used to treat infants with ALL demonstrated additivity with cytarabine. In vivo assessment of dactinomycin identified 36 μg/kg as the maximum tolerated dose, with unacceptable toxicities at higher dose treatment. Treatment using doses of 18 μg/kg administered either once or twice a week derived a small but significant survival benefit in patient-derived xenografts. Conclusions: Dactinomycin is extensively used for the treatment of solid tumors in children and has an acceptable safety profile when used to treat infants in this context. However, despite being readily translational and exhibiting promising in vitro cytotoxicity, dactinomycin showed limited efficacy in vivo and therefore does not represent a priority candidate for integrating into therapy for infants with ALL.
Collapse
Affiliation(s)
- Sung K. Chiu
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Emanuela Ferrari
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
| | - Sebastien Malinge
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Falini B, Sorcini D, Perriello VM, Sportoletti P. Functions of the native NPM1 protein and its leukemic mutant. Leukemia 2025; 39:276-290. [PMID: 39690184 DOI: 10.1038/s41375-024-02476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML). Due to its unique biological and clinical features, NPM1-mutated AML is regarded as a distinct leukemia entity in the WHO 5th edition and ICC classifications of myeloid malignancies. The NPM1 mutant undergoes changes at the C-terminus of the protein that leads to its delocalization in the cytoplasm of the leukemic cells. Here, we focus also on its biological functions discussing the murine models of NPM1 mutations and the various mechanisms that occur at cytoplasmic and nuclear levels to promote and maintain NPM1-mutated AML.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
| | - Daniele Sorcini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
4
|
Wang ES, Issa GC, Erba HP, Altman JK, Montesinos P, DeBotton S, Walter RB, Pettit K, Savona MR, Shah MV, Kremyanskaya M, Baer MR, Foran JM, Schiller G, Adès L, Heiblig M, Berthon C, Peterlin P, Rodríguez-Arbolí E, Salamero O, Patnaik MM, Papayannidis C, Grembecka J, Cierpicki T, Clegg B, Ray J, Linhares BM, Nie K, Mitra A, Ahsan JM, Tabachri M, Soifer HS, Corum D, Leoni M, Dale S, Fathi AT. Ziftomenib in relapsed or refractory acute myeloid leukaemia (KOMET-001): a multicentre, open-label, multi-cohort, phase 1 trial. Lancet Oncol 2024; 25:1310-1324. [PMID: 39362248 DOI: 10.1016/s1470-2045(24)00386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Ziftomenib (KO-539) is an oral selective menin inhibitor with known preclinical activity in menin-dependent acute myeloid leukaemia models. The primary objective of this study was to determine the recommended phase 2 dose in patients with relapsed or refractory acute myeloid leukaemia based on safety, pharmacokinetics, pharmacodynamics, and preliminary activity. METHODS KOMET-001 is a multicentre, open-label, multi-cohort, phase 1/2 clinical trial of ziftomenib in adults with relapsed or refractory acute myeloid leukaemia. Results of the phase 1 study, conducted at 22 hospitals in France, Italy, Spain, and the USA, are presented here and comprise the dose-escalation (phase 1a) and dose-validation and expansion (phase 1b) phases. Eligible patients were aged 18 years or older, had relapsed or refractory acute myeloid leukaemia, and had an Eastern Cooperative Oncology Group performance status of 2 or less. For phase 1a, patients (all molecular subtypes) received ziftomenib (50-1000 mg) orally once daily in 28-day cycles. For phase 1b, patients with NPM1 mutations or with KMT2A rearrangements were randomly assigned (1:1) using third-party interactive response technology to two parallel dose cohorts (200 mg and 600 mg ziftomenib). Primary endpoints were maximum tolerated dose or recommended phase 2 dose in phase 1a, and safety, remission rates, and pharmacokinetics supporting recommended phase 2 dose determination in phase 1b. Analyses were performed in all patients who received at least one dose of ziftomenib (modified intention-to-treat population). Phase 1a/1b is complete. This trial is registered with ClinicalTrials.gov, NCT04067336, and the EU Clinical Trials register, EudraCT 2019-001545-41. FINDINGS From Sept 12, 2019, to Aug 19, 2022, 83 patients received 50-1000 mg ziftomenib (39 [47%] were male and 44 [53%] were female). Median follow-up was 22·3 months (IQR 15·4-30·2). Of 83 patients, the most common grade 3 or worse treatment-emergent adverse events were anaemia (20 [24%]), febrile neutropenia (18 [22%]), pneumonia (16 [19%]), differentiation syndrome (12 [15%]), thrombocytopenia (11 [13%]), and sepsis (ten [12%]). Overall, 68 of 83 patients had serious adverse events, with two reported treatment-related deaths (one differentiation syndrome and one cardiac arrest). Differentiation syndrome rate and severity influenced the decision to halt enrolment of patients with KMT2A rearrangements. In Phase 1b, no responses were reported in patients treated at the 200 mg dose level. At the recommended phase 2 dose of 600 mg, nine (25%) of 36 patients with KMT2A rearrangement or NPM1 mutation had complete remission or complete remission with partial haematologic recovery. Seven (35%) of 20 patients with NPM1 mutation treated at the recommended phase 2 dose had a complete remission. INTERPRETATION Ziftomenib showed promising clinical activity with manageable toxicity in heavily pretreated patients with relapsed or refractory acute myeloid leukaemia. Phase 2 assessment of ziftomenib combination therapy in the upfront and relapsed or refractory setting is ongoing. FUNDING Kura Oncology.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Middle Aged
