1
|
Wagner L, Kujat J, Langhans V, Prskalo L, Metzke D, Grothgar E, Freund P, Goerlich N, Brand H, Timm S, Ochs M, Grützkau A, Baumgart S, Skopnik CM, Schreiber A, Hiepe F, Riemekasten G, Enghard P, Klocke J. Flow-Cytometric Quantification of Urine Kidney Epithelial Cells Specifically Reflects Tubular Damage in Acute Kidney Diseases. Kidney Int Rep 2025; 10:1260-1273. [PMID: 40303202 PMCID: PMC12034873 DOI: 10.1016/j.ekir.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Tubular injury is one of the main mechanisms driving acute kidney injury (AKI); however, clinicians still have a limited diagnostic repertoire to precisely monitor damage to tubular epithelial cells (TECs). In our previous study, we used single-cell sequencing to identify TEC subsets as the main components of the urine signature of AKI. This study aimed to establish TECs as clinical markers of tubular damage. Methods A total of 243 patients were analyzed. For sequencing, we collected 8 urine samples from patients with AKI and glomerular disease. We developed a protocol for the flow cytometric quantification of CD10/CD13+ proximal TECs (PTECs) and CD227/CD326+ distal TECs (DTECs) in urine by aligning urinary single-cell transcriptomes and TEC surface proteins using Cellular Indexing of Transcriptome and Epitope Sequencing (CITE-Seq). Marker combinations were confirmed in kidney biopsies. We validated our approach in 4 cohorts of 235 patients as follows: patients with AKI (n = 63), COVID-19 infection (n = 47), antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) with active disease or stable remission (n = 110), and healthy controls (n = 15). Results Our findings demonstrated that CD10/CD13 and CD227/CD326 adequately identified PTECs and DTECs, respectively. Distal urinary TEC counts correlate with the severity of AKI based on Kidney Disease: Improving Global Outcomes (KDIGO) stage and acute estimated glomerular filtration rate (GFR) loss in 2 separate cohorts and can successfully discriminate AKI from healthy controls and glomerular disease. Conclusion We propose that urinary CD227/CD326+ TEC count is a specific, noninvasive marker for tubular injury in AKI. Our protocol provides a basis for a deeper phenotypic analysis of urinary TECs.
Collapse
Affiliation(s)
- Leonie Wagner
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jacob Kujat
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Valerie Langhans
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Emil Grothgar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Paul Freund
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Hannah Brand
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Sabine Baumgart
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Institute for Immunology/Core Facility Cytometry, Jena University Hospital, Jena, Germany
| | - Christopher M. Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Falk Hiepe
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Department of Rheumatology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
2
|
Fu W, Xie Q, Yu P, Liu S, Xu L, Ye X, Zhao W, Wang Q, Pan Y, Zhang Z, Wang Z. Pig jejunal single-cell RNA landscapes revealing breed-specific immunology differentiation at various domestication stages. Front Immunol 2025; 16:1530214. [PMID: 40151618 PMCID: PMC11947726 DOI: 10.3389/fimmu.2025.1530214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background Domestication of wild boars into local and intensive pig breeds has driven adaptive genomic changes, resulting in significant phenotypic differences in intestinal immune function. The intestine relies on diverse immune cells, but their evolutionary changes during domestication remain poorly understood at single-cell resolution. Methods We performed single-cell RNA sequencing (scRNA-seq) and marker gene analysis on jejunal tissues from wild boars, a Chinese local breed (Jinhua), and an intensive breed (Duroc). Then, we developed an immune cell evaluation system that includes immune scoring, gene identification, and cell communication analysis. Additionally, we mapped domestication-related clustering relationships, highlighting changes in gene expression and immune function. Results We generated a single-cell atlas of jejunal tissues, analyzing 26,246 cells and identifying 11 distinct cell lineages, including epithelial and plasma cells, and discovered shared and unique patterns in intestinal nutrition and immunity across breeds. Immune cell evaluation analysis confirmed the conservation and heterogeneity of immune cells, manifested by highly conserved functions of immune cell subgroups, but wild boars possess stronger immune capabilities than domesticated breeds. We also discovered four patterns of domestication-related breed-specific genes related to metabolism, immune surveillance, and cytotoxic functions. Lastly, we identified a unique population of plasma cells with distinctive antibody production in Jinhua pig population. Conclusions Our findings provide valuable single-cell insights into the cellular heterogeneity and immune function evolution in the jejunum during pig at various domestication stages. The single-cell atlas also serves as a resource for comparative studies and supports breeding programs aimed at enhancing immune traits in pigs.
Collapse
Affiliation(s)
- Wenyu Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qinqin Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengfei Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd, Hefei, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuchun Pan
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
3
|
Ludwig L, Edson M, Treleaven H, Viloria-Petit AM, Mutsaers AJ, Moorehead R, Foster RA, Ali A, Wood RD, Wood GA. Plasma microRNA signatures predict prognosis in canine osteosarcoma patients. PLoS One 2024; 19:e0311104. [PMID: 39739708 DOI: 10.1371/journal.pone.0311104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/13/2024] [Indexed: 01/02/2025] Open
Abstract
Appendicular central osteosarcoma (OSA) is a common and highly aggressive tumour in dogs. Metastatic disease to the lungs is common and even with chemotherapy the prognosis is generally poor. However, few cases survive well beyond reported median survival times. Current methods, including histologic grading schemes, have fallen short in their ability to predict clinical outcome. MicroRNAs (miRNAs) are small molecules present in all tissues and bodily fluids and are dysregulated in cancer. Previous studies have demonstrated the diagnostic and prognostic potential of miRNAs in canine OSA. We sought to investigate multiple miRNA and multiple variable models for diagnosis and prognosis of canine OSA using plasma samples across three populations of dogs from two veterinary biobanks. Fifty-six miRNAs were analyzed by real-time quantitative polymerase chain reaction. MiR-214-3p was the only miRNA with increased expression across all OSA populations compared to controls. Using a decision tree model for diagnosis, miR-214-3p was the first step in this multi-miRNA model. High expression of miR-214-3p alone was also a predictor of shorter overall survival and disease-free interval across all populations. In both multiple miRNA and multiple variable models, miR-214-3p was always the first decision point with high expression consistently predicting a worse prognosis. Additional miRNAs in combination with low expression of miR-214-3p similarly had a worse prognosis demonstrating better outcome prediction using multiple miRNAs compared to using miR-214-3p alone. Multiple variable models only need to use miRNAs to be predictive although clinical parameters such as age, sex, and tumour location were considered. MiR-214-3p is clearly an important prognostic predictor of canine OSA in plasma as supported by previous studies and across our multiple sample populations. Multiple miRNA models provided superior categorization of patients in predicting clinical outcome parameters compared to the single miRNAs.
