1
|
Gendron N, Planquette B, Roche A, Chocron R, Helley D, Philippe A, Morange PE, Gaussem P, Sanchez O, Smadja DM. Circulating CD34 + Cells: A New Biomarker of Residual Pulmonary Vascular Obstruction after Pulmonary Embolism. Stem Cell Rev Rep 2025:10.1007/s12015-025-10865-0. [PMID: 40085375 DOI: 10.1007/s12015-025-10865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Pulmonary embolism (PE) is a life-threatening condition with long-term complications, including residual pulmonary vascular obstruction (RPVO). RPVO is associated with an increased risk of venous thromboembolism recurrence, chronic symptoms, and reduced quality of life. We hypothesize that an endothelial activation and vascular injury play a central role in the pathophysiology of RPVO. This prospective monocentric study investigates the potential of circulating biomarkers, including CD34⁺ cells, circulating endothelial cells (CECs), and platelet-derived growth factor BB (PDGF-BB), as indicators of vascular sequelae and predictors of RPVO. We included 56 patients with a first episode of PE. Biomarker levels were measured at PE diagnosis and six months later, coinciding with RPVO assessment using ventilation-perfusion lung scans. This defined groups of patients with (RPVO ≥ 10%) and without (RPVO < 10%) perfusion defects. Associations between biomarker levels, presence of perfusion defects, and clinical parameters were analyzed. At PE diagnosis, CEC and PDGF-BB levels were significantly elevated in patients compared to healthy controls, while CD34⁺ levels showed no difference. At the six-month follow-up, patients with perfusion defects exhibited significantly lower CD34⁺ cell levels compared to those without (median 1440 cells/mL vs. 2960 cells/mL). No significant differences in CEC or PDGF-BB levels were observed at follow-up. In conclusion, low CD34⁺ cell levels at RPVO assessment suggest a decreased regenerative potential contributing to thrombus persistence. CD34⁺ cells may serve as biomarkers for perfusion defects and warrant further study for their potential role in guiding clinical management of PE complications.
Collapse
Affiliation(s)
- Nicolas Gendron
- Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France
- Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France
- F-CRIN INNOVTE, Saint-Étienne, France
| | - Benjamin Planquette
- Respiratory Medicine Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France
| | - Anne Roche
- INSERM UMR-S 999 « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Faculté de Médecine, HPPIT, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Richard Chocron
- Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France
- Emergency Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France
| | - Dominique Helley
- Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France
- Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France
| | - Aurélien Philippe
- Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France
- Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France
| | - Pierre-Emmanuel Morange
- F-CRIN INNOVTE, Saint-Étienne, France
- Laboratory of Hematology, La Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Pascale Gaussem
- Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France
- Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France
| | - Olivier Sanchez
- Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France
- F-CRIN INNOVTE, Saint-Étienne, France
- Respiratory Medicine Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France
| | - David M Smadja
- Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Hôpital européen Georges Pompidou, Paris, 75015, France.
- Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
- F-CRIN INNOVTE, Saint-Étienne, France.
| |
Collapse
|
2
|
Thetchinamoorthy K, Jarczak J, Kieszek P, Wierzbicka D, Ratajczak J, Kucia M, Ratajczak MZ. Very small embryonic-like stem cells (VSELs) on the way for potential applications in regenerative medicine. Front Bioeng Biotechnol 2025; 13:1564964. [PMID: 40124247 PMCID: PMC11926153 DOI: 10.3389/fbioe.2025.1564964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Evidence has accumulated that adult tissues contain a population of early development stem cells capable of differentiating across germ layers into various types of cells. Our group purified these rare cells, naming them very small embryonic-like stem cells (VSELs). With their broad differentiation potential, VSELs have emerged as a new candidate population for clinical applications. This advancement is now possible due to our recent development of a model for ex vivo expansion of these rare cells. Importantly, no evidence suggests that VSELs, isolated from adult tissues, can form teratomas. In this review paper, we update current research on these cells reported in our laboratory as well as in those of several independent investigators.