- Male
- Female
- Nucleophosmin
- Aged
- Adult
- Neoplasm Recurrence, Local/drug therapy
- Maximum Tolerated Dose
- Drug Resistance, Neoplasm
- Dose-Response Relationship, Drug
- Aged, 80 and over
Collapse
Affiliation(s)
- Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | | | | | - Jessica K Altman
- Northwestern University-Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Pau Montesinos
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Stephane DeBotton
- Institut Gustave Roussy Service d'Hématologie Clinique, Paris, France
| | | | | | | | | | | | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - James M Foran
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, USA
| | - Gary Schiller
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lionel Adès
- Hôpital Saint-Louis (AP-HP) and Université Paris Cité and Centre d'Investigations Cliniques-Inserm CIC-1427, Paris, France
| | | | | | | | - Eduardo Rodríguez-Arbolí
- Department of Hematology, Hospital Universitario Virgen del Rocío, Seville Biomedicine Institute (IBiS/CSIC), University of Seville, Seville, Spain
| | - Olga Salamero
- Servei d'Hematologia de l'Hospital Vall d'Hebron i Unitat d'Hematología Experimental del Vall d'Hebron Institut d'Oncología, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | | | | | | | - Joshua Ray
- University of Michigan, Ann Arbor, MI, USA
| | | | - Kun Nie
- Kura Oncology, Inc, San Diego, CA, USA
| | | | | | | | | | | | | | | | - Amir T Fathi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Hong Y, Liu Q, Xin C, Hu H, Zhuang Z, Ge H, Shen Y, Zhao Y, Zhou Y, Ye B, Wu D. Ferroptosis-Related Gene Signature for Prognosis Prediction in Acute Myeloid Leukemia and Potential Therapeutic Options. Int J Gen Med 2024; 17:3837-3853. [PMID: 39246807 PMCID: PMC11380859 DOI: 10.2147/ijgm.s460164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Background Limited data were available to understand the significance of ferroptosis in leukemia prognosis, regardless of the genomic background. Methods RNA-seq data from 151 AML patients were analyzed from The Cancer Genome Atlas (TCGA) database, along with 70 healthy samples from the Genotype-Tissue Expression (GTEx) database. Ferroptosis-related genes (FRGs) features were constructed by multivariate COX regression analysis and risk scores were calculated for each sample and a novel prediction model was identified. The validation was carried out using data from 35 AML patients and 13 healthy controls in our cohort. Drug sensitivity analysis was conducted on various chemotherapeutic drugs. Results A signature of 10 FRGs was identified, as prognostic predictors for AML, and the risk scores were calculated to constructed the prognostic features of FRGs. Significantly lower overall survival was observed in the high-risk group. The predictive ability of these features for AML prognosis was confirmed using Cox regression analysis, ROC curves, and DCA. The prediction model performed well in our clinical practices, and had its potential superiority when comparing to classical NCCN risk stratification. Multiple chemotherapy drugs, including paclitaxel, dactinomycin, cisplatin, etc. had a lower IC50 in FRGs high-risk group than low-risk group. Conclusion The AML prognosis model based on FRGs accurately predicts AML prognosis and drug sensitivity, and the drugs identified worthy further investigation.
Collapse
Affiliation(s)
- Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanao Xin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhenchao Zhuang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Zucenka A, Griskevicius L. Gilteritinib in combination with venetoclax, low-dose cytarabine and actinomycin D for relapsed or refractory FLT3-mutated acute myeloid leukaemia. Br J Haematol 2024; 204:1227-1231. [PMID: 38291741 DOI: 10.1111/bjh.19318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
We have conducted a retrospective, single-centre analysis of 20 patients with relapsed or refractory FLT3-mutated acute myeloid leukaemia (FLT3m AML) who received a salvage quadruplet regimen consisting of gilteritinib, venetoclax, low-dose cytarabine and actinomycin D (G-ACTIVE). G-ACTIVE resulted in a 95% (19/20) overall response rate and 75% (15/20) complete remission and complete remission with an incomplete platelet recovery (CR + CRp) rate. Out of 13 transplant-eligible patients, 11 (86%) proceeded to an allogeneic stem cell transplantation. The median overall survival and relapse-free survival after G-ACTIVE were 32 and 12.9 months respectively. The Day 60 mortality rate was 15%.