Collapse
Affiliation(s)
- Latasha Ludwig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael Edson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Heather Treleaven
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ayesha Ali
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - R Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Alaterre E, Ovejero S, Bret C, Dutrieux L, Sika D, Fernandez Perez R, Espéli M, Fest T, Cogné M, Martin-Subero JI, Milpied P, Cavalli G, Moreaux J. Integrative single-cell chromatin and transcriptome analysis of human plasma cell differentiation. Blood 2024; 144:496-509. [PMID: 38643512 PMCID: PMC11406183 DOI: 10.1182/blood.2023023237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
ABSTRACT Plasma cells (PCs) are highly specialized cells representing the end stage of B-cell differentiation. We have shown that PC differentiation can be reproduced in vitro using elaborate culture systems. The molecular changes occurring during PC differentiation are recapitulated in this in vitro differentiation model. However, a major challenge exists to decipher the spatiotemporal epigenetic and transcriptional programs that drive the early stages of PC differentiation. We combined single cell (sc) RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high throughput sequencing (scATAC-seq) to decipher the trajectories involved in PC differentiation. ScRNA-seq experiments revealed a strong heterogeneity of the preplasmablastic and plasmablastic stages. Among genes that were commonly identified using scATAC-seq and scRNA-seq, we identified several transcription factors with significant stage specific potential importance in PC differentiation. Interestingly, differentially accessible peaks characterizing the preplasmablastic stage were enriched in motifs of BATF3, FOS and BATF, belonging to activating protein 1 (AP-1) transcription factor family that may represent key transcriptional nodes involved in PC differentiation. Integration of transcriptomic and epigenetic data at the single cell level revealed that a population of preplasmablasts had already undergone epigenetic remodeling related to PC profile together with unfolded protein response activation and are committed to differentiate in PC. These results and the supporting data generated with our in vitro PC differentiation model provide a unique resource for the identification of molecular circuits that are crucial for early and mature PC maturation and biological functions. These data thus provide critical insights into epigenetic- and transcription-mediated reprogramming events that sustain PC differentiation.
Collapse
Affiliation(s)
- Elina Alaterre
- Institute of Human Genetics, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université Montpellier, Montpellier, France
| | - Sara Ovejero
- Institute of Human Genetics, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université Montpellier, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Caroline Bret
- Institute of Human Genetics, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université Montpellier, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Laure Dutrieux
- Institute of Human Genetics, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université Montpellier, Montpellier, France
| | - Dassou Sika
- Institute of Human Genetics, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université Montpellier, Montpellier, France
| | | | - Marion Espéli
- INSERM U1160 EMiLy, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, Team B_DEVIL, UMR_S1236, Rennes, France
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire, Rennes, France
| | - Michel Cogné
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Suivi Immunologique des Thérapies Innovantes, Pôle Biologie, Rennes, France
| | - José Ignacio Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Giacomo Cavalli
- Institute of Human Genetics, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université Montpellier, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université Montpellier, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Zhong P, Bai L, Hong M, Ouyang J, Wang R, Zhang X, Chen P. A Comprehensive Review on Circulating cfRNA in Plasma: Implications for Disease Diagnosis and Beyond. Diagnostics (Basel) 2024; 14:1045. [PMID: 38786343 PMCID: PMC11119755 DOI: 10.3390/diagnostics14101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Circulating cfRNA in plasma has emerged as a fascinating area of research with potential applications in disease diagnosis, monitoring, and personalized medicine. Circulating RNA sequencing technology allows for the non-invasive collection of important information about the expression of target genes, eliminating the need for biopsies. This comprehensive review aims to provide a detailed overview of the current knowledge and advancements in the study of plasma cfRNA, focusing on its diverse landscape and biological functions, detection methods, its diagnostic and prognostic potential in various diseases, challenges, and future perspectives.
Collapse
Affiliation(s)
- Pengqiang Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengzhi Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Ouyang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ruizhi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoli Zhang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Massoni-Badosa R, Aguilar-Fernández S, Nieto JC, Soler-Vila P, Elosua-Bayes M, Marchese D, Kulis M, Vilas-Zornoza A, Bühler MM, Rashmi S, Alsinet C, Caratù G, Moutinho C, Ruiz S, Lorden P, Lunazzi G, Colomer D, Frigola G, Blevins W, Romero-Rivero L, Jiménez-Martínez V, Vidal A, Mateos-Jaimez J, Maiques-Diaz A, Ovejero S, Moreaux J, Palomino S, Gomez-Cabrero D, Agirre X, Weniger MA, King HW, Garner LC, Marini F, Cervera-Paz FJ, Baptista PM, Vilaseca I, Rosales C, Ruiz-Gaspà S, Talks B, Sidhpura K, Pascual-Reguant A, Hauser AE, Haniffa M, Prosper F, Küppers R, Gut IG, Campo E, Martin-Subero JI, Heyn H. An atlas of cells in the human tonsil. Immunity 2024; 57:379-399.e18. [PMID: 38301653 PMCID: PMC10869140 DOI: 10.1016/j.immuni.2024.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/07/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.
