1
|
Miao L, Wang X, Yao M, Tao Y, Han Y. Clinicopathological and prognostic significance of DDX41 mutation in myeloid neoplasms: a systematic review and meta-analysis. Ann Hematol 2025:10.1007/s00277-025-06278-1. [PMID: 40257479 DOI: 10.1007/s00277-025-06278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 04/22/2025]
Abstract
DDX41 is one of the most frequently altered genes in familial acute myeloid leukemia/myelodysplastic syndrome (AML/MDS). Mutation of DDX41 has been widely reported in various types of myeloid neoplasms. This systematic review and meta-analysis were conducted to assess the clinical characteristics and relationship between DDX41 mutations and OS in myeloid neoplasm patients. We thoroughly searched the PubMed, the Cochrane Library, Embase, Web of Science, MEDLINE, and Google Scholar databases. Two reviewers separately reviewed and extracted the data. Twenty studies totaling 9,058 patients have been integrated into the meta-analysis. The extensive pooled analysis showed a significant association between DDX41 mutations and improved OS (HR 0.70, 95% CI 0.52-0.93, P = 0.01). Subgroup analysis confirmed that DDX41 mutation operated to be a reliable positive indicator of OS when subdivided by different types of myeloid neoplasms. In terms of the clinicopathological value, DDX41 mutations were significantly correlated with the male sex. Age, AML prevalence, bone marrow, or white blood cell counts did not correlate with any findings. The top three genetic variants were p.M1I, p.D140fs, and p.R525H. Co-mutations in patients with DDX41 mutations most commonly include the following: additional sex combs-like 1 (ASXL1), DNA methyltransferase 3 A (DNMT3A), tumor protein p53 (TP53), ten-eleven translocation 2 (TET2) and serine/arginine-rich splicing factor 2 (SRSF2). Our results substantiate that DDX41 mutations were associated with significantly good OS and provide more insight into the clinicopathological characteristics of DDX41 mutations in individuals with myeloid neoplasms.
Collapse
Affiliation(s)
- Liying Miao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Xin Wang
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Minghui Yao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Yihao Tao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Yangyang Han
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
2
|
Kusne Y, Badar T, Lasho T, Marando L, Mangaonkar AA, Finke C, Foran JM, Al‐Kali A, Palmer J, Arana Yi C, Alkhateeb HB, Gangat N, Viswanatha D, Litzow MR, Chlon T, Ferrer A, Patnaik MM. Prevalence of cytopenia(s) and somatic variants in patients with DDX41 mutant germline predisposition syndrome. Br J Haematol 2025; 206:1109-1120. [PMID: 40040251 PMCID: PMC11985375 DOI: 10.1111/bjh.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
Germline variants in DDX41 (DDX41MT-germline predisposition syndrome [GPS]) are associated with predisposition to haematological malignancies (HM), including lymphoid and myeloid neoplasms (MN). We retrospectively analysed the clinical and molecular features of 195 patients diagnosed and treated at Mayo Clinic with DDX41MT-GPS. Patients with germline DDX41 pathogenic variants (42.3%) and variants of unknown significance (VUS, 57.6%) were included. The median age was 68.6 years (16.2-93.4). Ninety-two per cent were Caucasian, 64.1% were male and 30.8% had a family history of HM. There were 92 distinct germline variants among our cohort, and the most common was p.Met1? (15.9%), followed by p.Asp140Glyfs*2 (9.2%). Clinical diagnoses included asymptomatic carriers (10.2%), clonal cytopenia of undetermined significance (CCUS, 6.1%), myeloproliferative neoplasms (6.7%), myelodysplastic syndrome (40.5%), acute myeloid leukaemia (20.5%), lymphoid neoplasms (9.2%), plasma cell dyscrasias (6.1%) and solid tumours (22.5%). Patients with MN were older (median age 70 vs. 63.5 years) and more likely to be male (M:F ratio 2.3 vs. 1.0) and most patients (78.8%) with MN had a normal karyotype. The most common somatic variants involved DDX41 (34.4%), followed by TET2 (11.2%), DNMT3A (9.6%) and ASXL1 (9.2%). In summary, we have comprehensively described the spectrum of clinical phenotypes within the Mayo Clinic DDX41MT-GPS cohort.
Collapse
Affiliation(s)
- Yael Kusne
- Division of Hematology/OncologyMayo ClinicScottsdaleArizonaUSA
| | - Talha Badar
- Division of Hematology/Oncology and Bone Marrow Transplant ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Terra Lasho
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Ludovica Marando
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Christy Finke
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - James M. Foran
- Division of Hematology/Oncology and Bone Marrow Transplant ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Aref Al‐Kali
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Jeanne Palmer
- Division of Hematology/OncologyMayo ClinicScottsdaleArizonaUSA
| | | | - Hassan B. Alkhateeb
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Naseema Gangat
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Mark R. Litzow
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Timothy Chlon
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Alejandro Ferrer
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
3
|
Kida J, Chlon TM. Germline DDX41 mutations in myeloid neoplasms: the current clinical and molecular understanding. Curr Opin Hematol 2025; 32:67-76. [PMID: 39564659 PMCID: PMC11781971 DOI: 10.1097/moh.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW DDX41 mutations are the most common cause of germline predisposition to adult-onset myeloid neoplasms. The unique mutational landscape and clinical features indicate a distinct molecular pathogenesis, but the precise mechanism by which DDX41 mutations cause disease is poorly understood, owing to the multitude of DDX41 functions. In this review, we will update DDX41's known functions, present unique clinical features and treatment considerations, and summarize the current understanding of the molecular pathogenesis of the disease. RECENT FINDINGS Large cohort studies have revealed that germline DDX41 variants are heterozygous and predominantly loss-of-function. Acquired mutation of the contralateral DDX41 allele, typically R525H, is present in more than half of patients at disease onset, which occurs after age 50. DDX41 is essential for hematopoiesis and has versatile functions in RNA metabolism and innate immune sensing. Experimental models have suggested that innate immune activation downstream of defects in R-loop resolution and ribosome biogenesis plays a key role in the pathogenesis. SUMMARY While intensive investigations unveiled a strong genotype-phenotype relationship, the optimal therapeutic approach and long-term outcome are undefined. There is an urgent need to scrutinize the patients at single cell and multiomics level and to advance experimental animal and human models to fully elucidate the molecular pathogenesis.
Collapse
Affiliation(s)
- Junichiro Kida
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Bove V, Spangenberg MN, Ottati C, Vázquez L, Catalán AI, Grille S. Myelodysplastic syndrome with dual germline RUNX1 and DDX41 variants: a rare genetic predisposition case. Fam Cancer 2025; 24:20. [PMID: 39890690 DOI: 10.1007/s10689-025-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Germline variants in RUNX1 and DDX41 are well-established contributors to hereditary myeloid neoplasms and are increasingly recognized as critical predisposing factors in the developing myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). This case report details a 51-year-old male diagnosed with MDS with excess blasts-1 (MDS-EB1), who harbored a rare combination of pathogenic germline variants in RUNX1 and a novel potentially pathogenic variant in DDX41 variant, alongside a somatic DDX41 mutation. The coexistence of these germline variants highlights the genetic complexity underlying hereditary myeloid neoplasms and reinforces the necessity of comprehensive genomic testing to ensure accurate diagnosis and informed clinical management. The interplay between RUNX1 and DDX41 variants may drive leukemogenesis, with the germline RUNX1 variant potentially fostering a cellular environment that enables the acquisition of somatic DDX41 mutations, leading to hematological malignancies. Conversely, the germline DDX41 variant may disrupt hematopoiesis and, when combined with RUNX1 dysfunction, contribute to disease progression. This case underscores the importance of screening germline variants in patients with myeloid neoplasms. It emphasizes the need to confirm the origin of these variants in non-hematopoietic tissues, such as fibroblasts (gold standard), to avoid misinterpretation caused by clonal hematopoiesis. Further research is warranted to elucidate the molecular mechanisms driving the interaction between RUNX1 and DDX41 variants and their collective impact on disease progression, treatment outcomes, and familial risk.
Collapse
Affiliation(s)
- Virginia Bove
- Cooperativa Medica de Canelones, Montevideo, Uruguay
| | - Maria Noel Spangenberg
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
- Unidad Académica de Hematología, Hospital de Clínicas, Facultad de Medicina. Universidad de la Republica, Montevideo, Uruguay
| | - Carolina Ottati
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Lucia Vázquez
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Ana I Catalán
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Sofía Grille
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay.