Collapse
Affiliation(s)
| | - Justyna Jarczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Patrycja Kieszek
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Diana Wierzbicka
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, Louisville, CO, United States
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z. Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, Louisville, CO, United States
| |
Collapse
|
3
|
Smadja DM, Berkane Y, Bentounes NK, Rancic J, Cras A, Pinault C, Ouarne M, Paucod E, Rachidi W, Lellouch AG, Jeljeli M. Immune-privileged cord blood-derived endothelial colony-forming cells: advancing immunomodulation and vascular regeneration. Angiogenesis 2025; 28:19. [PMID: 40047974 PMCID: PMC11885380 DOI: 10.1007/s10456-025-09973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Cord blood-derived endothelial colony-forming cells (CB-ECFCs) hold significant promise for regenerative medicine due to their unique vasculogenic and immunomodulatory properties. These cells exhibit a superior proliferative capacity, robust ability to form vascular networks, and lower immunogenicity compared to adult and embryonic stem cell-derived counterparts. The immune-privileged characteristics of CB-ECFCs, including reduced expression of pro-inflammatory mediators and tolerance-inducing molecules such as HLA-G, further enhance their therapeutic potential. Their low immunogenicity minimizes the risk of immune rejection, making them suitable for allogenic cell therapies. Their application extends to complex tissue engineering and organ revascularization, where their ability to integrate into three-dimensional scaffolds and support vascular tree formation represents a significant advancement. Moreover, CB-ECFCs' capability to adapt to inflammatory stimuli and retain immunological memory highlights their functional versatility in dynamic microenvironments. This review highlights the remarkable ontogeny of ECFCs while unveiling the unparalleled potential of CB-ECFCs in revolutionizing regenerative medicine. From pre-vascularizing engineered tissues and organoids to pioneering cell-based therapies for cardiovascular, dermatological, and degenerative diseases, CB-ECFCs stand at the forefront of cutting-edge biomedical advancements, offering unprecedented opportunities for therapeutic innovation. By leveraging their vasculogenic, immune-regulatory, and regenerative capacities, CB-ECFCs offer a robust alternative for addressing the challenges of vascular repair and organ engineering. Future research should focus on unraveling their transcriptomic and functional profiles to optimize clinical applications and advance the field of regenerative medicine.
Collapse
Affiliation(s)
- David M Smadja
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France.
| | - Yanis Berkane
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- SITI Laboratory, UMR INSERM 1236, Rennes University Hospital, Rennes, France
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nun K Bentounes
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Jeanne Rancic
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Audrey Cras
- Cell Therapy Department, AP-HP, Saint-Louis Hospital, Paris, F-75010, France
| | - Cécile Pinault
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Marie Ouarne
- Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, Grenoble, 38000, France
| | - Elise Paucod
- Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, Grenoble, 38000, France
| | - Walid Rachidi
- Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, Grenoble, 38000, France
| | - Alexandre G Lellouch
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
- Department of Plastic, Reconstructive and Aesthetic Surgery, Cedars Sinai Hospital, Los Angeles, USA
| | - Maxime Jeljeli
- Department of Plastic, Reconstructive and Aesthetic Surgery, Cedars Sinai Hospital, Los Angeles, USA
| |
Collapse
|
4
|
Song Y, Yu B. Leveraging non-enzymatic functions of LSD1 for novel therapeutics. Trends Pharmacol Sci 2025; 46:204-219. [PMID: 39966067 DOI: 10.1016/j.tips.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025]
Abstract
Lysine-specific demethylase 1 (LSD1) is a key enzyme that removes the methylation marks from lysines in the histone tails of nucleosomes. Emerging evidence suggests that LSD1 exhibits both enzyme-dependent and independent functions across various diseases. However, most LSD1-targeted therapies in clinical trials focus on its classic demethylase activity. Only one allosteric inhibitor (SP-2577) and two nonproteolysis-targeting chimera (PROTAC) LSD1 degraders (BEA-17 and UM171), which target its enzyme-independent functions, have entered clinical assessment. Given the limited exploration of therapeutic strategies targeting the non-enzymatic functions of LSD1, in this opinion, we summarize current insights into its biological roles and structural characteristics. We also highlight potential therapeutic interventions targeting the non-enzymatic functions of LSD1, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and small-molecule degraders, and discuss challenges and future directions in drug discovery targeting these functions.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Jarczak J, Bujko K, Brzeźniakiewicz-Janus K, Ratajczak M, Kucia M. Next-generation sequencing protocol of hematopoietic stem cells (HSCs). Step-by-step overview and troubleshooting guide. PLoS One 2025; 20:e0313009. [PMID: 39787063 PMCID: PMC11717189 DOI: 10.1371/journal.pone.0313009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/16/2024] [Indexed: 01/12/2025] Open