Collapse
Affiliation(s)
| | | | - Juan C Nieto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Paula Soler-Vila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marco Matteo Bühler
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Sonal Rashmi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Clara Alsinet
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Ginevra Caratù
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Catia Moutinho
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Sara Ruiz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Patricia Lorden
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Giulia Lunazzi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Will Blevins
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Lucia Romero-Rivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anna Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Judith Mateos-Jaimez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France; Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Sara Palomino
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hamish W King
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Peter M Baptista
- Department of Otorhinolaryngology, University of Navarra, Pamplona, Spain
| | - Isabel Vilaseca
- Otorhinolaryngology Head-Neck Surgery Department, Hospital Clínic, IDIBAPS Universitat de Barcelona, Barcelona, Spain
| | - Cecilia Rosales
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Benjamin Talks
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Department of Otolaryngology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Keval Sidhpura
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Felipe Prosper
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Departamento de Hematología, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ivo Glynne Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - José Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
7
|
Theorell J, Harrison R, Williams R, Raybould MIJ, Zhao M, Fox H, Fower A, Miller G, Wu Z, Browne E, Mgbachi V, Sun B, Mopuri R, Li Y, Waters P, Deane CM, Handel A, Makuch M, Irani SR. Ultrahigh frequencies of peripherally matured LGI1- and CASPR2-reactive B cells characterize the cerebrospinal fluid in autoimmune encephalitis. Proc Natl Acad Sci U S A 2024; 121:e2311049121. [PMID: 38319973 PMCID: PMC10873633 DOI: 10.1073/pnas.2311049121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Intrathecal synthesis of central nervous system (CNS)-reactive autoantibodies is observed across patients with autoimmune encephalitis (AE), who show multiple residual neurobehavioral deficits and relapses despite immunotherapies. We leveraged two common forms of AE, mediated by leucine-rich glioma inactivated-1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies, as human models to comprehensively reconstruct and profile cerebrospinal fluid (CSF) B cell receptor (BCR) characteristics. We hypothesized that the resultant observations would both inform the observed therapeutic gap and determine the contribution of intrathecal maturation to pathogenic B cell lineages. From the CSF of three patients, 381 cognate-paired IgG BCRs were isolated by cell sorting and scRNA-seq, and 166 expressed as monoclonal antibodies (mAbs). Sixty-two percent of mAbs from singleton BCRs reacted with either LGI1 or CASPR2 and, strikingly, this rose to 100% of cells in clonal groups with ≥4 members. These autoantigen-reactivities were more concentrated within antibody-secreting cells (ASCs) versus B cells (P < 0.0001), and both these cell types were more differentiated than LGI1- and CASPR2-unreactive counterparts. Despite greater differentiation, autoantigen-reactive cells had acquired few mutations intrathecally and showed minimal variation in autoantigen affinities within clonal expansions. Also, limited CSF T cell receptor clonality was observed. In contrast, a comparison of germline-encoded BCRs versus the founder intrathecal clone revealed marked gains in both affinity and mutational distances (P = 0.004 and P < 0.0001, respectively). Taken together, in patients with LGI1 and CASPR2 antibody encephalitis, our results identify CSF as a compartment with a remarkably high frequency of clonally expanded autoantigen-reactive ASCs whose BCR maturity appears dominantly acquired outside the CNS.
Collapse
Affiliation(s)
- Jakob Theorell
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm17177, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm17176, Sweden
| | - Ruby Harrison
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Robyn Williams
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OxfordOX3 9DU, United Kingdom
| | - Matthew I. J. Raybould
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, OxfordOX1 3LB, United Kingdom
| | - Meng Zhao
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Hannah Fox
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Andrew Fower
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Georgina Miller
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Zoe Wu
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Eleanor Browne
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Victor Mgbachi
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Bo Sun
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Rohini Mopuri
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL32224
| | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL32224
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Charlotte M. Deane
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, OxfordOX1 3LB, United Kingdom
| | - Adam Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OxfordOX3 9DU, United Kingdom
| | - Mateusz Makuch
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OxfordOX3 9DU, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL32224
| |
Collapse
|
8
|
Sohail A, Hacker J, Ryan T, McGill A, Bergmark R, Bhattacharyya N, Lee SE, Maxfield A, Roditi R, Julé AM, Griffith A, Lederer J, Laidlaw TM, Buchheit KM. Nasal polyp antibody-secreting cells display proliferation signature in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2024; 153:527-532. [PMID: 37898408 PMCID: PMC10922123 DOI: 10.1016/j.jaci.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) causes nasal obstruction and olfactory dysfunction. Aspirin-exacerbated respiratory disease (AERD) is the triad of CRSwNP, asthma, and respiratory reactions to COX-1 inhibitors. Patients with AERD have elevated nasal IL-5 levels and high numbers of antibody-secreting cells (ASCs), including plasma cells and plasmablasts, in their polyp tissue; in addition, their nasal polyp (NP) IgE levels are correlated with disease severity and recurrence of nasal polyposis. OBJECTIVE We sought to explore differences in the transcriptomic profile, activation markers, and IL-5Rα expression and function of NP ASCs from patients with AERD and CRSwNP. METHODS NP tissue was collected from patients with AERD and CRSwNP and digested into single-cell suspensions. NP cells were analyzed for protein expression by mass cytometry. For IL-5Rα functional studies, plasma cells were purified and cultured in vitro with or without IL-5 and analyzed by bulk RNA sequencing. RESULTS Compared with polyp tissue from patients with CRSwNP, polyp tissue from patients with AERD contained significantly more ASCs and had increased ASC expression of IL-5Rα. ASCs from patients with AERD expressed higher protein levels of B-cell activation and regulatory markers (CD40, CD19, CD32, and CD38) and the proliferation marker Ki-67. ASCs from patients with AERD also expressed more IL5RA, IGHE, and cell cycle- and proliferation-related transcripts (CCND2, MKI67, CDC25A, and CDC25B) than did ASCs from patients with CRSwNP. Stimulation of plasma cells from patients with AERD with IL-5 induced key cell cycle genes (CCND2 and PTP4A3), whereas IL-5 stimulation of ASCs from patients with CRSwNP induced few transcriptomic changes. CONCLUSION NP tissue ASCs from patients with AERD express higher levels of functional IL-5Rα and markers associated with cell cycling and proliferation than do ASCs from patients with aspirin-tolerant CRSwNP.