- Unidad Académica de Hematología, Hospital de Clínicas, Facultad de Medicina. Universidad de la Republica, Montevideo, Uruguay.
- , Avda. Italia s.n, Montevideo, CP 11300, Uruguay.
| |
Collapse
|
5
|
Liu YC, Eldomery MK, Maciaszek JL, Klco JM. Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications. ANNUAL REVIEW OF PATHOLOGY 2025; 20:87-114. [PMID: 39357070 PMCID: PMC12048009 DOI: 10.1146/annurev-pathmechdis-111523-023420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Myeloid neoplasms with and without preexisting platelet disorders frequently develop in association with an underlying germline predisposition. Germline alterations affecting ANKRD26, CEBPA, DDX41, ETV6, and RUNX1 are associated with nonsyndromic predisposition to the development of myeloid neoplasms including acute myeloid leukemia and myelodysplastic syndrome. However, germline predisposition to myeloid neoplasms is also associated with a wide range of other syndromes, including SAMD9/9L associated predisposition, GATA2 deficiency, RASopathies, ribosomopathies, telomere biology disorders, Fanconi anemia, severe congenital neutropenia, Down syndrome, and others. In the fifth edition of the World Health Organization (WHO) series on the classification of tumors of hematopoietic and lymphoid tissues, myeloid neoplasms associated with germline predisposition have been recognized as a separate entity. Here, we review several disorders from this WHO entity as well as other related conditions with an emphasis on the molecular pathogenesis of disease and accompanying somatic alterations. Finally, we provide an overview of establishing the molecular diagnosis of these germline genetic conditions and general recommendations for screening and management of the associated hematologic conditions.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Mohammad K Eldomery
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
6
|
Bi H, Ren K, Wang P, Li E, Han X, Wang W, Yang J, Aydemir I, Tao K, Godley L, Liu Y, Shukla V, Bartom ET, Tang Y, Blanc L, Sukhanova M, Ji P. DDX41 dissolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617891. [PMID: 39464073 PMCID: PMC11507670 DOI: 10.1101/2024.10.14.617891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs). The role of DDX41 in hematopoiesis and how its germline and somatic mutations contribute to MNs remain unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for the development of other hematopoietic lineages. Using stage-specific Cre models for erythropoiesis, we reveal that Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), noncanonical DNA structures that tend to accumulate in the early stages of erythroid precursors. We show that DDX41 co-localizes with G4 on the erythroid genome. DDX41 directly binds to and dissolves G4, which is significantly compromised in MN-associated DDX41 mutants. Accumulation of G4 by DDX41 deficiency induces erythroid genome instability, defects in ribosomal biogenesis, and upregulation of p53. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, which is detrimental to survival since cGas-deficient and hematopoietic-specific Ddx41 knockout mice are viable without detectable hematologic phenotypes, although these mice continue to show erythroid ribosomal defects and upregulation of p53. These findings are further supported by data from a DDX41 mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 dissolver, essential for erythroid genome stability and suppressing the cGAS-STING pathway.
Collapse
|
7
|
Maese LD, Wlodarski MW, Kim SY, Bertuch AA, Bougeard G, Chang VY, Godley LA, Khincha PP, Kuiper RP, Lesmana H, McGee RB, McReynolds LJ, Meade J, Plon SE, Savage SA, Scollon SR, Scott HS, Walsh MF, Nichols KE, Porter CC. Update on Recommendations for Surveillance for Children with Predisposition to Hematopoietic Malignancy. Clin Cancer Res 2024; 30:4286-4295. [PMID: 39078402 PMCID: PMC11444884 DOI: 10.1158/1078-0432.ccr-24-0685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Children harboring certain germline gene variants have an increased risk of developing myelodysplastic syndrome (MDS) and other hematopoietic malignancies (HM), such as leukemias and lymphomas. Recent studies have identified an expanding number of these predisposition genes, with variants most prevalent in children with MDS but also found in children with other HM. For some hematopoietic malignancy predispositions (HMP), specifically those with a high risk of MDS, early intervention through hematopoietic stem cell transplantation can favorably impact overall survival, providing a rationale for rigorous surveillance. A multidisciplinary panel of experts at the 2023 AACR Childhood Cancer Predisposition Workshop reviewed the latest advances in the field and updated prior 2017 surveillance recommendations for children with HMP. In addition to general guidance for all children with HMP, which includes annual physical examination, education about the signs and symptoms of HM, consultation with experienced providers, and early assessment by a hematopoietic stem cell transplantation specialist, the panel provided specific recommendations for individuals with a higher risk of MDS based on the affected gene. These recommendations include periodic and comprehensive surveillance for individuals with those syndromes associated with higher risk of MDS, including serial bone marrow examinations to monitor for morphologic changes and deep sequencing for somatic changes in genes associated with HM progression. This approach enables close monitoring of disease evolution based on the individual's genetic profile. As more HMP-related genes are discovered and the disorders' natural histories are better defined, these personalized recommendations will serve as a foundation for future guidelines in managing these conditions.
Collapse
Affiliation(s)
- Luke D. Maese
- University of Utah-Huntsman Cancer Institute, Primary Children’s Hospital, Salt Lake City, Utah
| | | | - Sun Young Kim
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alison A. Bertuch
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Gaelle Bougeard
- Univ Rouen Normandie, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Vivian Y Chang
- University of California Los Angeles, Los Angeles, California
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, Utrecht University Medical Center, Utrecht University, The Netherlands
| | - Harry Lesmana
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rose B. McGee
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sharon E. Plon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael F. Walsh
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, New York
| | - Kim E. Nichols
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
8
|
Bruehl FK, Elbaz Younes I, Bosler DS, Kelemen K, Jiang L, Reichard KK. Peripheral Blood and Bone Marrow Findings in Treatment-Naive Patients With Cytopenia(s)/Myeloid Neoplasms Harboring Both a Germline and a Somatic DDX41 Mutation. Appl Immunohistochem Mol Morphol 2024; 32:371-381. [PMID: 39046192 DOI: 10.1097/pai.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
DDX41 -associated cytopenia(s)/myeloid neoplasms ( DDX41 -C/MNs) are an emerging pathologic entity. We examined the hematopathologic findings in DDX41 -C/MNs with both a germline and somatic DDX41 mutation ( DDX41 -C/MNs-GS). We reviewed the peripheral blood and bone marrow (BM) findings from treatment-naive patients with DDX41 -C/MNs-GS. Thirty cases were identified: 10% (3/30) were classified as clonal cytopenia(s) of unknown significance (CCUS), 17% (5/30) as myelodysplastic neoplasm/syndrome (MDS) with <5% blasts, 20% (6/30) as MDS with 5% to 9% blasts, 20% (6/30) as MDS with 10% to 19% blasts, and 33% (10/30) as acute myeloid leukemia (AML). All patients were cytopenic; circulating blasts were rare (23%, 7/30). 63% (19/30) showed dysmegakaryopoiesis. Dyserythropoiesis and dysgranulopoiesis were uncommon; seen in 20% (6/30) and 7% (2/30), respectively. Sixty-six percent (19/29) of cases were normocellular; 43% (13/30) showed erythroid predominance. Flow cytometry revealed an unremarkable blast myeloid phenotype. Blasts were intermediate sized with round nuclei, distinct nucleoli, and light blue cytoplasm with azurophilic granules. The karyotype was predominantly normal (93%, 26/28). All germline mutations were deleterious: 53% (16/30) truncating and 47% (14/30) missense. The most common somatic variant was the R525H mutation in 70% (21/30). The BM diagnostic spectrum in DDX41- C/MNs that harbor both a germline and somatic DDX41 mutation is broad-ranging from CCUS to AML. We describe consistent hematopathologic findings that pathologists may expect in these cases.