Collapse
Affiliation(s)
- Andrius Zucenka
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Laimonas Griskevicius
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Hematology, Oncology and Transfusion Medicine Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
7
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
8
|
Patel SA. Precision and strategic targeting of novel mutation-specific vulnerabilities in acute myeloid leukemia: the semi-centennial of 7 + 3. Leuk Lymphoma 2023; 64:1503-1513. [PMID: 37328939 PMCID: PMC10913147 DOI: 10.1080/10428194.2023.2224473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
The year 2023 marks the semi-centennial of the introduction of classic '7 + 3' chemotherapy for acute myeloid leukemia (AML) in 1973. It also marks the decennial of the first comprehensive sequencing efforts from The Cancer Genome Atlas (TCGA), which revealed that dozens of unique genes are recurrently mutated in AML genomes. Although more than 30 distinct genes have been implicated in AML pathogenesis, the current therapeutic armamentarium that is commercially available only targets FLT3 and IDH1/2 mutations, with olutasidenib as the most recent addition. This focused review spotlights management approaches that exploit the exquisite molecular dependencies of specific subsets of AML, with an emphasis on emerging therapies in the pipeline, including agents targeting TP53-mutant cells. We summarize precision and strategic targeting of AML based on leveraging functional dependencies and explore how mechanisms involving critical gene products can inform rational therapeutic design in 2024.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine, Division of Hematology/Oncology, UMass Memorial Medical Center, Center for Clinical & Translational Science, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Rérolle D, de Thé H. The PML hub: An emerging actor of leukemia therapies. J Exp Med 2023; 220:e20221213. [PMID: 37382966 PMCID: PMC10309189 DOI: 10.1084/jem.20221213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
PML assembles into nuclear domains that have attracted considerable attention from cell and cancer biologists. Upon stress, PML nuclear bodies modulate sumoylation and other post-translational modifications, providing an integrated molecular framework for the multiple roles of PML in apoptosis, senescence, or metabolism. PML is both a sensor and an effector of oxidative stress. Emerging data has demonstrated its key role in promoting therapy response in several hematological malignancies. While these membrane-less nuclear hubs can enforce efficient cancer cell clearance, their downstream pathways deserve better characterization. PML NBs are druggable and their known modulators may have broader clinical utilities than initially thought.
Collapse
Affiliation(s)
- Domitille Rérolle
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
- Chaire d'Oncologie Cellulaire et Moléculaire, Collège de France, Paris, France
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital St. Louis, Paris, France
| |
Collapse
|
10
|
Mazumdar R, Saikia K, Thakur D. Potentiality of Actinomycetia Prevalent in Selected Forest Ecosystems in Assam, India to Combat Multi-Drug-Resistant Microbial Pathogens. Metabolites 2023; 13:911. [PMID: 37623855 PMCID: PMC10456813 DOI: 10.3390/metabo13080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Actinomycetia are known for their ability to produce a wide range of bioactive secondary metabolites having significant therapeutic importance. This study aimed to explore the potential of actinomycetia as a source of bioactive compounds with antimicrobial properties against multi-drug-resistant (MDR) clinical pathogens. A total of 65 actinomycetia were isolated from two unexplored forest ecosystems, namely the Pobitora Wildlife Sanctuary (PWS) and the Deepor Beel Wildlife Sanctuary (DBWS), located in the Indo-Burma mega-biodiversity hotspots of northeast India, out of which 19 isolates exhibited significant antimicrobial activity. 16S rRNA gene sequencing was used for the identification and phylogenetic analysis of the 19 potent actinomycetia isolates. The results reveal that the most dominant genus among the isolates was Streptomyces (84.21%), followed by rare actinomycetia genera such as Nocardia, Actinomadura, and Nonomuraea. Furthermore, seventeen of the isolates tested positive for at least one antibiotic biosynthetic gene, specifically type II polyketide synthase (PKS-II) and nonribosomal peptide synthetases (NRPSs). These genes are associated with the production of bioactive compounds with antimicrobial properties. Among the isolated strains, three actinomycetia strains, namely Streptomyces sp. PBR1, Streptomyces sp. PBR36, and Streptomyces sp. DBR11, demonstrated the most potent antimicrobial activity against seven test pathogens. This was determined through in vitro antimicrobial bioassays and the minimum inhibitory concentration (MIC) values of ethyl acetate extracts. Gas chromatography-mass spectrometry (GS-MS) and whole-genome sequencing (WGS) of the three strains revealed a diverse group of bioactive compounds and secondary metabolite biosynthetic gene clusters (smBGCs), respectively, indicating their high therapeutic potential. These findings highlight the potential of these microorganisms to serve as a valuable resource for the discovery and development of novel antibiotics and other therapeutics with high therapeutic potential.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
- Department of Molecular Biology & Biotechnology, Cotton University, Guwahati 781001, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati 781035, India;
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
| |
Collapse
|
11
|
Jevtic Z, Allram M, Grebien F, Schwaller J. Biomolecular Condensates in Myeloid Leukemia: What Do They Tell Us? Hemasphere 2023; 7:e923. [PMID: 37388925 PMCID: PMC10306439 DOI: 10.1097/hs9.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Recent studies have suggested that several oncogenic and tumor-suppressive proteins carry out their functions in the context of specific membrane-less cellular compartments. As these compartments, generally referred to as onco-condensates, are specific to tumor cells and are tightly linked to disease development, the mechanisms of their formation and maintenance have been intensively studied. Here we review the proposed leukemogenic and tumor-suppressive activities of nuclear biomolecular condensates in acute myeloid leukemia (AML). We focus on condensates formed by oncogenic fusion proteins including nucleoporin 98 (NUP98), mixed-lineage leukemia 1 (MLL1, also known as KMT2A), mutated nucleophosmin (NPM1c) and others. We also discuss how altered condensate formation contributes to malignant transformation of hematopoietic cells, as described for promyelocytic leukemia protein (PML) in PML::RARA-driven acute promyelocytic leukemia (APL) and other myeloid malignancies. Finally, we discuss potential strategies for interfering with the molecular mechanisms related to AML-associated biomolecular condensates, as well as current limitations of the field.