Collapse
Affiliation(s)
- Aaqib Sohail
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Jonathan Hacker
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Tessa Ryan
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Regan Bergmark
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Neil Bhattacharyya
- Massachusetts Eye and Ear Infirmary Division of Otolaryngology, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| | - Stella E Lee
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Alice Maxfield
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Rachel Roditi
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Alec Griffith
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - James Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
9
|
Bruyer A, Dutrieux L, de Boussac H, Martin T, Chemlal D, Robert N, Requirand G, Cartron G, Vincent L, Herbaux C, Lutzmann M, Bret C, Pasero P, Moreaux J, Ovejero S. Combined inhibition of Wee1 and Chk1 as a therapeutic strategy in multiple myeloma. Front Oncol 2023; 13:1271847. [PMID: 38125947 PMCID: PMC10730928 DOI: 10.3389/fonc.2023.1271847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress. In response to replicative and DNA damage stress, MM cells activate various DNA damage signaling pathways. In this study, we reported that high CHK1 and WEE1 expression is associated with poor outcome in independent cohorts of MM patients treated with high dose melphalan chemotherapy or anti-CD38 immunotherapy. Combined targeting of Chk1 and Wee1 demonstrates synergistic toxicities on MM cells and was associated with higher DNA double-strand break induction, as evidenced by an increased percentage of γH2AX positive cells subsequently leading to apoptosis. The therapeutic interest of Chk1/Wee1 inhibitors' combination was validated on primary MM cells of patients. The toxicity was specific of MM cells since normal bone marrow cells were not significantly affected. Using deconvolution approach, MM patients with high CHK1 expression exhibited a significant lower percentage of NK cells whereas patients with high WEE1 expression displayed a significant higher percentage of regulatory T cells in the bone marrow. These data emphasize that MM cell adaptation to replicative stress through Wee1 and Chk1 upregulation may decrease the activation of the cell-intrinsic innate immune response. Our study suggests that association of Chk1 and Wee1 inhibitors may represent a promising therapeutic approach in high-risk MM patients characterized by high CHK1 and WEE1 expression.
Collapse
Affiliation(s)
| | - Laure Dutrieux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | | | - Thibaut Martin
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Djamila Chemlal
- Diag2Tec, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Charles Herbaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Malik Lutzmann
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Caroline Bret
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sara Ovejero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| |
Collapse
|
10
|
Boast B, Goel S, González-Granado LI, Niemela J, Stoddard J, Edwards ESJ, Seneviratne S, Spensberger D, Quesada-Espinosa JF, Allende LM, McDonnell J, Haseley A, Lesmana H, Walkiewicz MA, Muhammad E, Bosco JJ, Fleisher TA, Cohen S, Holland SM, van Zelm MC, Enders A, Kuehn HS, Rosenzweig SD. TCF3 haploinsufficiency defined by immune, clinical, gene-dosage, and murine studies. J Allergy Clin Immunol 2023; 152:736-747. [PMID: 37277074 PMCID: PMC10527523 DOI: 10.1016/j.jaci.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND TCF3 is a transcription factor contributing to early lymphocyte differentiation. Germline monoallelic dominant negative and biallelic loss-of-function (LOF) null TCF3 mutations cause a fully penetrant severe immunodeficiency. We identified 8 individuals from 7 unrelated families with monoallelic LOF TCF3 variants presenting with immunodeficiency with incomplete clinical penetrance. OBJECTIVE We sought to define TCF3 haploinsufficiency (HI) biology and its association with immunodeficiency. METHODS Patient clinical data and blood samples were analyzed. Flow cytometry, Western blot analysis, plasmablast differentiation, immunoglobulin secretion, and transcriptional activity studies were conducted on individuals carrying TCF3 variants. Mice with a heterozygous Tcf3 deletion were analyzed for lymphocyte development and phenotyping. RESULTS Individuals carrying monoallelic LOF TCF3 variants showed B-cell defects (eg, reduced total, class-switched memory, and/or plasmablasts) and reduced serum immunoglobulin levels; most but not all presented with recurrent but nonsevere infections. These TCF3 LOF variants were either not transcribed or translated, resulting in reduced wild-type TCF3 protein expression, strongly suggesting HI pathophysiology for the disease. Targeted RNA sequencing analysis of T-cell blasts from TCF3-null, dominant negative, or HI individuals clustered away from healthy donors, implying that 2 WT copies of TCF3 are needed to sustain a tightly regulated TCF3 gene-dosage effect. Murine TCF3 HI resulted in a reduction of circulating B cells but overall normal humoral immune responses. CONCLUSION Monoallelic LOF TCF3 mutations cause a gene-dosage-dependent reduction in wild-type protein expression, B-cell defects, and a dysregulated transcriptome, resulting in immunodeficiency. Tcf3+/- mice partially recapitulate the human phenotype, underscoring the differences between TCF3 in humans and mice.