Collapse
Affiliation(s)
- Frido K Bruehl
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic Rochester, Rochester, MN
- Department of Laboratory Medicine and Pathology, OhioHealth, Columbus, OH
| | - Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, Cleveland Clinic, Cleveland, OH
- Department of Laboratory Medicine and Pathology,University of Minnesota, Minneapolis, MN
| | - David S Bosler
- Department of Laboratory Medicine and Pathology, Cleveland Clinic, Cleveland, OH
| | - Katalin Kelemen
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Liuyan Jiang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, FL
| | - Kaaren K Reichard
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic Rochester, Rochester, MN
| |
Collapse
|
9
|
Demko N, Geyer JT. Updates on germline predisposition in pediatric hematologic malignancies: What is the role of flow cytometry? CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:331-346. [PMID: 38940080 DOI: 10.1002/cyto.b.22192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Hematologic neoplasms with germline predisposition have been increasingly recognized as a distinct category of tumors over the last few years. As such, this category was added to the World Health Organization (WHO) 4th edition as well as maintained in the WHO 5th edition and International Consensus Classification (ICC) 2022 classification systems. In practice, these tumors require a high index of suspicion and confirmation by molecular testing. Flow cytometry is a cost-effective diagnostic tool that is routinely performed on peripheral blood and bone marrow samples. In this review, we sought to summarize the current body of research correlating flow cytometric immunophenotype to assess its utility in diagnosis of and clinical decision making in germline hematologic neoplasms. We also illustrate these findings using cases mostly from our own institution. We review some of the more commonly mutated genes, including CEBPA, DDX41, RUNX1, ANKRD26, GATA2, Fanconi anemia, Noonan syndrome, and Down syndrome. We highlight that flow cytometry may have a role in the diagnosis (GATA2, Down syndrome) and screening (CEBPA) of some germline predisposition syndromes, although appears to show nonspecific findings in others (DDX41, RUNX1). In many of the others, such as ANKRD26, Fanconi anemia, and Noonan syndrome, further studies are needed to better understand whether specific flow cytometric patterns are observed. Ultimately, we conclude that further studies such as large case series and organized data pipelines are needed in most germline settings to better understand the flow cytometric immunophenotype of these neoplasms.
Collapse
Affiliation(s)
- Nadine Demko
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Pathology, McGill University, Montréal, Québec, Canada
| | - Julia T Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
10
|
Ma J, Ross SR. Multifunctional role of DEAD-box helicase 41 in innate immunity, hematopoiesis and disease. Front Immunol 2024; 15:1451705. [PMID: 39185415 PMCID: PMC11341421 DOI: 10.3389/fimmu.2024.1451705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box helicases are multifunctional proteins participating in many aspects of cellular RNA metabolism. DEAD-box helicase 41 (DDX41) in particular has pivotal roles in innate immune sensing and hematopoietic homeostasis. DDX41 recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses. DDX41 also binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, thereby maintaining genome stability by preventing their accumulation. DDX41 deficiency leads to increased R-loop levels, resulting in inflammatory responses that likely influence hematopoietic stem and progenitor cell production and development. Beyond nucleic acid binding, DDX41 associates with proteins involved in RNA splicing as well as cellular proteins involved in innate immunity. DDX41 is also a tumor suppressor in familial and sporadic myelodysplastic syndrome/acute myelogenous leukemia (MDS/AML). In the present review, we summarize the functions of DDX helicases in critical biological processes, particularly focusing on DDX41's association with cellular molecules and the mechanisms underlying its roles in innate immunity, hematopoiesis and the development of myeloid malignancies.
Collapse
Affiliation(s)
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Baliakas P, Tesi B, Cammenga J, Stray‐Pedersen A, Jahnukainen K, Andersen MK, Ågerstam H, Creignou M, Dybedal I, Raaschou‐Jensen K, Grønbæk K, Kilpivaara O, Lindberg EH, Wartiovaara‐Kautto U. How to manage patients with germline DDX41 variants: Recommendations from the Nordic working group on germline predisposition for myeloid neoplasms. Hemasphere 2024; 8:e145. [PMID: 39139355 PMCID: PMC11320078 DOI: 10.1002/hem3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Increasing recognition of germline DDX41 variants in patients with hematological malignancies prompted us to provide DDX41-specific recommendations for diagnosis, surveillance, and treatment. Causative germline variants in the DDX41 predispose to the development of myeloid neoplasms (MNs), especially myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Almost 3%-5% of all patients with MDS or AML carry a pathogenic or likely pathogenic germline DDX41 variant, while half of them acquire a somatic second hit in the other allele. DDX41-associated MNs exhibit unique clinical characteristics compared to other hematological malignancies with germline predisposition: MNs occur mostly at advanced age and follow an indolent clinical course. Male carriers are more prone to develop MDS or AML than females. DDX41-associated MN is often hypoplastic, and the malignancy may be preceded by cytopenias.
Collapse
Affiliation(s)
- Panagiotis Baliakas
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical Genetics and GenomicsKarolinska University HospitalStockholmSweden
- Department of Medicine HuddingeCenter for Hematology and Regenerative Medicine, Karolinska InstitutetStockholmSweden
| | - Jörg Cammenga
- Department of Haematology, Oncology and Radiation PhysicsSkåne University HospitalLundSweden
- Molecular Medicine and Gene TherapyLund UniversityLundSweden
| | - Asbjørg Stray‐Pedersen
- Habilitation Unit, SanderudInnlandet Hospital TrustBrumunddalNorway
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent MedicineOslo University HospitalOsloNorway
| | - Kirsi Jahnukainen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical Genetics/Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mette Klarskov Andersen
- Department of Clinical GeneticsRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Helena Ågerstam
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
- Department of Clinical Genetics, Pathology and Molecular DiagnosticsOffice for Medical Services, Region SkåneLundSweden
| | - Maria Creignou
- Department of Medicine HuddingeCenter for Hematology and Regenerative Medicine, Karolinska InstitutetStockholmSweden
- Phase 1 UnitCenter for Clinical Cancer Studies, Karolinska University HospitalStockholmSweden
| | - Ingunn Dybedal
- Department of HematologyOslo University Hospital, RikshospitaletOsloNorway
| | | | - Kirsten Grønbæk
- Department of HematologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
- Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Medical and Clinical Genetics/Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center (Helsinki University Hospital)University of HelsinkiHelsinkiFinland
- Foundation for the Finnish Cancer InstituteHelsinkiFinland
| | - Eva Hellström Lindberg
- Department of Medicine HuddingeCenter for Hematology and Regenerative Medicine, Karolinska InstitutetStockholmSweden
- Department of Medicine, Division of HematologyKarolinska University HospitalHuddingeSweden
| | - Ulla Wartiovaara‐Kautto
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer CenterUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
12
|
Hwang WC, Park K, Park S, Cheon NY, Lee JY, Hwang T, Lee S, Lee JM, Ju MK, Lee JR, Kwon YR, Jo WL, Kim M, Kim YJ, Kim H. Impaired binding affinity of YTHDC1 with METTL3/METTL14 results in R-loop accumulation in myelodysplastic neoplasms with DDX41 mutation. Leukemia 2024; 38:1353-1364. [PMID: 38514771 PMCID: PMC11147762 DOI: 10.1038/s41375-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
DEAD box helicase 41 (DDX41) mutations are the most prevalent predisposition to familial myelodysplastic syndrome (MDS). However, the precise roles of these variants in the pathogenesis of MDS have yet to be elucidated. Here, we discovered a novel mechanism by which DDX41 contributes to R-loop-induced DNA damage responses (DDR) in cooperation with the m6A-METTL complex (MAC) and YTHDC1 using DDX41 knockout (KO) and DDX41 knock-in (KI, R525H, Y259C) cell lines as well as primary samples from MDS patients. Compared to wild type (WT), DDX41 KO and KI led to increased levels of m6A RNA methylated R-loop. Interestingly, we found that DDX41 regulates m6A/R-loop levels by interacting with MAC components. Further, DDX41 promoted the recruitment of YTHDC1 to R-loops by promoting the binding between METTL3 and YTHDC1, which was dysregulated in DDX41-deficient cells, contributing to genomic instability. Collectively, we demonstrated that DDX41 plays a key role in the physiological control of R-loops in cooperation with MAC and YTHDC1. These findings provide novel insights into how defects in DDX41 influence MDS pathogenesis and suggest potential therapeutic targets for the treatment of MDS.