Collapse
Affiliation(s)
- Zivojin Jevtic
- Department of Biomedicine (DBM), University Children’s Hospital Basel, University of Basel, Switzerland
| | - Melanie Allram
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Juerg Schwaller
- Department of Biomedicine (DBM), University Children’s Hospital Basel, University of Basel, Switzerland
| |
Collapse
|
12
|
De Cicco M, Lagreca I, Basso S, Barozzi P, Muscianisi S, Bianco A, Riva G, Di Vincenzo S, Pulvirenti C, Sapuppo D, Siciliano M, Rosti V, Candoni A, Zecca M, Forghieri F, Luppi M, Comoli P. Preclinical Validation of an Advanced Therapy Medicinal Product Based on Cytotoxic T Lymphocytes Specific for Mutated Nucleophosmin (NPM1 mut) for the Treatment of NPM1 mut-Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:2731. [PMID: 37345068 DOI: 10.3390/cancers15102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides, and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine production and high-level cytotoxicity against patients' leukemia blasts, and limited inhibitory activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated AML patients or eradicate persistent MRD after HSCT.
Collapse
Affiliation(s)
- Marica De Cicco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Stella Muscianisi
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alba Bianco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy
| | - Sara Di Vincenzo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Pulvirenti
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Sapuppo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mariangela Siciliano
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Marco Zecca
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| |
Collapse
|
13
|
Muranyi A, Ammer T, Kechter A, Rawat VP, Sinha A, Gonzalez-Menendez I, Quintanilla-Martinez L, Azoitei A, Günes C, Mupo A, Vassiliou G, Bamezai S, Buske C. Npm1 haploinsufficiency in collaboration with MEIS1 is sufficient to induce AML in mice. Blood Adv 2023; 7:351-364. [PMID: 35468619 PMCID: PMC9898611 DOI: 10.1182/bloodadvances.2022007015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
NPM1 is among the most frequently mutated genes in acute myeloid leukemia (AML). Mutations in the NPM1 gene result in the increased export of NPM1 to the cytoplasm (NPM1c) and are associated with multiple transforming events including the aberrant upregulation of MEIS1 that maintains stem cell and cell cycle-associated pathways in NPM1c AML. However, another consequence of the NPM1c mutation is the inadequate levels of NPM1 wild-type in the nucleus and nucleolus, caused by the loss of one wild-type allele in addition to enforced NPM1 nuclear export. The contribution of NPM1 haploinsufficiency independently of the NPM1 mutation to AML development and its relationship with MEIS1 function is poorly understood. Using mouse models, our study shows that NPM1 haploinsufficiency paired with MEIS1 overexpression is sufficient to induce a fully penetrant AML in mice that transcriptionally resembles human NPM1c AML. NPM1 haploinsufficiency alters MEIS1-binding occupancies such that it binds the promoter of the oncogene structural maintenance of chromosome protein 4 (SMC4) in NPM1 haploinsufficient AML cells but not in NPM1 wild-type-harboring Hoxa9/Meis1-transformed cells. SMC4 is higher expressed in haploinsufficient and NPM1c+ AML cells, which are more vulnerable to the disruption of the MEIS1-SMC4 axis compared with AML cells with nonmutated NPM1. Taken together, our study underlines that NPM1 haploinsufficiency on its own is a key factor of myeloid leukemogenesis and characterizes the MEIS1-SMC4 axis as a potential therapeutic target in this AML subtype.