Abstract
Populations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing. We present here a step-by-step NGS protocol for sequencing VSELs and HSC with a description of troubleshooting during library preparation and sequencing.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | | | - Mariusz Ratajczak
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
7
|
Boueya IL, Sandhow L, Albuquerque JRP, Znaidi R, Passaro D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 2025; 39:8-24. [PMID: 39528790 PMCID: PMC11717709 DOI: 10.1038/s41375-024-02453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The central role of the endothelial microenvironment in orchestrating bone marrow (BM) homeostasis and hematopoietic support has been confirmed at various developmental stages and in adult life. The BM vasculature is crucial in mediating communication between BM parenchyma and circulating blood, displaying remarkable heterogeneity in structure and function. While vascular cell diversity in other tissues has long been recognized, the molecular basis of this phenomenon in BM is just now emerging. Over the past decade, single-cell approaches and microscopic observations have expanded our understanding of BM vasculature. While solely characterized for their paracrine properties in the past, recent advances have revolutionized our perception of endothelial function, revealing distinct anatomical locations associated with diverse endothelial cell states. The identification of phenotypic differences between normal and pathological conditions has therefore deepened our understanding of vascular dynamics and their impact on hematopoiesis in health and disease. In this review, we highlight key milestones and recent advances in understanding vascular heterogeneity within BM microenvironment during development, adulthood and aging. We also explore how leukemia affects this heterogeneity and how we can take this knowledge forward to improve clinical practices. By synthesizing existing literature, we aim to address unresolved questions and outline future research directions.
Collapse
Affiliation(s)
- I L Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - L Sandhow
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - J R P Albuquerque
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - R Znaidi
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - D Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
8
|
Jarczak J, Bujko K, Ratajczak MZ, Kucia M. scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes. Sci Rep 2024; 14:29264. [PMID: 39587190 PMCID: PMC11589151 DOI: 10.1038/s41598-024-79810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
A population of CD133+lin-CD45- and CD34+lin-CD45- very small embryonic-like stem cells (VSELs) has been identified in postnatal human tissues, including bone marrow (BM), mobilized peripheral blood (mPB) and umbilical cord blood (UCB). Under appropriate conditions, VSELs in vitro and in vivo differentiate into tissue-committed stem cells for all three germ layers. Molecular analysis of adult murine BM-purified VSELs revealed that these rare cells deposited during development in adult tissues (i) express a similar transcriptome as embryonic stem cells, (ii) share several markers characteristic for epiblast and migratory primordial germ cells (PGCs), (iii) highly express a polycomb group protein enhancer of zeste drosophila homolog 2 (Ezh2) and finally (iv) display a unique pattern of imprinting at crucial paternally inherited genes that promotes their quiescence. Here, by employing single-cell RNA sequencing we demonstrate for the first time that purified from UCB human VSELs defined by expression of CD34 or CD133 antigens and lack of lineage markers, including CD45 antigen express similar molecular signature as murine BM-derived VSELs. Specifically, unsupervised clustering revealed numerous subpopulations of VSELs including ones i) annotated to germline compartments, ii) regulated by parental imprinting, iii) responding to early developmental fate decisions, iv) transcription factors involved in differentiation and development, including homeobox family of genes, and v) expressing innate immunity and purinergic signaling genes.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland.