Collapse
Affiliation(s)
- Won Chan Hwang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kibeom Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Na Young Cheon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Kyung Ju
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Joo Rak Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Yong-Rim Kwon
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Lam Jo
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
13
|
Jerez J, Santiago M. Unraveling germline predisposition in hematological neoplasms: Navigating complexity in the genomic era. Blood Rev 2024; 64:101143. [PMID: 37989620 DOI: 10.1016/j.blre.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Genomic advancements have yielded pivotal insights into hematological neoplasms, particularly concerning germline predisposition mutations. Following the WHO 2016 revisions, dedicated segments were proposed to address these aspects. Current WHO 2022, ICC 2022, and ELN 2022 classifications recognize their significance, introducing more mutations and prompting integration into clinical practice. Approximately 5-10% of hematological neoplasm patients show germline predisposition gene mutations, rising with risk factors such as personal cancer history and familial antecedents, even in older adults. Nevertheless, technical challenges persist. Optimal DNA samples are skin fibroblast-extracted, although not universally applicable. Alternatives such as hair follicle use are explored. Moreover, the scrutiny of germline genomics mandates judicious test selection to ensure precise and accurate interpretation. Given the significant influence of genetic counseling on patient care and post-assessment procedures, there arises a demand for dedicated centers offering specialized services.
Collapse
Affiliation(s)
- Joaquín Jerez
- Hematology Department, Fundación Arturo López Pérez, Chile; Resident of Hematology, Universidad de los Andes, Chile.
| | - Marta Santiago
- Hematology Department, Hospital La Fe, 46026, Valencia, Spain; Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| |
Collapse
|
14
|
Trottier AM, Feurstein S, Godley LA. Germline predisposition to myeloid neoplasms: Characteristics and management of high versus variable penetrance disorders. Best Pract Res Clin Haematol 2024; 37:101537. [PMID: 38490765 DOI: 10.1016/j.beha.2024.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.g., CEBPA, GATA2, SAMD9/SAMD9L, and TP53) versus variable malignant penetrance syndromes (e.g., ANKRD26, DDX41, ETV6, RUNX1, and various bone marrow failure syndromes) and their clinical features, such as variant type and location, course of disease, and prognostic markers. We further discuss the recommended management of these syndromes based on penetrance with an emphasis on somatic aberrations consistent with disease progression/transformation and suggested timing of allogeneic hematopoietic stem cell transplant. This review will thereby provide important data that can help to individualize and improve the management for these patients.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Winstone L, Jung Y, Wu Y. DDX41: exploring the roles of a versatile helicase. Biochem Soc Trans 2024; 52:395-405. [PMID: 38348889 PMCID: PMC10903454 DOI: 10.1042/bst20230725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
DDX41 is a DEAD-box helicase and is conserved across species. Mutations in DDX41 have been associated with myeloid neoplasms, including myelodysplastic syndrome and acute myeloid leukemia. Though its pathogenesis is not completely known, DDX41 has been shown to have many cellular roles, including in pre-mRNA splicing, innate immune sensing, ribosome biogenesis, translational regulation, and R-loop metabolism. In this review, we will summarize the latest understandings regarding the various roles of DDX41, as well as highlight challenges associated with drug development to target DDX41. Overall, understanding the molecular and cellular mechanisms of DDX41 could help develop novel therapeutic options for DDX41 mutation-related hematologic malignancies.
Collapse
Affiliation(s)
- Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yohan Jung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
16
|
Nyquist OE, Dalgaard J, Spetalen S, Torkildsen S, Frøen H, Galteland E, Klungsøyr O, Bergrem A, Vo C, Sørbø H, Eiken B, Lerdal H, Solvang AK, Jensvoll H, Pandzic T, Baliakas P, Dybedal I. Pathogenic DDX41 variants, possible response predictors to low-dose melphalan in hypo- and normocellular MDS and AML. Br J Haematol 2024; 204:724-729. [PMID: 38016923 DOI: 10.1111/bjh.19226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Affiliation(s)
- Otto Emil Nyquist
- Cancer and Hematology Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jakob Dalgaard
- Medical Department, Drammen Hospital, Vestre Viken Trust, Drammen, Norway
| | - Signe Spetalen
- Department of Pathology, and Institute of Clinical Medicine, The Medical Faculty, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Synne Torkildsen
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hege Frøen
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Eivind Galteland
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Klungsøyr
- Oslo Centre of Biostatistics and Epidemiology Department for Research and Education, Division of Mental Health and Addiction Oslo University Hospital, Oslo, Norway
| | - Astrid Bergrem
- Department of Hematology, Lovisenberg Hospital, Oslo, Norway
| | - Camilla Vo
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hjalmar Sørbø
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Birgitte Eiken
- Consultant Department of Hematology, Central Hospital Østfold Kalnes, Grålum, Norway
| | - Hedda Lerdal
- Medical Department, Sorlandet Hospital HF, Kristiansand, Norway
| | | | - Hilde Jensvoll
- Hematological Department, University Hospital of North Norway, Tromsø, Norway
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Clinical Research Unit, Pharmacological Department, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Nanaa A, He R, Foran JM, Badar T, Gangat N, Pardanani A, Hogan WJ, Litzow MR, Patnaik M, Al-Kali A, Alkhateeb HB. Venetoclax plus hypomethylating agents in DDX41-mutated acute myeloid leukaemia and myelodysplastic syndrome: Mayo Clinic series on 12 patients. Br J Haematol 2024; 204:171-176. [PMID: 37710381 DOI: 10.1111/bjh.19105] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Venetoclax (VEN) is an FDA-approved selective inhibitor of B-cell leukaemia/lymphoma-2 (BCL-2), used for treating elderly or unfit acute myeloid leukaemia (AML) patients unable to undergo intensive chemotherapy. Combining VEN with hypomethylating agents (HMAs) has shown impressive response rates in high-risk myelodysplastic syndromes (MDS) and relapsed/refractory AML. However, the efficacy of VEN and HMAs in treating DDX41-mutated (mDDX41) MDS/AML patients remains uncertain. Despite the favourable prognostic nature of mDDX41 MDS/AML patients, there is a lack of clinical experience regarding their response to different treatment regimens, leading to an unknown optimal therapeutic approach.
Collapse
Affiliation(s)
- Ahmad Nanaa
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
- John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois, USA
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James M Foran
- Division of Hematology, Mayo Clinic, Jacksonville, Florida, USA
| | - Talha Badar
- Division of Hematology, Mayo Clinic, Jacksonville, Florida, USA
| | - Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - William J Hogan
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mrinal Patnaik
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
18
|
Wagner JN, Al-Bazaz M, Forstreuter A, Hammada MI, Hille J, Papingi D, Bokemeyer C, Fiedler W. Case Report of a DDX41 Germline Mutation in a Family with Multiple Relatives Suffering from Leukemia. Biomedicines 2023; 12:64. [PMID: 38255170 PMCID: PMC10813731 DOI: 10.3390/biomedicines12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION Previously, it was assumed that genetic influence played a minor role in acute myeloid leukemia (AML). Increasing evidence of germline mutations has emerged, such as DDX41 germline mutation associated with familial AML. CASE PRESENTATION A 64-year-old male patient presented with reduced exercise tolerance and shortness of breath. Following confirmation of AML diagnosis, the patient was enrolled into the AMLSG-30-18 study with a requirement for allogenic stem cell transplantation. The sister was initially selected as a fully HLA-matched donor. However, the family history showed risks for familial AML. Due to the striking family history, further diagnostic steps were initiated to detect a germline mutation. METHODS Using NGS in the patients' bone marrow AML sample, a DDX41 mutation with a VAF of 49% was detected, raising the possibility of a germline mutation. DNA from cheek swabs and eyebrows were tested for the presence of the DDX41 mutation in all siblings. RESULTS DDX41 germline mutation was detected in 5 out of 6 siblings. The sister was excluded as a related donor and the search for an unrelated donor was initiated. CONCLUSION Obtaining family history of cancer patients plays a crucial role in oncology. If a germline mutation is suspected, further family work-up should be initiated.