Collapse
Affiliation(s)
- Andrew Muranyi
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Tobias Ammer
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Anna Kechter
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Vijay P.S. Rawat
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence, Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence, Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University, Ulm, Germany
| | | | - Annalisa Mupo
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - George Vassiliou
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
14
|
Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 ( NPM1) Mutation. Int J Mol Sci 2023; 24:3161. [PMID: 36834572 PMCID: PMC9958584 DOI: 10.3390/ijms24043161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
Collapse
Affiliation(s)
| | | | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Apoptotic Induction in Human Cancer Cell Lines by Antimicrobial Compounds from Antarctic Streptomyces fildesensis (INACH3013). FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Antarctic Streptomyces fildesensis has been recognized for its production of antimicrobial compounds with interesting biological activities against foodborne bacteria and multi-resistant strains, but not for its potential antiproliferative activity and mechanisms involved. Two bioactive ethyl acetate extract (EAE) fractions were purified via thin-layer chromatography and High-Performance Liquid Chromatography (HPLC), showing that orange-colored compounds displayed antimicrobial activity against pathogenic bacteria even after shock thermal treatment. The UV–VIS features of the active compounds, the TLC assay with actinomycin-D pure standard, Fourier transform infrared (FTIR) spectra and the ANTISMASH analysis support the presence of actinomycin-like compounds. We demonstrated that S. fildesensis displays antiproliferative activity against human tumor cell lines, including human breast cancer (MCF-7), prostate cancer (PC-3), colon cancer (HT-29) and non-tumoral colon epithelial cells (CoN). The half-maximal effective concentrations (EC50) ranged from 3.98 µg/mL to 0.1 µg/mL. Our results reveal that actinomycin-like compounds of S. fildesensis induced apoptosis mediated by caspase activation, decreasing the mitochondrial membrane potential and altering the cell morphology in all tumoral and non-tumoral cell lines analyzed. These findings confirm the potential of the psychrotolerant Antarctic S. fildesensis species as a promising source for obtaining potential novel anticancer compounds.
Collapse
|
16
|
Spetz JKE, Florido MHC, Fraser CS, Qin X, Choiniere J, Yu SJ, Singh R, Friesen M, Rubin LL, Salem JE, Moslehi JJ, Sarosiek KA. Heightened apoptotic priming of vascular cells across tissues and life span predisposes them to cancer therapy-induced toxicities. SCIENCE ADVANCES 2022; 8:eabn6579. [PMID: 36351019 PMCID: PMC9645721 DOI: 10.1126/sciadv.abn6579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Although major organ toxicities frequently arise in patients treated with cytotoxic or targeted cancer therapies, the mechanisms that drive them are poorly understood. Here, we report that vascular endothelial cells (ECs) are more highly primed for apoptosis than parenchymal cells across many adult tissues. Consequently, ECs readily undergo apoptosis in response to many commonly used anticancer agents including cytotoxic and targeted drugs and are more sensitive to ionizing radiation and BH3 mimetics than parenchymal cells in vivo. Further, using differentiated isogenic human induced pluripotent stem cell models of ECs and vascular smooth muscle cells (VSMCs), we find that these vascular cells exhibit distinct drug toxicity patterns, which are linked to divergent therapy-induced vascular toxicities in patients. Collectively, our results demonstrate that vascular cells are highly sensitive to apoptosis-inducing stress across life span and may represent a "weakest link" vulnerability in multiple tissues for development of toxicities.
Collapse
Affiliation(s)
- Johan K. E. Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mary H. C. Florido
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cameron S. Fraser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan Choiniere
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stacey J. Yu
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rumani Singh
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Max Friesen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Joe-Elie Salem
- Clinical Investigation Center Paris-Est, CIC-1901, INSERM, UNICO-GRECO Cardio-Oncology Program, Department of Pharmacology, Pitié-Salpêtrière University Hospital, Sorbonne Université, Paris, France
- Cardio-Oncology Program, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javid J. Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
17
|
Astolfi A, Milano F, Palazzotti D, Brea J, Pismataro MC, Morlando M, Tabarrini O, Loza MI, Massari S, Martelli MP, Barreca ML. From Serendipity to Rational Identification of the 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3- d]pyrimidin-4(3 H)-one Core as a New Chemotype of AKT1 Inhibitors for Acute Myeloid Leukemia. Pharmaceutics 2022; 14:2295. [PMID: 36365115 PMCID: PMC9698716 DOI: 10.3390/pharmaceutics14112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 07/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is globally poor. In more than 60% of AML patients, the PI3K/AKTs/mTOR signaling pathway is aberrantly activated because of oncogenic driver alterations and further enhanced by chemotherapy as a mechanism of drug resistance. Against this backdrop, very recently we have started a multidisciplinary research project focused on AKT1 as a pharmacological target to identify novel anti-AML agents. Indeed, the serendipitous finding of the in-house compound T187 as an AKT1 inhibitor has paved the way to the rational identification of new active small molecules, among which T126 has emerged as the most interesting compound with IC50 = 1.99 ± 0.11 μM, ligand efficiency of 0.35, and a clear effect at low micromolar concentrations on growth inhibition and induction of apoptosis in AML cells. The collected results together with preliminary SAR data strongly indicate that the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one derivative T126 is worthy of future biological experiments and medicinal chemistry efforts aimed at developing a novel chemical class of AKT1 inhibitors as anti-AML agents.
Collapse
Affiliation(s)
- Andrea Astolfi
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Francesca Milano
- Hematology and Clinical Immunology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Deborah Palazzotti
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Jose Brea
- CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Maria Isabel Loza
- CIMUS Research Center, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Serena Massari
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| | - Maria Paola Martelli
- Hematology and Clinical Immunology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, “Department of Excellence 2018–2022”, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
18
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
19
|
Wang R, Xu P, Chang LL, Zhang SZ, Zhu HH. Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front Oncol 2022; 12:972606. [PMID: 36237321 PMCID: PMC9552319 DOI: 10.3389/fonc.2022.972606] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by malignant proliferation of myeloid hematopoietic stem/progenitor cells. NPM1 represents the most frequently mutated gene in AML and approximately 30% of AML cases carry NPM1 mutations. Mutated NPM1 result in the cytoplasmic localization of NPM1 (NPM1c). NPM1c interacts with other proteins to block myeloid differentiation, promote cell proliferation and impair DNA damage repair. NPM1 is a good prognostic marker, but some patients ultimately relapse or fail to respond to therapy. It is urgent for us to find optimal therapies for NPM1-mutated AML. Efficacy of multiple drugs is under investigation in NPM1-mutated AML, and several clinical trials have been registered. In this review, we summarize the present knowledge of therapy and focus on the possible therapeutic interventions for NPM1-mutated AML.