| |
Collapse
|
9
|
Krętowska-Grunwald A, Sawicka-Żukowska M, Starosz A, Krawczuk-Rybak M, Moniuszko M, Grubczak K. Selected stem cell populations in pediatric acute lymphoblastic leukemia. Front Immunol 2024; 15:1446687. [PMID: 39386216 PMCID: PMC11461207 DOI: 10.3389/fimmu.2024.1446687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Acute lymphoblastic leukemia is characterized by a disturbed maturation of hematopoietic stem cells (HSCs) resulting in development of a malignant clone. Despite relatively positive outcome, there are still instances of disease relapse occurring due to ineffective disease eradication or primary leukemic clone alterations. Unclear significance of stem cells in the course of ALL led us to investigate and establish crucial changes in two stem cell populations - very small embryonic-like stem cells (VSELs) and HSCs during the induction phase of treatment. Methods In a retrospective study selected stem cells in peripheral blood and bone marrow of 60 pediatric ALL subjects and 48 healthy controls were subjected to flow cytometric analysis at 4 different time points. Results Both VSELs and HSCs were elevated at the moment of ALL diagnosis compared to healthy controls, but profoundly decline until day 15. Further observations revealed an increase in HSCs with a concomitant depletion of VSELs until week 12. ALL patients with high HSCs showed positive correlation with bone marrow blasts at diagnosis. Patients with lower VSELs or HSCs at diagnosis had slightly improved response to applied therapy. We observed higher initial bone marrow lymphoblast values in patients with lower VSELs or higher HSCs in the high-risk group. The significance of VSELs in predicting treatment outcome can be illustrated by lower day 15 MRD level of patients with lower VSELs at diagnosis. Discussion We found HSCs and VSELs to be valid participants in pediatric ALL with possible contribution in the neoplastic process and prediction of initial treatment outcome.
Collapse
Affiliation(s)
- Anna Krętowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | | | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Clinical Department of Allergic and Internal Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Bujko K, Brzezniakiewicz-Janus K, Jarczak J, Kucia M, Ratajczak MZ. Murine and Human-Purified very Small Embryonic-like Stem Cells (VSELs) Express Purinergic Receptors and Migrate to Extracellular ATP Gradient. Stem Cell Rev Rep 2024; 20:1357-1366. [PMID: 38635127 PMCID: PMC11222280 DOI: 10.1007/s12015-024-10716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Purinergic signaling is an ancient primordial signaling system regulating tissue development and specification of various types of stem cells. Thus, functional purinergic receptors are present in several types of cells in the body, including multiple populations of stem cells. However, one stem cell type that has not been evaluated for expression of purinergic receptors is very small embryonic stem cells (VSELs) isolated from postnatal tissues. Herein, we report that human umbilical cord blood (UCB) and murine bone marrow (BM) purified VSELs express mRNA for P1 and P2 purinergic receptors and CD39 and CD73 ectonucleotidases converting extracellular ATP (eATP) into its signaling metabolite extracellular adenosine (eAdo), that antagonizes eATP effects. More importantly, we demonstrate that human and murine VSELs respond by chemotaxis to eATP, and eAdo inhibits this migration. These responses to eATP are mediated by activation of Nlrp3 inflammasome, and exposure of VSELs to its specific inhibitor MCC950 abolished the chemotactic response to ATP. We conclude that purinergic signaling plays an essential, underappreciated role in the biology of these cells and their potential role in response to tissue/organ injuries.
Collapse
Affiliation(s)
- Kamila Bujko
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland
| | | | - Justyna Jarczak
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland
| | - Magdalena Kucia
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland.
| | - Mariusz Z Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Warsaw Medical University, Warsaw, Poland.