Collapse
Affiliation(s)
- Jan Nicolai Wagner
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Maximilian Al-Bazaz
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Anika Forstreuter
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Mohammad Ibrahim Hammada
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Jurek Hille
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Dzhoy Papingi
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| |
Collapse
|
19
|
Maierhofer A, Mehta N, Chisholm RA, Hutter S, Baer C, Nadarajah N, Pohlkamp C, Thompson ER, James PA, Kern W, Haferlach C, Meggendorfer M, Haferlach T, Blombery P. The clinical and genomic landscape of patients with DDX41 variants identified during diagnostic sequencing. Blood Adv 2023; 7:7346-7357. [PMID: 37874914 PMCID: PMC10701587 DOI: 10.1182/bloodadvances.2023011389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Deleterious germ line variants in DDX41 are a common cause of genetic predisposition to hematologic malignancies, particularly myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). Targeted next-generation sequencing was performed in a large cohort of sequentially recruited patients with myeloid malignancy, covering DDX41 as well as 30 other genes frequently mutated in myeloid malignancy. Whole genome transcriptome sequencing data was analyzed on a separate cohort of patients with a range of hematologic malignancies to investigate the spectrum of cancer predisposition. Altogether, 5737 patients with myeloid malignancies were studied, with 152 different DDX41 variants detected. Multiple novel variants were detected, including synonymous variants affecting splicing as demonstrated by RNA-sequencing. The presence of a somatic DDX41 variant was highly associated with DDX41 germ line variants in patients with MDS and AML, and we developed a statistical approach to incorporate the co-occurrence of a somatic DDX41 variant into germ line variant classification at a very strong level (as per the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines). Using this approach, the MDS cohort contained 108 of 2865 (3.8%) patients with germ line likely pathogenic/pathogenic (LP/P) variants, and the AML cohort 106 of 2157 (4.9%). DDX41 LP/P variants were markedly enriched in patients with AML and MDS compared with those in patients with myeloproliferative neoplasms, B-cell neoplasm, and T- or B-cell acute lymphoblastic leukemia. In summary, we have developed a framework to enhance DDX41 variant curation as well as highlighted the importance of assessment of all types of genomic variants (including synonymous and multiexon deletions) to fully detect the landscape of possible clinically relevant DDX41 variants.
Collapse
Affiliation(s)
| | - Nikita Mehta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryan A. Chisholm
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | - Ella R. Thompson
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
| | - Paul A. James
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | | | | | | | - Piers Blombery
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
- Torsten Haferlach Leukaemiediagnostik Stiftung, Munich, Germany
| |
Collapse
|
20
|
Bataller A, Loghavi S, Gerstein Y, Bazinet A, Sasaki K, Chien KS, Hammond D, Montalban-Bravo G, Borthakur G, Short N, Issa GC, Kadia TM, Daver N, Tang G, Quesada A, Patel KP, Ravandi F, Fiskus W, Mill CP, Kantarjian HM, Bhalla K, Garcia-Manero G, Oran B, DiNardo CD. Characteristics and clinical outcomes of patients with myeloid malignancies and DDX41 variants. Am J Hematol 2023; 98:1780-1790. [PMID: 37665752 PMCID: PMC11770637 DOI: 10.1002/ajh.27070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
DDX41 is the most frequently mutated gene in myeloid neoplasms associated with germline predisposition including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We analyzed 3795 patients with myeloid neoplasms and identified 151 (4%) with DDX41 variants and a diagnosis of AML (n = 96), MDS (n = 52), and chronic myelomonocytic leukemia (n = 3). The most frequent DDX41 variants were the somatic variant p.R525H, followed by the germline variants p.M1I and p.D140fs. Most neoplasms had a normal karyotype (59%) and the most frequent co-mutations were TP53 (16%) and ASXL1 (15%). 30% of patients had no concomitant mutations besides DDX41 mutation. Patients with myeloid malignancies and DDX41 variants responded well to therapy, with an overall response rate for patients with treatment naïve AML and MDS of 87% and 84%, respectively. The median overall survival (mOS) of patients with treatment-naïve AML or MDS was 49 and 71 months, respectively. Patients with AML treated with low-intensity regimens including venetoclax had an improved survival (2-year OS 91% vs. 60%, p = .02) and lower cumulative incidence of relapse compared to those treated without venetoclax (10% vs. 56%, p = .03). In the 33% of patients receiving hematopoietic stem cell transplantation, the 2-year OS was 80% and 85% for AML and MDS, respectively.
Collapse
MESH Headings
- Humans
- DEAD-box RNA Helicases/genetics
- Male
- Female
- Middle Aged
- Aged
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/mortality
- Adult
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Aged, 80 and over
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Mutation
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukemia, Myelomonocytic, Chronic/mortality
- Treatment Outcome
- Young Adult
- Germ-Line Mutation
- Tumor Suppressor Protein p53/genetics
- Repressor Proteins/genetics
Collapse
Affiliation(s)
- Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yoheved Gerstein
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly S. Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M. Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres Quesada
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur P. Patel
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cristopher P. Mill
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Kanagal-Shamanna R, Schafernak KT, Calvo KR. Diagnostic work-up of hematological malignancies with underlying germline predisposition disorders (GPD). Semin Diagn Pathol 2023; 40:443-456. [PMID: 37977953 DOI: 10.1053/j.semdp.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Hematological malignancies with underlying germline predisposition disorders have been recognized by the World Health Organization 5th edition and International Consensus Classification (ICC) classification systems. The list of genes and the associated phenotypes are expanding and involve both pediatric and adult populations. While the clinical presentation and underlying molecular pathogenesis are relatively well described, the knowledge regarding the bone marrow morphologic features, the landscape of somatic aberrations associated with progression to hematological malignancies is limited. These pose challenges in the diagnosis of low-grade myelodysplastic syndrome (MDS) to hematopathologists which carries direct implication for various aspects of clinical management of the patient, donor selection for transplantation, and family members. Here in, we provide a focused review on the diagnostic work-up of hematological malignancies with underlying germline predisposition disorders with emphasis on the spectrum of hematological malignancies associated with each entity, and characteristic bone marrow morphologic, somatic cytogenetic and molecular alterations at the time of diagnosis of hematological malignancies. We also review the key clinical, morphologic, and molecular features, that should initiate screening for these entities.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristian T Schafernak
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States.
| |
Collapse
|
22
|
Guijarro F, López-Guerra M, Morata J, Bataller A, Paz S, Cornet-Masana JM, Banús-Mulet A, Cuesta-Casanovas L, Carbó JM, Castaño-Díez S, Jiménez-Vicente C, Cortés-Bullich A, Triguero A, Martínez-Roca A, Esteban D, Gómez-Hernando M, Álamo Moreno JR, López-Oreja I, Garrote M, Risueño RM, Tonda R, Gut I, Colomer D, Díaz-Beya M, Esteve J. Germ line variants in patients with acute myeloid leukemia without a suspicion of hereditary hematologic malignancy syndrome. Blood Adv 2023; 7:5799-5811. [PMID: 37450374 PMCID: PMC10561046 DOI: 10.1182/bloodadvances.2023009742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Germ line predisposition in acute myeloid leukemia (AML) has gained attention in recent years because of a nonnegligible frequency and an impact on management of patients and their relatives. Risk alleles for AML development may be present in patients without a clinical suspicion of hereditary hematologic malignancy syndrome. In this study we investigated the presence of germ line variants (GVs) in 288 genes related to cancer predisposition in 47 patients with available paired, tumor-normal material, namely bone marrow stroma cells (n = 29), postremission bone marrow (n = 17), and saliva (n = 1). These patients correspond to 2 broad AML categories with heterogeneous genetic background (AML myelodysplasia related and AML defined by differentiation) and none of them had phenotypic abnormalities, previous history of cytopenia, or strong cancer aggregation. We found 11 pathogenic or likely pathogenic variants, 6 affecting genes related to autosomal dominant cancer predisposition syndromes (ATM, DDX41, and CHEK2) and 5 related to autosomal recessive bone marrow failure syndromes (FANCA, FANCM, SBDS, DNAJC21, and CSF3R). We did not find differences in clinical characteristics nor outcome between carriers of GVs vs noncarriers. Further studies in unselected AML cohorts are needed to determine GV incidence and penetrance and, in particular, to clarify the role of ATM nonsense mutations in AML predisposition.