Collapse
Affiliation(s)
- Rong Wang
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Pan Xu
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Lin-Lin Chang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Shi-Zhong Zhang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| | - Hong-Hu Zhu
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- Zhejiang University Cancer Center, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| |
Collapse
|
20
|
Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022; 36:2351-2367. [PMID: 36008542 PMCID: PMC9522592 DOI: 10.1038/s41375-022-01666-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Collapse
|
21
|
Khan I, Gartel AL. The antagonistic duality of NPM1 mutations in AML. Blood Adv 2022; 6:4028-4030. [PMID: 35507748 PMCID: PMC9278292 DOI: 10.1182/bloodadvances.2022007420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Irum Khan
- Division of Hematology and Oncology, Department of Medicine, and
| | - Andrei L. Gartel
- Division of Hepatology, Department of Medicine, University of Illinois, Chicago, IL
| |
Collapse
|
22
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS APPLIED BIO MATERIALS 2022; 5:2431-2460. [PMID: 35583460 PMCID: PMC9128020 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Muzahidul I. Anik
- Department of Chemical Engineering,
University of Rhode Island, Kingston, Rhode Island 02881,
United States
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering
Science, Kyushu University, Fukuoka 816-8580,
Japan
- Atomic Energy Research Establishment,
Bangladesh Atomic Energy Commission, Dhaka 1349,
Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, Fukuoka 819-0395,
Japan
- Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge
Massachusetts 02139, United States
| | - Md. Ashrafuzzaman
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU
Langone Health, New York, New York 10016, United
States
| |
Collapse
|
23
|
Shi Y, Xue Y, Wang C, Yu L. Nucleophosmin 1: from its pathogenic role to a tantalizing therapeutic target in acute myeloid leukemia. Hematology 2022; 27:609-619. [PMID: 35621728 DOI: 10.1080/16078454.2022.2067939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nucleophosmin 1 (NPM1, also known as B23) is a multifunctional protein involved in a variety of cellular processes, including ribosomal maturation, centrosome replication, maintenance of genomic stability, cell cycle control, and apoptosis. NPM1 is the most commonly mutated gene in adult acute myeloid leukemia (AML) and is present in approximately 40% of all AML cases. The underlying mechanisms of mutant NPM1 (NPM1mut) in leukemogenesis remain unclear. This review summarizes the structure and physiological function of NPM1, mechanisms underlying the pathogenesis of NPM1-mutated AML, and the potential role of NPM1 as a therapeutic target. It is reported that dysfunctional NPM1 might cause AML pathogenesis via its role as a protein chaperone, inhibiting differentiation of leukemia stem cells and regulation of non-coding RNAs. Besides conventional chemotherapies, NPM1 is a promising therapeutic target against AML that warrants further investigation. NPM1-based therapeutic strategies include inducing nucleolar relocalisation of NPM1 mutants, interfering with NPM1 oligomerization, and NPM1 as an immune response target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuhao Xue
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
24
|
EAPB0503, an Imidazoquinoxaline Derivative Modulates SENP3/ARF Mediated SUMOylation, and Induces NPM1c Degradation in NPM1 Mutant AML. Int J Mol Sci 2022; 23:ijms23073421. [PMID: 35408798 PMCID: PMC8998649 DOI: 10.3390/ijms23073421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin-1 (NPM1) is a pleiotropic protein involved in numerous cellular processes. NPM1 shuttles between the nucleus and the cytoplasm, but exhibits a predominant nucleolar localization, where its fate and functions are exquisitely controlled by dynamic post-translational modifications (PTM). Sentrin/SUMO Specific Peptidase 3 (SENP3) and ARF are two nucleolar proteins involved in NPM1 PTMs. SENP3 antagonizes ARF-mediated NPM1 SUMOylation, to promote ribosomal biogenesis. In Acute Myeloid Leukemia (AML), NPM1 is frequently mutated, and exhibits an aberrant cytoplasmic localization (NPM1c). NPM1c mutations define a separate AML entity with good prognosis in some AML patients, rendering NPM1c as a potential therapeutic target. SENP3-mediated NPM1 de-SUMOylation induces resistance to therapy in NPM1c AML. Here, we demonstrate that the imidazoquinoxaline EAPB0503 prolongs the survival and results in selective reduction in the leukemia burden of NPM1c AML xenograft mice. Indeed, EAPB0503 selectively downregulates HDM2 expression and activates the p53 pathway in NPM1c expressing cells, resulting in apoptosis. Importantly, we unraveled that NPM1c expressing cells exhibit low basal levels of SUMOylation paralleled with high SENP3 and low ARF basal levels. EAPB0503 reverted these molecular players by inducing NPM1c SUMOylation and ubiquitylation, leading to its proteasomal degradation. EAPB0503-induced NPM1c SUMOylation is concurrent with SENP3 downregulation and ARF upregulation in NPM1c expressing cells. Collectively, these results provide a strong rationale for testing therapies modulating NPM1c post-translational modifications in the management of NPM1c AML.