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
11
|
Smadja DM, Rossi E, Haviari S, Bieche I, Cras A, Gaussem P. Thrombin receptor PAR1 silencing in endothelial colony-forming cells modifies stemness and vasculogenic properties. J Thromb Haemost 2023; 21:3640-3648. [PMID: 37678550 DOI: 10.1016/j.jtha.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The involvement of thrombin receptor PAR1 in blood vessel development has been largely demonstrated in knockout mice; however, its implication in adult mouse angiogenesis seems very moderate. OBJECTIVES We aimed to explore the potential relationships between PAR1, stemness, and angiogenic properties of human endothelial colony-forming cells (ECFCs). METHODS AND RESULTS PAR1 activation on ECFCs using the selective PAR1-activating peptide induced a significant decrease in CD133 expression (RTQ-PCR analysis). In line, silencing of PAR1 gene expression with siRNA increased CD133 mRNA as well as intracellular CD133 protein expression. To confirm the link between CD133 and PAR1, we explored the association between PAR1 and CD133 levels in fast and slow fibroblasts prone to reprogramming. An imbalance between PAR1 and CD133 levels was evidenced, with a decreased expression of PAR1 in fast reprogramming fibroblasts expressing a high CD133 level. Regarding in vitro ECFC angiogenic properties, PAR1 silencing with specific siRNA induced cell proliferation evidenced by the overexpression of Ki67. However, it did not impact migration properties nor ECFC adhesion on smooth muscle cells or human arterial endothelial cells. In a mouse model of hind-limb ischemia, PAR1 silencing in ECFCs significantly increased postischemic revascularization compared to siCtrl-ECFCs along with a significant increase in cutaneous blood flows (P < .0001), microvessel density (P = .02), myofiber regeneration (P < .0001), and human endothelial cell incorporation in muscle (P < .0001). CONCLUSION In conclusion, our work describes for the first time a link between PAR1, stemness, and vasculogenesis in human ECFCs.
Collapse
Affiliation(s)
- David M Smadja
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, France; Université Paris-Cité, INSERM UMR-S 1140, Innovative Therapies in Haemostasis, Paris, France.
| | - Elisa Rossi
- Université Paris-Cité, INSERM UMR-S 1140, Innovative Therapies in Haemostasis, Paris, France
| | - Skerdi Haviari
- Université Paris-Cité, INSERM UMR-S 1137 (IAME), Paris, France; Département Épidémiologie Biostatistiques et Recherche Clinique, AP-HP, Hôpital Bichat, Paris, France
| | | | - Audrey Cras
- Université Paris-Cité, INSERM UMR-S 1140, Innovative Therapies in Haemostasis, Paris, France; Cell Therapy Unit, AP-HP, Saint Louis Hospital, Paris, France
| | - Pascale Gaussem
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, France; Université Paris-Cité, INSERM UMR-S 1140, Innovative Therapies in Haemostasis, Paris, France
| |
Collapse
|
12
|
Aries A, Vignon C, Zanetti C, Goubaud A, Cormier A, Diederichs A, Lahlil R, Hénon P, Garitaonandia I. Development of a potency assay for CD34 + cell-based therapy. Sci Rep 2023; 13:19665. [PMID: 37952030 PMCID: PMC10640600 DOI: 10.1038/s41598-023-47079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
We have previously shown that intracardiac delivery of autologous CD34+ cells after acute myocardial infarction (AMI) is safe and leads to long term improvement. We are now conducting a multicenter, randomized, controlled Phase I/IIb study in post-AMI to investigate the safety and efficacy of intramyocardial injection of expanded autologous CD34+ cells (ProtheraCytes) (NCT02669810). Here, we conducted a series of in vitro studies characterizing the growth factor secretion, exosome secretion, gene expression, cell surface markers, differentiation potential, and angiogenic potential of ProtheraCytes clinical batches to develop a potency assay. We show that ProtheraCytes secrete vascular endothelial growth factor (VEGF) and its concentration is significantly correlated with the number of CD34+ cells obtained after expansion. ProtheraCytes also secrete exosomes containing proangiogenic miRNAs (126, 130a, 378, 26a), antiapoptotic miRNAs (21 and 146a), antifibrotic miRNAs (133a, 24, 29b, 132), and miRNAs promoting myocardial regeneration (199a and 590). We also show that ProtheraCytes have in vitro angiogenic activity, express surface markers of endothelial progenitor cells, and can differentiate in vitro into endothelial cells. After the in vitro characterization of multiple ProtheraCytes clinical batches, we established that measuring the concentration of VEGF provided the most practical, reliable, and consistent potency assay.