Collapse
Affiliation(s)
- Francesca Guijarro
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Monica López-Guerra
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Alex Bataller
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Sara Paz
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
| | | | | | | | | | - Sandra Castaño-Díez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carlos Jiménez-Vicente
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Albert Cortés-Bullich
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ana Triguero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandra Martínez-Roca
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Daniel Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Marta Gómez-Hernando
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Irene López-Oreja
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marta Garrote
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Dolors Colomer
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Marina Díaz-Beya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Tierens A, Kagotho E, Shinriki S, Seto A, Smith AC, Care M, Maze D, Sibai H, Yee KW, Schuh AC, Kim DDH, Gupta V, Minden MD, Matsui H, Capo-Chichi JM. Biallelic disruption of DDX41 activity is associated with distinct genomic and immunophenotypic hallmarks in acute leukemia. Front Oncol 2023; 13:1153082. [PMID: 37434984 PMCID: PMC10331015 DOI: 10.3389/fonc.2023.1153082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Inherited DDX41 mutations cause familial predisposition to hematologic malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), with the majority of DDX41 mutated MDS/AMLs described to date harboring germline DDX41 and co-occurring somatic DDX41 variants. DDX41-AMLs were shown to share distinguishing clinical features such as a late AML onset and an indolent disease associated with a favorable outcome. However, genotype-phenotype correlation in DDX41-MDS/AMLs remain poorly understood. Methods Here, we studied the genetic profile, bone marrow morphology and immunophenotype of 51 patients with DDX41 mutations. We further assessed the functional impact of ten previously uncharacterized DDX41 variants of uncertain significance. Results Our results demonstrate that MDS/AML cases harboring two DDX41 variants share specific clinicopathologic hallmarks that are not seen in other patients with monoallelic DDX41 related hematologic malignancies. We further showed that the features seen in these individuals with two DDX41 variants were concordant with biallelic DDX41 disruption. Discussion Here, we expand on previous clinicopathologic findings on DDX41 mutated hematologic malignancies. Functional analyses conducted in this study unraveled previously uncharacterized DDX41 alleles and further illustrate the implication of biallelic disruption in the pathophysiology of this distinct AML entity.
Collapse
Affiliation(s)
- Anne Tierens
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Kagotho
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Nairobi, Kenya
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Andrew Seto
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Adam C. Smith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Melanie Care
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Dawn Maze
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Hassan Sibai
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Karen W. Yee
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Andre C. Schuh
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Dennis Dong Hwan Kim
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Vikas Gupta
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Mark D. Minden
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - José-Mario Capo-Chichi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
24
|
O’Connor TE, Shaw R, Madero-Marroquin R, Roloff GW. Clinical considerations at the intersection of hematopoietic cell transplantation and hereditary hematopoietic malignancy. Front Oncol 2023; 13:1180439. [PMID: 37251919 PMCID: PMC10213438 DOI: 10.3389/fonc.2023.1180439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, advances in genetics and the integration of clinical-grade next-generation sequencing (NGS) assays into patient care have facilitated broader recognition of hereditary hematopoietic malignancy (HHM) among clinicians, in addition to the identification and characterization of novel HHM syndromes. Studies on genetic risk distribution within affected families and unique considerations of HHM biology represent exciting areas of translational research. More recently, data are now emerging pertaining to unique aspects of clinical management of malignancies arising in the context of pathogenic germline mutations, with particular emphasis on chemotherapy responsiveness. In this article, we explore considerations surrounding allogeneic transplantation in the context of HHMs. We review pre- and post-transplant patient implications, including genetic testing donor selection and donor-derived malignancies. Additionally, we consider the limited data that exist regarding the use of transplantation in HHMs and safeguards that might be pursued to mitigate transplant-related toxicities.
Collapse
Affiliation(s)
- Timothy E. O’Connor
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | | | - Gregory W. Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Huo L, Zhang Z, Zhou H, Xie J, Jiang A, Wang Q, Ding Z, Dai H, Liu D, Wu N, Qiu Q, Ma L, Wang M, Wang W, Xue S, Chen Z, Wu D, Yao H, Chen S, Shen H. Causative germline variant p.Y259C of DDX41 recurrently identified in acute lymphoblastic leukaemia. Br J Haematol 2023. [PMID: 37144604 DOI: 10.1111/bjh.18848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Li Huo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Haixia Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jundan Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Airui Jiang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zixuan Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Haiping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Dandan Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ni Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qiaocheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Liang Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Wenjuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Shengli Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zixing Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
26
|
Zheng G, Li P, Zhang X, Pan Z. The fifth edition of the World Health Organization Classification and the International Consensus Classification of myeloid neoplasms: evolving guidelines in the molecular era with practical implications. Curr Opin Hematol 2023; 30:53-63. [PMID: 36728868 DOI: 10.1097/moh.0000000000000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW There have been major advances in our understanding of molecular pathogenesis of myeloid neoplasms, which prompt the updates in the classification of myeloid neoplasms in the fifth edition of World Health Organization Classification (WHO-5) and the new International Consensus Classification (ICC). The purpose of this review is to provide an overview of these two classification systems for myeloid neoplasms. RECENT FINDINGS The definition, classification, and diagnostic criteria in many myeloid entities have been refined in WHO-5 and ICC with improved understanding of morphology and integration of new genetic findings. Particularly, molecular and cytogenetic studies have been increasingly incorporated into the classification, risk stratification, and selection of therapy of myeloid neoplasms. Overall, despite some revisions and discrepancies between WHO-5 and ICC, the major categories of myeloid neoplasms remain the same. Further validation studies are warranted to fine-tune and, ideally, integrate these two classifications. SUMMARY Integration of clinical information, laboratory parameters, morphologic features, and cytogenetic and molecular studies is essential for the classification of myeloid neoplasms, as recommended by both WHO-5 and ICC.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Peng Li
- Department of Pathology, University of Utah School of Medicine, ARUP Laboratories, Salt Lake City, Utah
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zenggang Pan
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
27
|
Tungalag S, Shinriki S, Hirayama M, Nagamachi A, Kanai A, Inaba T, Matsui H. Ribosome profiling analysis reveals the roles of DDX41 in translational regulation. Int J Hematol 2023; 117:876-888. [PMID: 36780110 DOI: 10.1007/s12185-023-03558-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
DDX41 mutation has been observed in myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia, but the underlying causative mechanisms of these diseases have not been fully elucidated. The DDX41 protein is an ATP-dependent RNA helicase with roles in RNA metabolism. We previously showed that DDX41 is involved in ribosome biogenesis by promoting the processing of newly transcribed pre-ribosomal RNA. To build on this finding, in this study, we leveraged ribosome profiling technology to investigate the involvement of DDX41 in translation. We found that DDX41 knockdown resulted in both translationally increased and decreased transcripts. Both gene set enrichment analysis and gene ontology analysis indicated that ribosome-associated genes were translationally promoted after DDX41 knockdown, in part because these transcripts had significantly shorter transcript length and higher transcriptional and translational levels. In addition, we found that transcripts with 5'-terminal oligopyrimidine motifs tended to be translationally upregulated when the DDX41 level was low. Our data suggest that a translationally regulated feedback mechanism involving DDX41 may exist for ribosome biogenesis.
Collapse
Affiliation(s)
- Saruul Tungalag
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
28
|
Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, Takeda J, Momozawa Y, Best S, Krishnamurthy P, Yoshizato T, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, Shiraishi Y, Nagata Y, Kakiuchi N, Onizuka M, Chiba K, Tanaka H, Kon A, Ochi Y, Nakagawa MM, Okuda R, Mori T, Yoda A, Itonaga H, Miyazaki Y, Sanada M, Ishikawa T, Chiba S, Tsurumi H, Kasahara S, Müller-Tidow C, Takaori-Kondo A, Ohyashiki K, Kiguchi T, Matsuda F, Jansen JH, Polprasert C, Blombery P, Kamatani Y, Miyano S, Malcovati L, Haferlach T, Kubo M, Cazzola M, Kulasekararaj AG, Godley LA, Maciejewski JP, Ogawa S. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood 2023; 141:534-549. [PMID: 36322930 PMCID: PMC10935555 DOI: 10.1182/blood.2022018221] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.