Collapse
Affiliation(s)
- Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shubham Goel
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Luis I González-Granado
- Department of Pediatrics, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), School of Medicine, Complutense University, Madrid, Spain
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Emily S J Edwards
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia
| | - Sandali Seneviratne
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dominik Spensberger
- ANU Gene Targeting Facility, Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Luis M Allende
- Department of Immunology, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - John McDonnell
- Department of Pediatric Allergy and Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Alexandria Haseley
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Harry Lesmana
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Magdalena A Walkiewicz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Emad Muhammad
- Hematology Laboratory, Carmel Medical Center, Haifa, Spain
| | - Julian J Bosco
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shai Cohen
- Allergy and Clinical Immunology Service, Department of Internal Medicine B, Lin and Carmel Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Menno C van Zelm
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Anselm Enders
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md.
| |
Collapse
|
11
|
Korff C, Atkinson E, Adaway M, Klunk A, Wek RC, Vashishth D, Wallace JM, Anderson-Baucum EK, Evans-Molina C, Robling AG, Bidwell JP. NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy. Calcif Tissue Int 2023; 113:110-125. [PMID: 37147466 PMCID: PMC10330242 DOI: 10.1007/s00223-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.
Collapse
Affiliation(s)
- Crystal Korff
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Emily Atkinson
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Angela Klunk
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA
| | - Deepak Vashishth
- Center for Biotechnology & Interdisciplinary Studies and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
| | - Emily K Anderson-Baucum
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
- Department of Medicine, IUSM, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Joseph P Bidwell
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Robinson MJ, Ding Z, Dowling MR, Hill DL, Webster RH, McKenzie C, Pitt C, O'Donnell K, Mulder J, Brodie E, Hodgkin PD, Wong NC, Quast I, Tarlinton DM. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 2023:S1074-7613(23)00183-8. [PMID: 37164016 DOI: 10.1016/j.immuni.2023.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days. ASC longevity past 60 days was independent of isotype but correlated with a phenotype that developed progressively and ultimately associated with an underlying "long-lived" ASC (LL ASC)-enriched transcriptional program. While some of the differences between LL ASCs and other ASCs appeared to be acquired with age, other features were shared with some younger ASCs, such as high CD138 and CD93. Turnover was unaffected by altered ASC production, arguing against competition for niches as a major driver of turnover. Thus, ASC turnover is set by intrinsic lifespan limits, with steady-state population dynamics governed by niche vacancy rather than displacement.
Collapse
Affiliation(s)
- Marcus James Robinson
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| | - Zhoujie Ding
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Mark R Dowling
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC 3000, Australia; Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Danika L Hill
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Rosela H Webster
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Craig McKenzie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Jesse Mulder
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Erica Brodie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia; Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nick C Wong
- Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
13
|
Nouailles G, Adler JM, Pennitz P, Peidli S, Teixeira Alves LG, Baumgardt M, Bushe J, Voss A, Langenhagen A, Langner C, Martin Vidal R, Pott F, Kazmierski J, Ebenig A, Lange MV, Mühlebach MD, Goekeri C, Simmons S, Xing N, Abdelgawad A, Herwig S, Cichon G, Niemeyer D, Drosten C, Goffinet C, Landthaler M, Blüthgen N, Wu H, Witzenrath M, Gruber AD, Praktiknjo SD, Osterrieder N, Wyler E, Kunec D, Trimpert J. Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nat Microbiol 2023; 8:860-874. [PMID: 37012419 PMCID: PMC10159847 DOI: 10.1038/s41564-023-01352-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.
Collapse
Affiliation(s)
- Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia M Adler
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Peter Pennitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Peidli
- Institute of Pathology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Judith Bushe
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Anne Voss
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Alina Langenhagen
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Fabian Pott
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Aileen Ebenig
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Mona V Lange
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research (DZIF), partner site Gießen-Marburg-Langen, Giessen, Germany
| | - Cengiz Goekeri
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Szandor Simmons
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Xing
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Susanne Herwig
- Department of Gynecology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günter Cichon
- Department of Gynecology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB) Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | | | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Hensvold A, Horuluoglu B, Sahlström P, Thyagarajan R, Diaz Boada JS, Hansson M, Mathsson-Alm L, Gerstner C, Sippl N, Israelsson L, Wedin R, Steen J, Klareskog L, Réthi B, Catrina AI, Diaz-Gallo LM, Malmström V, Grönwall C. The human bone marrow plasma cell compartment in rheumatoid arthritis - Clonal relationships and anti-citrulline autoantibody producing cells. J Autoimmun 2023; 136:103022. [PMID: 37001434 DOI: 10.1016/j.jaut.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
A majority of circulating IgG is produced by plasma cells residing in the bone marrow (BM). Long-lived BM plasma cells constitute our humoral immune memory and are essential for infection-specific immunity. They may also provide a reservoir of potentially pathogenic autoantibodies, including rheumatoid arthritis (RA)-associated anti-citrullinated protein autoantibodies (ACPA). Here we investigated paired human BM plasma cell and peripheral blood (PB) B-cell repertoires in seropositive RA, four ACPA+ RA patients and one ACPA- using two different single-cell approaches, flow cytometry sorting, and transcriptomics, followed by recombinant antibody generation. Immunoglobulin (Ig) analysis of >900 paired heavy-light chains from BM plasma cells identified by either surface CD138 expression or transcriptome profiles (including gene expression of MZB1, JCHAIN and XBP1) demonstrated differences in IgG/A repertoires and N-linked glycosylation between patients. For three patients, we identified clonotypes shared between BM plasma cells and PB memory B cells. Notably, four individuals displayed plasma cells with identical heavy chains but different light chains, which may indicate receptor revision or clonal convergence. ACPA-producing BM plasma cells were identified in two ACPA+ patients. Three of 44 recombinantly expressed monoclonal antibodies from ACPA+ RA BM plasma cells were CCP2+, specifically binding to citrullinated peptides. Out of these, two clones reacted with citrullinated histone-4 and activated neutrophils. In conclusion, single-cell investigation of B-cell repertoires in RA bone marrow provided new understanding of human plasma cells clonal relationships and demonstrated pathogenically relevant disease-associated autoantibody expression in long-lived plasma cells.