Collapse
|
25
|
Novel NPM1 exon 5 mutations and gene fusions leading to aberrant cytoplasmic nucleophosmin in AML. Blood 2021; 138:2696-2701. [PMID: 34343258 PMCID: PMC9037756 DOI: 10.1182/blood.2021012732] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
Nucleophosmin (NPM1) mutations in acute myeloid leukemia (AML) affect exon 12, but also sporadically affect exons 9 and 11, causing changes at the protein C-terminal end (tryptophan loss, nuclear export signal [NES] motif creation) that lead to aberrant cytoplasmic NPM1 (NPM1c+), detectable by immunohistochemistry. Combining immunohistochemistry and molecular analyses in 929 patients with AML, we found non-exon 12 NPM1 mutations in 5 (1.3%) of 387 NPM1c+ cases. Besides mutations in exons 9 (n = 1) and 11 (n = 1), novel exon 5 mutations were discovered (n = 3). Another exon 5 mutation was identified in an additional 141 patients with AML selected for wild-type NPM1 exon 12. Three NPM1 rearrangements (NPM1/RPP30, NPM1/SETBP1, NPM1/CCDC28A) were detected and characterized among 13 979 AML samples screened by cytogenetic/fluorescence in situ hybridization and RNA sequencing. Functional studies demonstrated that in AML cases, new NPM1 proteins harbored an efficient extra NES, either newly created or already present in the fusion partner, ensuring its cytoplasmic accumulation. Our findings support NPM1 cytoplasmic relocation as critical for leukemogenesis and reinforce the role of immunohistochemistry in predicting AML-associated NPM1 genetic lesions. This study highlights the need to develop new assays for molecular diagnosis and monitoring of NPM1-mutated AML.
Collapse
|
26
|
Wu HC, Rérolle D, Berthier C, Hleihel R, Sakamoto T, Quentin S, Benhenda S, Morganti C, Wu C, Conte L, Rimsky S, Sebert M, Clappier E, Souquere S, Gachet S, Soulier J, Durand S, Trowbridge JJ, Bénit P, Rustin P, El Hajj H, Raffoux E, Ades L, Itzykson R, Dombret H, Fenaux P, Espeli O, Kroemer G, Brunetti L, Mak TW, Lallemand-Breitenbach V, Bazarbachi A, Falini B, Ito K, Martelli MP, de Thé H. Actinomycin D Targets NPM1c-Primed Mitochondria to Restore PML-Driven Senescence in AML Therapy. Cancer Discov 2021; 11:3198-3213. [PMID: 34301789 PMCID: PMC7612574 DOI: 10.1158/2159-8290.cd-21-0177] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) pathogenesis often involves a mutation in the NPM1 nucleolar chaperone, but the bases for its transforming properties and overall association with favorable therapeutic responses remain incompletely understood. Here we demonstrate that an oncogenic mutant form of NPM1 (NPM1c) impairs mitochondrial function. NPM1c also hampers formation of promyelocytic leukemia (PML) nuclear bodies (NB), which are regulators of mitochondrial fitness and key senescence effectors. Actinomycin D (ActD), an antibiotic with unambiguous clinical efficacy in relapsed/refractory NPM1c-AMLs, targets these primed mitochondria, releasing mitochondrial DNA, activating cyclic GMP-AMP synthase signaling, and boosting reactive oxygen species (ROS) production. The latter restore PML NB formation to drive TP53 activation and senescence of NPM1c-AML cells. In several models, dual targeting of mitochondria by venetoclax and ActD synergized to clear AML and prolong survival through targeting of PML. Our studies reveal an unexpected role for mitochondria downstream of NPM1c and implicate a mitochondrial/ROS/PML/TP53 senescence pathway as an effector of ActD-based therapies. SIGNIFICANCE ActD induces complete remissions in NPM1-mutant AMLs. We found that NPM1c affects mitochondrial biogenesis and PML NBs. ActD targets mitochondria, yielding ROS which enforce PML NB biogenesis and restore senescence. Dual targeting of mitochondria with ActD and venetoclax sharply potentiates their anti-AML activities in vivo. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Hsin-Chieh Wu
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Domitille Rérolle
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Caroline Berthier
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Rita Hleihel
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Internal Medicine and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- Department of Experimental Pathology, Microbiology and Immunology, American University of Beirut, Beirut, Lebanon
| | - Takashi Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Samuel Quentin
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Shirine Benhenda
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Chengchen Wu
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Lidio Conte
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli, ” Napoli, Italy
| | - Sylvie Rimsky
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
| | - Marie Sebert
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Emmanuelle Clappier
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Sylvie Souquere
- Institut Gustave Roussy, Cell Biology and Metabolomics Platforms, INSERM UMS 3655, Villejuif, France
| | - Stéphanie Gachet
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Jean Soulier
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Sylvère Durand
- Institut Gustave Roussy, Cell Biology and Metabolomics Platforms, INSERM UMS 3655, Villejuif, France
| | | | - Paule Bénit
- INSERM, U1141 Hôpital Robert Debré, Paris France
| | | | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, American University of Beirut, Beirut, Lebanon
| | - Emmanuel Raffoux
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Lionel Ades