Collapse
Affiliation(s)
- Hideki Makishima
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Sophia Korotev
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - June Takeda
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama, Japan
| | - Steve Best
- King’s College Hospital NHS Foundation Trust, and King’s College London, London, United Kingdom
| | - Pramila Krishnamurthy
- King’s College Hospital NHS Foundation Trust, and King’s College London, London, United Kingdom
| | | | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yuka Iijima-Yamashita
- Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- National Cancer Center Research Institute, Division of Genome Analysis Platform Development, Tokyo, Japan
| | - Yasunobu Nagata
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Kenichi Chiba
- National Cancer Center Research Institute, Division of Genome Analysis Platform Development, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Rurika Okuda
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takuto Mori
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Akinori Yoda
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Hidehiro Itonaga
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Senji Kasahara
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | | | | | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | | | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chantana Polprasert
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Miyano
- National Cancer Center Research Institute, Division of Genome Analysis Platform Development, Tokyo, Japan
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Medical and Dental, Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Michiaki Kubo
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Austin G. Kulasekararaj
- King’s College Hospital NHS Foundation Trust, and King’s College London, London, United Kingdom
| | - Lucy A. Godley
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Kim K, Ong F, Sasaki K. Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers (Basel) 2023; 15:344. [PMID: 36672294 PMCID: PMC9857085 DOI: 10.3390/cancers15020344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The DEAD-box RNA helicase 41 gene, DDX41, is frequently mutated in hereditary myeloid neoplasms, identified in 2% of entire patients with AML/MDS. The pathogenesis of DDX41 mutation is related to the defect in the gene's normal functions of RNA and innate immunity. About 80% of patients with germline DDX41 mutations have somatic mutations in another allele, resulting in the biallelic DDX41 mutation. Patients with the disease with DDX41 mutations reportedly often present with the higher-grade disease, but there are conflicting reports about its impact on survival outcomes. Recent studies using larger cohorts reported a favorable outcome with a better response to standard therapies in patients with DDX41 mutations to patients without DDX41 mutations. For stem-cell transplantation, it is important for patients with DDX41 germline mutations to identify family donors early to improve outcomes. Still, there is a gap in knowledge on whether germline DDX41 mutations and its pathology features can be targetable for treatment, and what constitutes an appropriate screening/surveillance strategy for identified carriers. This article reviews our current understanding of DDX41 mutations in myeloid neoplasms in pathologic and clinical features and their clinical implications.
Collapse
Affiliation(s)
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Atluri H, Gerstein YS, DiNardo CD. Approach Toward Germline Predisposition Syndromes in Patients with Hematologic Malignancies. Curr Hematol Malig Rep 2022; 17:275-285. [PMID: 36279069 DOI: 10.1007/s11899-022-00684-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Hematologic malignancies were previously thought to be primarily sporadic cancers without germline predispositions. However, over the last two decades, with the widespread use of next generation sequencing (NGS), there have been several genes have been identified that carry a risk of inheriting hematologic malignancies. Identification of individuals with hereditary hematologic malignancies (HHM) involves a high index of suspicion and careful attention to family history, clinical features, and variant allele frequency on somatic NGS panels. RECENT FINDINGS Over the last several years, many genetic predisposition syndromes have been recognized to have unique features with both hematologic and non-hematologic co-morbidities. Multidisciplinary evaluation, including genetic counseling, is critical to optimizing diagnostic testing of individuals and at-risk family members. Prompt recognition of affected patients is imperative not only for personalized surveillance strategies but also for proper donor selection for those undergoing stem cell transplantation to avoid familial donors who also may share the same germline mutation. Herein, we describe our approach to recognizing patients suspected to carry a germline predisposition to hematologic malignancies and evaluation within a hereditary hematologic malignancies clinic (HHMC).
Collapse
Affiliation(s)
- Himachandana Atluri
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yoheved S Gerstein
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
32
|
Toya T, Harada H, Harada Y, Doki N. Adult-onset hereditary myeloid malignancy and allogeneic stem cell transplantation. Front Oncol 2022; 12:997530. [PMID: 36185231 PMCID: PMC9524153 DOI: 10.3389/fonc.2022.997530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary myeloid malignancies, especially in adults or elderly persons, had been considered quite rare before the next-generation sequencing era; however, increased usage of clinical sequencing has revealed much higher prevalence of inherited myeloid malignancies. DDX41 and various pathogenic germline mutations have newly been recognized as the cause of adult-onset familial leukemia and myeloid malignancies. Although germline predisposition to myeloid neoplasms had been categorized as a provisional entity in the World Health Organization classification of hematopoietic neoplasms in 2016, methodology for the identification of hereditary myeloid malignancies has not been fully established yet. In addition, many unresolved problems, such as epidemiology, the exact pathogenic mechanisms, and ideal treatment strategy, including indications of allogeneic hematopoietic stem cell transplantation, still remain. Related donor selection for stem cell transplant is a particularly sensitive issue due to the possibility of germline mutation of the candidate relatives and the risk of donor cell leukemia after transplantation. Here, we reviewed the current evidence regarding epidemiology, diagnosis, mechanisms of progression, and transplantation strategy for hereditary myeloid malignancies.
Collapse
Affiliation(s)
- Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
33
|
Shinriki S, Matsui H. Unique role of DDX41, a DEAD-box type RNA helicase, in hematopoiesis and leukemogenesis. Front Oncol 2022; 12:992340. [PMID: 36119490 PMCID: PMC9478608 DOI: 10.3389/fonc.2022.992340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In myeloid malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), patient selection and therapeutic strategies are increasingly based on tumor-specific genetic mutations. Among these, mutations in DDX41, which encodes a DEAD-box type RNA helicase, are present in approximately 2–5% of AML and MDS patients; this disease subtype exhibits a distinctive disease phenotype characterized by late age of onset, tendency toward cytopenia in the peripheral blood and bone marrow, a relatively favorable prognosis, and a high frequency of normal karyotypes. Typically, individuals with a loss-of-function germline DDX41 variant in one allele later acquire the p.R525H mutation in the other allele before overt disease manifestation, suggesting that the progressive decrease in DDX41 expression and/or function is involved in myeloid leukemogenesis.RNA helicases play roles in many processes involving RNA metabolism by altering RNA structure and RNA-protein interactions through ATP-dependent helicase activity. A single RNA helicase can play multiple cellular roles, making it difficult to elucidate the mechanisms by which mutations in DDX41 are involved in leukemogenesis. Nevertheless, multiple DDX41 functions have been associated with disease development. The enzyme has been implicated in the regulation of RNA splicing, nucleic acid sensing in the cytoplasm, R-loop resolution, and snoRNA processing.Most of the mutated RNA splicing-related factors in MDS are involved in the recognition and determination of 3’ splice sites (SS), although their individual roles are distinct. On the other hand, DDX41 is likely incorporated into the C complex of the spliceosome, which may define a distinctive disease phenotype. This review summarizes the current understanding of how DDX41 is involved in this unique myeloid malignancy.
Collapse
|
34
|
Li P, Brown S, Williams M, White T, Xie W, Cui W, Peker D, Lei L, Kunder CA, Wang HY, Murray SS, Vagher J, Kovacsovics T, Patel JL. The genetic landscape of germline DDX41 variants predisposing to myeloid neoplasms. Blood 2022; 140:716-755. [PMID: 35671390 PMCID: PMC9389629 DOI: 10.1182/blood.2021015135] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
Germline DDX41 variants are the most common mutations predisposing to acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) in adults, but the causal variant (CV) landscape and clinical spectrum of hematologic malignancies (HMs) remain unexplored. Here, we analyzed the genomic profiles of 176 patients with HM carrying 82 distinct presumably germline DDX41 variants among a group of 9821 unrelated patients. Using our proposed DDX41-specific variant classification, we identified features distinguishing 116 patients with HM with CV from 60 patients with HM with variant of uncertain significance (VUS): an older age (median 69 years), male predominance (74% in CV vs 60% in VUS, P = .03), frequent concurrent somatic DDX41 variants (79% in CV vs 5% in VUS, P < .0001), a lower somatic mutation burden (1.4 ± 0.1 in CV vs 2.9 ± 0.04 in VUS, P = .012), near exclusion of canonical recurrent genetic abnormalities including mutations in NPM1, CEBPA, and FLT3 in AML, and favorable overall survival (OS) in patients with AML/MDS. This superior OS was determined independent of blast count, abnormal karyotypes, and concurrent variants, including TP53 in patients with AML/MDS, regardless of patient's sex, age, or specific germline CV, suggesting that germline DDX41 variants define a distinct clinical entity. Furthermore, unrelated patients with myeloproliferative neoplasm and B-cell lymphoma were linked by DDX41 CV, thus expanding the known disease spectrum. This study outlines the CV landscape, expands the phenotypic spectrum in unrelated DDX41-mutated patients, and underscores the urgent need for gene-specific diagnostic and clinical management guidelines.