Collapse
Affiliation(s)
- Aase Hensvold
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Begum Horuluoglu
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Sahlström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Radha Thyagarajan
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Sebastian Diaz Boada
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christina Gerstner
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sippl
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Israelsson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rikard Wedin
- Department of Trauma and Reparative Medicine, Karolinska University Hospital, and Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
| | - Johanna Steen
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bence Réthi
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
van Buijtenen E, Janssen W, Vink P, Habraken MJM, Wingens LJA, van Elsas A, Huck WTS, van Buggenum JAGL, van Eenennaam H. Integrated Single-Cell (Phospho-)Protein and RNA Detection Uncovers Phenotypic Characteristics and Active Signal Transduction of Human Antibody-Secreting Cells. Mol Cell Proteomics 2023; 22:100492. [PMID: 36623694 PMCID: PMC9943876 DOI: 10.1016/j.mcpro.2023.100492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Single-cell technologies are currently widely applied to obtain a deeper understanding of the phenotype of single-cells in heterogenous mixtures. However, integrated multilayer approaches including simultaneous detection of mRNA, protein expression, and intracellular phospho-proteins are still challenging. Here, we combined an adapted method to in vitro-differentiate peripheral B-cells into antibody-secreting cells (ASCs) (i.e., plasmablasts and plasma cells) with integrated multi-omic single-cell sequencing technologies to detect and quantify immunoglobulin subclass-specific surface markers, transcriptional profiles, and signaling transduction pathway components. Using a common set of surface proteins, we integrated two multimodal datasets to combine mRNA, protein expression, and phospho-protein detection in one integrated dataset. Next, we tested whether ASCs that only seem to differ in its ability to secrete different IgM, IgA, or IgG antibodies exhibit other differences that characterize these different ASCs. Our approach detected differential expression of plasmablast and plasma cell markers, homing receptors, and TNF receptors. In addition, differential sensitivity was observed for the different cytokine stimulations that were applied during in vitro differentiation. For example, IgM ASCs were more sensitive to IL-15, while IgG ASC responded more to IL-6 and IFN addition. Furthermore, tonic BCR activity was detected in IgA and IgM ASCs, while IgG ASC exhibited active BCR-independent SYK activity and NF-κB and mTOR signaling. We confirmed these findings using flow cytometry and small molecules inhibitors, demonstrating the importance of SYK, NF-κB, and mTOR activity for plasmablast/plasma cell differentiation/survival and/or IgG secretion. Taken together, our integrated multi-omics approach allowed high-resolution phenotypic characterization of single cells in a heterogenous sample of in vitro-differentiated human ASCs. Our strategy is expected to further our understanding of human ASCs in healthy and diseased samples and provide a valuable tool to identify novel biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Erik van Buijtenen
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands; Aduro Biotech, Oss, the Netherlands
| | | | | | | | - Laura J A Wingens
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | | | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | | | | |
Collapse
|
16
|
Wen H, Tang J, Cui Y, Hou M, Zhou J. m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle 2023; 22:100-116. [PMID: 35949109 PMCID: PMC9769451 DOI: 10.1080/15384101.2022.2109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The aim is to explore the underlying mechanism of basic leucine zipper ATF-like transcription factor 2 (BATF2) in tongue squamous cell carcinoma (TSCC). The expression of BATF2 in TSCC tissues and corresponding adjacent normal TSCC tissues, human TSCC cell lines (SCC-15 and CAL-27) and human normal tongue epithelial cells NTEC was detected. Then, SCC-15 cells with stable BATF2 knockdown and CAL-27 cells with BATF2 overexpression were established to investigate the functional effect of BATF2 on TSCC. Thereafter, the effect of BATF2 on TSCC angiogenesis and BATF2 m6A methylation was also examined. BATF2 was significantly downregulated in TSCC tissues and cell lines, and BATF2 overexpression could suppress growth, metastasis and angiogenesis of TSCC. Mechanistically, vascular endothelial growth factor A (VEGFA) was identified as a downstream gene of BATF2, and it was confirmed that BATF2 suppressed growth, metastasis and angiogenesis of TSCC via inhibiting VEGFA. In addition, the N6-methyladenosine (m6A) modification of BATF2 mRNA mediated by METTL14 suppressed its expression in TSCC. METTL14/BATF2 axis could serve as a novel promising therapeutic candidate against angiogenesis for TSCC.
Collapse
Affiliation(s)
- Haojie Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Jinyong Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Yi Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Minhua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Juan Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| |
Collapse
|
17
|
Lyu M, Shi X, Liu Y, Zhao H, Yuan Y, Xie R, Gu Y, Dong Y, Wang M. Single-Cell Transcriptome Analysis of H5N1-HA-Stimulated Alpaca PBMCs. Biomolecules 2022; 13:biom13010060. [PMID: 36671445 PMCID: PMC9855979 DOI: 10.3390/biom13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Avian influenza A virus H5N1 is a highly pathogenic and persistently a major threat to global health. Vaccines and antibodies targeting hemagglutinin (HA) protein are the primary management strategies for the epidemic virus. Although camelids possess unique immunological features, the immune response induced by specific antigens has not yet been thoroughly investigated. Herein, we immunized an alpaca with the HA antigen of the H5N1 virus and performed single-cell transcriptome profiling for analysis of longitudinal peripheral blood mononuclear cell (PBMCs) behavior using single-cell sequencing technology (scRNA-seq). We revealed multiple cellular immunities during the immunization. The monocytes continued to expand after immunization, while the plasma cells reached their peak three days after the second antigen stimulation. Both monocytes and B cells were stimulated by the HA antigen and produced cell-type-specific cytokines to participated in the immune response. To our knowledge, this is the first study to examine the HA-specific immunological dynamics of alpaca PBMCs at the single-cell level, which is beneficial for understanding the anti-viral immune system and facilitating the development of more potent vaccines and antibodies in camelid animals.