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Raphael Itzykson
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Hervé Dombret
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Pierre Fenaux
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Olivier Espeli
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
| | - Guido Kroemer
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli, ” Napoli, Italy
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Brunetti
- Hematology, Department of Medicine and surgery, University of Perugia, Perugia, Italy
| | - Tak W. Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Valérie Lallemand-Breitenbach
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Brunangelo Falini
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York
| | | | - Hugues de Thé
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| |
Collapse
|
27
|
Peng M, Ren J, Jing Y, Jiang X, Xiao Q, Huang J, Tao Y, Lei L, Wang X, Yang Z, Yang Z, Zhan Q, Lin C, Jin G, Zhang X, Zhang L. Tumour-derived small extracellular vesicles suppress CD8+ T cell immune function by inhibiting SLC6A8-mediated creatine import in NPM1-mutated acute myeloid leukaemia. J Extracell Vesicles 2021; 10:e12168. [PMID: 34807526 PMCID: PMC8607980 DOI: 10.1002/jev2.12168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) carrying nucleophosmin (NPM1) mutations has been defined as a distinct entity of acute leukaemia. Despite remarkable improvements in diagnosis and treatment, the long-term outcomes for this entity remain unsatisfactory. Emerging evidence suggests that leukaemia, similar to other malignant diseases, employs various mechanisms to evade killing by immune cells. However, the mechanism of immune escape in NPM1-mutated AML remains unknown. In this study, both serum and leukemic cells from patients with NPM1-mutated AML impaired the immune function of CD8+ T cells in a co-culture system. Mechanistically, leukemic cells secreted miR-19a-3p into the tumour microenvironment (TME) via small extracellular vesicles (sEVs), which was controlled by the NPM1-mutated protein/CCCTC-binding factor (CTCF)/poly (A)-binding protein cytoplasmic 1 (PABPC1) signalling axis. sEV-related miR-19a-3p was internalized by CD8+ T cells and directly repressed the expression of solute-carrier family 6 member 8 (SLC6A8; a creatine-specific transporter) to inhibit creatine import. Decreased creatine levels can reduce ATP production and impair CD8+ T cell immune function, leading to immune escape by leukemic cells. In summary, leukemic cell-derived sEV-related miR-19a-3p confers immunosuppression to CD8+ T cells by targeting SLC6A8-mediated creatine import, indicating that sEV-related miR-19a-3p might be a promising therapeutic target for NPM1-mutated AML.
Collapse
Affiliation(s)
- Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xin Wang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zailin Yang
- Department of Clinical Laboratory The Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing University Cancer HospitalChongqingChina
| | - Zesong Yang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qian Zhan
- The Center for Clinical Molecular Medical detectionThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Guoxiang Jin
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xian Zhang
- Immunology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| |
Collapse
|
28
|
Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021; 35:2482-2495. [PMID: 34131281 DOI: 10.1038/s41375-021-01309-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023]
Abstract
Menin inhibitors are novel targeted agents currently in clinical development for the treatment of genetically defined subsets of acute leukemia. Menin has a tumor suppressor function in endocrine glands. Germline mutations in the gene encoding menin cause the multiple endocrine neoplasia type 1 (MEN1) syndrome, a hereditary condition associated with tumors of the endocrine glands. However, menin is also critical for leukemogenesis in subsets driven by rearrangement of the Lysine Methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), which encodes an epigenetic modifier. These seemingly opposing functions of menin can be explained by its various roles in gene regulation. Therefore, leukemias with rearrangement of KMT2A are predicted to respond to menin inhibition with early clinical data validating this proof-of-concept. These leukemias affect infants, children and adults, and lead to adverse outcomes with current standard therapies. Recent studies have identified novel targets in acute leukemia that are susceptible to menin inhibition, such as mutated Nucleophosmin 1 (NPM1), the most common genetic alteration in adult acute myeloid leukemia (AML). In addition to these alterations, other leukemia subsets with similar transcriptional dependency could be targeted through menin inhibition. This led to rationally designed clinical studies, investigating small-molecule oral menin inhibitors in relapsed acute leukemias with promising early results. Herein, we discuss the physiologic and malignant biology of menin, the mechanisms of leukemia in these susceptible subsets, and future therapeutic strategies using these inhibitors in acute leukemia.
Collapse
|
29
|
Neoantigen-Specific T-Cell Immune Responses: The Paradigm of NPM1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22179159. [PMID: 34502069 PMCID: PMC8431540 DOI: 10.3390/ijms22179159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.
Collapse
|