Collapse
Affiliation(s)
- Peng Li
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Sara Brown
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Margaret Williams
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Thomas White
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Wei Xie
- Department of Pathology, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Wei Cui
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Deniz Peker
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Li Lei
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA
| | - Christian A Kunder
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA
| | - Huan-You Wang
- Department of Pathology & Immunology, University of California San Diego Health System, La Jolla, CA
| | - Sarah S Murray
- Department of Pathology & Immunology, University of California San Diego Health System, La Jolla, CA
| | - Jennie Vagher
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT; and
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Tibor Kovacsovics
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT; and
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Jay L Patel
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
35
|
Duployez N, Largeaud L, Duchmann M, Kim R, Rieunier J, Lambert J, Bidet A, Larcher L, Lemoine J, Delhommeau F, Hirsch P, Fenwarth L, Kosmider O, Decroocq J, Bouvier A, Le Bris Y, Ochmann M, Santagostino A, Adès L, Fenaux P, Thomas X, Micol JB, Gardin C, Itzykson R, Soulier J, Clappier E, Recher C, Preudhomme C, Pigneux A, Dombret H, Delabesse E, Sébert M. Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: an ALFA-FILO study. Blood 2022; 140:756-768. [PMID: 35443031 PMCID: PMC9389637 DOI: 10.1182/blood.2021015328] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
DDX41 germline mutations (DDX41MutGL) are the most common genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia (AML). Recent reports suggest that DDX41MutGL myeloid malignancies could be considered as a distinct entity, even if their specific presentation and outcome remain to be defined. We describe here the clinical and biological features of 191 patients with DDX41MutGL AML. Baseline characteristics and outcome of 86 of these patients, treated with intensive chemotherapy in 5 prospective Acute Leukemia French Association/French Innovative Leukemia Organization trials, were compared with those of 1604 patients with DDX41 wild-type (DDX41WT) AML, representing a prevalence of 5%. Patients with DDX41MutGL AML were mostly male (75%), in their seventh decade, and with low leukocyte count (median, 2 × 109/L), low bone marrow blast infiltration (median, 33%), normal cytogenetics (75%), and few additional somatic mutations (median, 2). A second somatic DDX41 mutation (DDX41MutSom) was found in 82% of patients, and clonal architecture inference suggested that it could be the main driver for AML progression. DDX41MutGL patients displayed higher complete remission rates (94% vs 69%; P < .0001) and longer restricted mean overall survival censored at hematopoietic stem cell transplantation (HSCT) than 2017 European LeukemiaNet intermediate/adverse (Int/Adv) DDX41WT patients (5-year difference in restricted mean survival times, 13.6 months; P < .001). Relapse rates censored at HSCT were lower at 1 year in DDX41MutGL patients (15% vs 44%) but later increased to be similar to Int/Adv DDX41WT patients at 3 years (82% vs 75%). HSCT in first complete remission was associated with prolonged relapse-free survival (hazard ratio, 0.43; 95% confidence interval, 0.21-0.88; P = .02) but not with longer overall survival (hazard ratio, 0.77; 95% confidence interval, 0.35-1.68; P = .5).
Collapse
Affiliation(s)
- Nicolas Duployez
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Matthieu Duchmann
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Rathana Kim
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julie Rieunier
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Audrey Bidet
- Hematology Laboratory, CHU de Bordeaux, Bordeaux, France
| | - Lise Larcher
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean Lemoine
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - François Delhommeau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Laboratoire d'hématologie biologique, Hôpital Saint-Antoine, Paris, France
| | - Pierre Hirsch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Laboratoire d'hématologie biologique, Hôpital Saint-Antoine, Paris, France
| | - Laurène Fenwarth
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | | | | | - Anne Bouvier
- Hematology Laboratory, CHU Angers, Angers, France
| | - Yannick Le Bris
- Hematology Biology, Nantes University Hospital, Nantes, France
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | | | | | - Lionel Adès
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Pierre Fenaux
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Xavier Thomas
- Hematology Department, Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France
| | - Jean-Baptiste Micol
- Hematology Department, Gustave Roussy Institute, University of Paris-Saclay, Villejuif, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Jean Soulier
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuelle Clappier
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christian Recher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France; and
| | - Claude Preudhomme
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Marie Sébert
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| |
Collapse
|
36
|
Badar T, Chlon T. Germline and Somatic Defects in DDX41 and its Impact on Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:113-120. [PMID: 35781188 DOI: 10.1007/s11899-022-00667-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW While DDX41 mutation (m) is one of the most prevalent predisposition genes in adult myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML), most patients do not always present with a family history of MDS/AML. In this review, we will be highlighting epidemiological data on DDX41m, roles of DDX41 in oncogenesis, mechanisms of clonal evolution with somatic DDX41m, and clinical phenotypes and management of MDS/AML in patients harboring DDX41m. RECENT FINDINGS DDX41 encodes a DEAD-box helicase protein that is considered essential for cell growth and viability. High incidence of myeloid malignancies and other cancers in patients bearing DDX41m suggests that defects in DDX41 lead to loss of a tumor suppressor function, likely related to activities in RNA splicing and processing pathways. Seventy percent of cancer cases with DDX41m are associated with MDS/AML alone. More than 65% of familial cases harbor heterozygous germline frameshift mutations, of which p.D140Gfs*2 is the most common. A somatic DDX41m of the second allele is acquired in 70% of cases, leading to hematological malignancy. Myeloid neoplasms with DDX41m are typically characterized by long latency, high-risk disease at presentation with normal cytogenetics and without any additional molecular markers. Recent reports suggests that a subgroup of these patients have an indolent clinical course and have a better long-term survival compared to favorable or intermediate risk AML. Distinct clinical/pathologic features and favorable outcomes in MDS/AML highlight the need for standardized classification and gene specific guidelines that could assist in management decisions in patients with DDX41m.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology & Medical Oncology, Mayo Clinic Cancer Center, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Timothy Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
37
|
Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep 2022; 39:110856. [PMID: 35613581 PMCID: PMC9205463 DOI: 10.1016/j.celrep.2022.110856] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022] Open
Abstract
Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation. cGAS is activated by dsDNA. Singh et al. find DDX41 regulates cGAS activation through unwinding and annealing activities on dsDNA and ssDNA, respectively, and MDS/AML patient mutant R525H causes overactivation of innate immune response due to its unbalanced activities. This DDX41-cGAS-STING pathway may be related to molecular pathogenesis of MDS/AML.
Collapse
Affiliation(s)
- Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Manisha Yadav
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Aanchal Aggarwal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Kannupriya Pandey
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aizhang Xu
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Noreen Rapin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Mark Bosch
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - John DeCoteau
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jim Xiang
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada; Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Susan R Ross
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.
| |
Collapse
|
38
|
Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, Kawai H, Iwakiri J, Liu R, Maeshiro M, Tungalag S, Tasaki M, Ueda M, Tomizawa K, Kataoka N, Ideue T, Suzuki Y, Asai K, Tani T, Inaba T, Matsui H. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia 2022; 36:2605-2620. [PMID: 36229594 PMCID: PMC9613458 DOI: 10.1038/s41375-022-01708-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Myeloid malignancies with DDX41 mutations are often associated with bone marrow failure and cytopenia before overt disease manifestation. However, the mechanisms underlying these specific conditions remain elusive. Here, we demonstrate that loss of DDX41 function impairs efficient RNA splicing, resulting in DNA replication stress with excess R-loop formation. Mechanistically, DDX41 binds to the 5' splice site (5'SS) of coding RNA and coordinates RNA splicing and transcriptional elongation; loss of DDX41 prevents splicing-coupled transient pausing of RNA polymerase II at 5'SS, causing aberrant R-loop formation and transcription-replication collisions. Although the degree of DNA replication stress acquired in S phase is small, cells undergo mitosis with under-replicated DNA being remained, resulting in micronuclei formation and significant DNA damage, thus leading to impaired cell proliferation and genomic instability. These processes may be responsible for disease phenotypes associated with DDX41 mutations.
Collapse
Affiliation(s)
- Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Mayumi Hirayama
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akihiko Yokoyama
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Takeshi Kawamura
- grid.26999.3d0000 0001 2151 536XIsotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hidehiko Kawai
- grid.257022.00000 0000 8711 3200Department of Nucleic Acids Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junichi Iwakiri
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Rin Liu
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Maeshiro
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saruul Tungalag
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayoshi Tasaki
- grid.274841.c0000 0001 0660 6749Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- grid.274841.c0000 0001 0660 6749Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- grid.274841.c0000 0001 0660 6749Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoyuki Kataoka
- grid.26999.3d0000 0001 2151 536XLaboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Ideue
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yutaka Suzuki
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kiyoshi Asai
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tokio Tani
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Toshiya Inaba
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|