Collapse
Affiliation(s)
- Anne Aries
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | | | | | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | - Philippe Hénon
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
- CellProthera SAS, 12 Rue du Parc, Mulhouse, France
| | | |
Collapse
|
13
|
Cras A, Larghero J, Rossi E, Blandinières A, Gaussem P, Smadja DM. Nestin is a New Partner in Endothelial Colony Forming Cell Angiogenic Potential. Stem Cell Rev Rep 2023; 19:2541-2550. [PMID: 37452965 DOI: 10.1007/s12015-023-10587-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Nestin, an intermediate filament protein expressed by progenitor cells, is associated with tissue regeneration. Although nestin expression has been reported in poorly differentiated and newly formed blood vessels, its role in endothelial cells remains unclear. In this study, we investigated the involvement of nestin in the angiogenic properties of endothelial colony-forming cells (ECFCs) derived from human umbilical cord blood. Our results demonstrate that ECFCs express high levels of nestin, and that its inhibition by small interfering RNAs decreased ECFC proliferation, migration in response to SDF-1 and VEGF-A, tubulogenesis, and adhesion on collagen. These effects are associated with modulation of focal adhesion kinase phosphorylation. Furthermore, nestin silencing resulted in reduced revascularization in a mouse hindlimb ischemia model. In conclusion, these findings provide evidence that nestin more than being a structural protein, is an active player in ECFC angiogenic properties.
Collapse
Affiliation(s)
- Audrey Cras
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Cell therapy unit, AP-HP, Saint Louis Hospital, F-75010, Paris, France
| | - Jérôme Larghero
- Cell therapy unit, AP-HP, Saint Louis Hospital, F-75010, Paris, France
- Université de Paris Cité, INSERM, U976, CIC-BT, F-75010, Paris, France
| | - Elisa Rossi
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
| | - Adeline Blandinières
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Pascale Gaussem
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - David M Smadja
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France.
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France.
- Inserm Innovative Therapies in Haemostasis, 56 rue Leblanc, F-75015, Paris, France.
| |
Collapse
|
14
|
Blandinières A, Randi AM, Paschalaki KE, Guerin CL, Melero-Martin JM, Smadja DM. Results of an international survey about methods used to isolate human endothelial colony-forming cells: guidance from the SSC on Vascular Biology of the ISTH. J Thromb Haemost 2023; 21:2611-2619. [PMID: 37336438 DOI: 10.1016/j.jtha.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Assessment of endothelial colony-forming cell (ECFC) number and vasculogenic properties is crucial for exploring vascular diseases and regeneration strategies. A previous survey of the Scientific and Standardization Committee on Vascular Biology of the International Society on Thrombosis and Haemostasis clarified key methodological points but highlighted a lack of standardization associated with ECFC culture. OBJECTIVES The aim of this study was to provide expert consensus guidance on ECFC isolation and culture. METHODS We surveyed 21 experts from 10 different countries using a questionnaire proposed during the 2019 International Society on Thrombosis and Haemostasis Congress in Melbourne (Australia) to attain a consensus on ECFC isolation and culture. RESULTS We report here the consolidated results of the questionnaire. There was agreement on several general statements, mainly the technical aspects of ECFC isolation and cell culture. In contrast, on the points concerning the definition of a colony of ECFCs, the quantification of ECFCs, and the estimation of their age (in days or number of passages), the expert opinions were widely dispersed. CONCLUSION Our survey clearly indicates an unmet need for rigorous standardization, multicenter comparison of results, and validation of ECFC isolation and culture procedures for clinical laboratory practice and robustness of results. To this end, we propose a standardized protocol for the isolation and expansion of ECFCs from umbilical cord and adult peripheral blood.