Collapse
Affiliation(s)
- Menghua Lyu
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | | | - Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Run Xie
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | |
Collapse
|
18
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
19
|
Ostwaldt F, Los B, Heyd F. In silico analysis of alternative splicing events implicated in intracellular trafficking during B-lymphocyte differentiation. Front Immunol 2022; 13:1030409. [DOI: 10.3389/fimmu.2022.1030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
There are multiple regulatory layers that control intracellular trafficking and protein secretion, ranging from transcriptional to posttranslational mechanisms. Finely regulated trafficking and secretion is especially important for lymphocytes during activation and differentiation, as the quantity of secretory cargo increases once the activated cells start to produce and secrete large amounts of cytokines, cytotoxins, or antibodies. However, how the secretory machinery dynamically adapts its efficiency and specificity in general and specifically in lymphocytes remains incompletely understood. Here we present a systematic bioinformatics analysis to address RNA-based mechanisms that control intracellular trafficking and protein secretion during B-lymphocyte activation, and differentiation, with a focus on alternative splicing. Our in silico analyses suggest that alternative splicing has a substantial impact on the dynamic adaptation of intracellular traffic and protein secretion in different B cell subtypes, pointing to another regulatory layer to the control of lymphocyte function during activation and differentiation. Furthermore, we suggest that NERF/ELF2 controls the expression of some COPII-related genes in a cell type-specific manner. In addition, T cells and B cells appear to use different adaptive strategies to adjust their secretory machineries during the generation of effector and memory cells, with antibody secreting B cell specifically increasing the expression of components of the early secretory pathway. Together, our data provide hypotheses how cell type-specific regulation of the trafficking machinery during immune cell activation and differentiation is controlled that can now be tested in wet lab experiments.
Collapse
|
20
|
Peng L, Chen H, Wang Z, He Y, Zhang X. Identification and validation of a classifier based on hub aging-related genes and aging subtypes correlation with immune microenvironment for periodontitis. Front Immunol 2022; 13:1042484. [PMID: 36389665 PMCID: PMC9663931 DOI: 10.3389/fimmu.2022.1042484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Periodontitis (PD), an age-related disease, is characterized by inflammatory periodontal tissue loss, and with the general aging of the global population, the burden of PD is becoming a major health concern. Nevertheless, the mechanism underlying this phenomenon remains indistinct. We aimed to develop a classification model for PD and explore the relationship between aging subtypes and the immune microenvironment for PD based on bioinformatics analysis. MATERIALS AND METHODS The PD-related datasets were acquired from the Gene Expression Omnibus (GEO) database, and aging-related genes (ARGs) were obtained from the Human Aging Genomic Resources (HAGR). Four machine learning algorithms were applied to screen out the hub ARGs. Then, an artificial neural network (ANN) model was constructed and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Consensus clustering was employed to determine the aging expression subtypes. A series of bioinformatics analyses were performed to explore the PD immune microenvironment and its subtypes. The hub aging-related modules were defined using weighted correlation network analysis (WGCNA). RESULTS Twenty-seven differentially expressed ARGs were dysregulated and a classifier based on four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) was constructed to diagnose PD with excellent accuracy. Subsequently, the mRNA levels of the hub ARGs were validated by quantitative real-time PCR (qRT-PCR). Based on differentially expressed ARGs, two aging-related subtypes were identified. Distinct biological functions and immune characteristics including infiltrating immunocytes, immunological reaction gene sets, the human leukocyte antigen (HLA) gene, and immune checkpoints were revealed between the subtypes. Additionally, the black module correlated with subtype-1 was manifested as the hub aging-related module and its latent functions were identified. CONCLUSION Our findings highlight the critical implications of aging-related genes in modulating the immune microenvironment. Four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) formed a classification model, and accompanied findings revealed the essential role of aging in the immune microenvironment for PD, providing fresh inspiration for PD etiopathogenesis and potential immunotherapy.
Collapse
Affiliation(s)
- Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,*Correspondence: Xiaonan Zhang,
| |
Collapse
|
21
|
Zhou J, Zhang B, Li H, Zhou L, Li Z, Long Y, Han W, Wang M, Cui H, Li J, Chen W, Gao X. Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:959-973. [PMID: 36528241 PMCID: PMC10025762 DOI: 10.1016/j.gpb.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
The accurate annotation of transcription start sites (TSSs) and their usage are critical for the mechanistic understanding of gene regulation in different biological contexts. To fulfill this, specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner, and various computational tools have also been developed for in silico prediction of TSSs solely based on genomic sequences. Most of these computational tools cast the problem as a binary classification task on a balanced dataset, thus resulting in drastic false positive predictions when applied on the genome scale. Here, we present DeeReCT-TSS, a deep learning-based method that is capable of identifying TSSs across the whole genome based on both DNA sequence and conventional RNA sequencing data. We show that by effectively incorporating these two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a meta-learning-based extension for simultaneous TSS annotations on 10 cell types, which enables the identification of cell type-specific TSSs. Finally, we demonstrate the high precision of DeeReCT-TSS on two independent datasets by correlating our predicted TSSs with experimentally defined TSS chromatin states. The source code for DeeReCT-TSS is available at https://github.com/JoshuaChou2018/DeeReCT-TSS_release and https://ngdc.cncb.ac.cn/biocode/tools/BT007316.
Collapse
Affiliation(s)
- Juexiao Zhou
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haoyang Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Longxi Zhou
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yongkang Long
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Wenkai Han
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mengran Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanhuan Cui
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingjing Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
22
|
Muylaert C, Van Hemelrijck LA, Maes A, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. Aberrant DNA methylation in multiple myeloma: A major obstacle or an opportunity? Front Oncol 2022; 12:979569. [PMID: 36059621 PMCID: PMC9434119 DOI: 10.3389/fonc.2022.979569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called ‘epimutations’ have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.
Collapse
|
23
|
Chiu BCH, Zhang Z, Derman BA, Karpus J, Luo L, Zhang S, Langerman SS, Sukhanova M, Bhatti P, Jakubowiak A, He C, Zhang W. Genome-wide profiling of 5-hydroxymethylcytosines in circulating cell-free DNA reveals population-specific pathways in the development of multiple myeloma. J Hematol Oncol 2022; 15:106. [PMID: 35974364 PMCID: PMC9380317 DOI: 10.1186/s13045-022-01327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple myeloma (MM) and its precursors monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM) are 2–3 times more common in African Americans (AA) than European Americans (EA). Although epigenetic changes are well recognized in the context of myeloma cell biology, the contribution of 5-hydroxymethylcytosines (5hmC) to racial disparities in MM is unknown. Using the 5hmC-Seal and next-generation sequencing, we profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 342 newly diagnosed patients with MM (n = 294), SMM (n = 18), and MGUS (n = 30). We compared differential 5hmC modifications between MM and its precursors among 227 EA and 115 AA patients. The captured 5hmC modifications in cfDNA were found to be enriched in B-cell and T-cell-derived histone modifications marking enhancers. Of the top 500 gene bodies with differential 5hmC levels between MM and SMM/MGUS, the majority (94.8%) were distinct between EA and AA and enriched with population-specific pathways, including amino acid metabolism in AA and mainly cancer-related signaling pathways in EA. These findings improved our understanding of the epigenetic contribution to racial disparities in MM and suggest epigenetic pathways that could be exploited as novel preventive strategies in high-risk populations.
Collapse
Affiliation(s)
- Brian C-H Chiu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA.
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Benjamin A Derman
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Jason Karpus
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Liangzhi Luo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sheng Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Spencer S Langerman
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Parveen Bhatti
- Department of Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, V5Z1L3 0611, Canada
| | - Andrzej Jakubowiak
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.,Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
24
|
Stage-Specific Non-Coding RNA Expression Patterns during In Vitro Human B Cell Differentiation into Antibody Secreting Plasma Cells. Noncoding RNA 2022; 8:ncrna8010015. [PMID: 35202088 PMCID: PMC8878715 DOI: 10.3390/ncrna8010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The differentiation of B cells into antibody secreting plasma cells (PCs) is governed by a strict regulatory network that results in expression of specific transcriptomes along the activation continuum. In vitro models yielding significant numbers of PCs phenotypically identical to the in vivo state enable investigation of pathways, metabolomes, and non-coding (ncRNAs) not previously identified. The objective of our study was to characterize ncRNA expression during human B cell activation and differentiation. To achieve this, we used an in vitro system and performed RNA-seq on resting and activated B cells and PCs. Characterization of coding gene transcripts, including immunoglobulin (Ig), validated our system and also demonstrated that memory B cells preferentially differentiated into PCs. Importantly, we identified more than 980 ncRNA transcripts that are differentially expressed across the stages of activation and differentiation, some of which are known to target transcription, proliferation, cytoskeletal, autophagy and proteasome pathways. Interestingly, ncRNAs located within Ig loci may be targeting both Ig and non-Ig-related transcripts. ncRNAs associated with B cell malignancies were also identified. Taken together, this system provides a platform to study the role of specific ncRNAs in B cell differentiation and altered expression of those ncRNAs involved in B cell malignancies.
Collapse
|
25
|
Delaloy C, Schuh W, Jäck HM, Bonaud A, Espéli M. Single cell resolution of Plasma Cell fate programming in health and disease. Eur J Immunol 2021; 52:10-23. [PMID: 34694625 DOI: 10.1002/eji.202149216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Long considered a homogeneous population dedicated to antibody secretion, plasma cell phenotypic and functional heterogeneity is increasingly recognised. Plasma cells were first segregated based on their maturation level, but the complexity of this subset might well be underestimated by this simple dichotomy. Indeed, in the last decade new functions have been attributed to plasma cells including but not limited to cytokine secretion. However, a proper characterization of plasma cell heterogeneity has remained elusive partly due to technical issues and cellular features that are specific to this cell type. Cell intrinsic and cell extrinsic signals could be at the origin of this heterogeneity. Recent advances in technologies like single cell RNA-seq, ATAC-seq or ChIP-seq on low cell numbers helped to elucidate the fate decision in other cell lineages and similar approaches could be implemented to evaluate the heterogeneous fate of activated B cells in health and disease. Here, we summarized published work shedding some lights on the stimuli and genetic program shaping B cell terminal differentiation at the single cell level in mice and men. We also discuss the fate and heterogeneity of plasma cells during immune responses, vaccination and in the frame of human plasma cell disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Céline Delaloy
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, LabEx IGO, 2 Av du Pr Léon Bernard, Rennes, 35043, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, 75015, France
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Amélie Bonaud
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, F-75010, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- French Germinal Center Club, French Society for Immunology (SFI), Paris, 75015, France.,Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, F-75010, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
26
|
Nguyen DC, Duan M, Ali M, Ley A, Sanz I, Lee FEH. Plasma cell survival: The intrinsic drivers, migratory signals, and extrinsic regulators. Immunol Rev 2021; 303:138-153. [PMID: 34337772 PMCID: PMC8387437 DOI: 10.1111/imr.13013] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Antibody-secreting cells (ASC) are the effectors of protective humoral immunity and the only cell type that produces antibodies or immunoglobulins in mammals. In addition to their formidable capacity to secrete massive quantities of proteins, ASC are terminally differentiated and have unique features to become long-lived plasma cells (LLPC). Upon antigen encounter, B cells are activated through a complex multistep process to undergo fundamental morphological, subcellular, and molecular transformation to become an efficient protein factory with lifelong potential. The ASC survival potential is determined by factors at the time of induction, capacity to migration from induction to survival sites, and ability to mature in the specialized bone marrow microenvironments. In the past decade, considerable progress has been made in identifying factors regulating ASC longevity. Here, we review the intrinsic drivers, trafficking signals, and extrinsic regulators with particular focus on how they impact the survival potential to become a LLPC.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mohammad Ali
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ariel Ley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| |
Collapse
|
27
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|