Collapse
Affiliation(s)
- Adeline Blandinières
- Université Paris-Cité, Innovative Therapies in Hemostasis, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Hematology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Georges Pompidou European Hospital, Paris, France
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Coralie L Guerin
- Université Paris-Cité, Innovative Therapies in Hemostasis, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Institut Curie, Cytometry Platform, Paris, France
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - David M Smadja
- Université Paris-Cité, Innovative Therapies in Hemostasis, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Hematology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Georges Pompidou European Hospital, Paris, France.
| |
Collapse
|
15
|
Bujko K, Ciechanowicz AK, Kucia M, Ratajczak MZ. Molecular analysis and comparison of CD34 + and CD133 + very small embryonic-like stem cells purified from umbilical cord blood. Cytometry A 2023; 103:703-711. [PMID: 37246957 DOI: 10.1002/cyto.a.24767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Very small embryonic like stem cells (VSELs) are a dormant population of stem cells that, as proposed, are deposited during embryogenesis in various tissues, including bone marrow (BM). These cells are released under steady state conditions from their tissue locations and circulate at a low level in peripheral blood (PB). Their number increases in response to stressors as well as tissue/organ damage. This increase is evident during neonatal delivery, as delivery stress prompts enrichment of umbilical cord blood (UCB) with VSELs. These cells could be purified from BM, PB, and UCB by multiparameter sorting as a population of very small CXCR4+ Lin- CD45- cells that express the CD34 or CD133 antigen. In this report, we evaluated a number of CD34+ Lin- CD45- and CD133+ Lin- CD45- UCB-derived VSELs. We also performed initial molecular characterization of both cell populations for expression of selected pluripotency markers and compared these cells at the proteomic level. We noticed that CD133+ Lin- CD45- population is more rare and express, at a higher level, mRNA for pluripotency markers Oct-4 and Nanog as well as the stromal-derived factor-1 (SDF-1) CXCR4 receptor that regulates trafficking of these cells, however both cells population did not significantly differ in the expression of proteins assigned to main biological processes.
Collapse
Affiliation(s)
- Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Bhartiya D, Jha N, Tripathi A, Tripathi A. Very small embryonic-like stem cells have the potential to win the three-front war on tissue damage, cancer, and aging. Front Cell Dev Biol 2023; 10:1061022. [PMID: 36684436 PMCID: PMC9846763 DOI: 10.3389/fcell.2022.1061022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
The concept of dedifferentiation and reprogramming of mature somatic cells holds much promise for the three-front "war" against tissue damage, cancer, and aging. It was hoped that reprogramming human somatic cells into the induced pluripotent state, along with the use of embryonic stem cells, would transform regenerative medicine. However, despite global efforts, clinical applications remain a distant dream, due to associated factors such as genomic instability, tumorigenicity, immunogenicity, and heterogeneity. Meanwhile, the expression of embryonic (pluripotent) markers in multiple cancers has baffled the scientific community, and it has been suggested that somatic cells dedifferentiate and "reprogram" into the pluripotent state in vivo to initiate cancer. It has also been suggested that aging can be reversed by partial reprogramming in vivo. However, better methods are needed; using vectors or Yamanaka factors in vivo, for example, is dangerous, and many potential anti-aging therapies carry the same risks as those using induced pluripotent cells, as described above. The present perspective examines the potential of endogenous, pluripotent very small embryonic-like stem cells (VSELs). These cells are naturally present in multiple tissues; they routinely replace diseased tissue and ensure regeneration to maintain life-long homeostasis, and they have the ability to differentiate into adult counterparts. Recent evidence suggests that cancers initiate due to the selective expansion of epigenetically altered VSELs and their blocked differentiation. Furthermore, VSEL numbers have been directly linked to lifespan in studies of long- and short-lived transgenic mice, and VSEL dysfunction has been found in the ovaries of aged mice. To conclude, a greater interest in VSELs, with their potential to address all three fronts of this war, could be the "light at the end of the tunnel."
Collapse
|
17
|
Hassanpour M, Salybekov AA, Kobayashi S, Asahara T. CD34 positive cells as endothelial progenitor cells in biology and medicine. Front Cell Dev Biol 2023; 11:1128134. [PMID: 37138792 PMCID: PMC10150654 DOI: 10.3389/fcell.2023.1128134] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
CD34 is a cell surface antigen expressed in numerous stem/progenitor cells including hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs), which are known to be rich sources of EPCs. Therefore, regenerative therapy using CD34+ cells has attracted interest for application in patients with various vascular, ischemic, and inflammatory diseases. CD34+ cells have recently been reported to improve therapeutic angiogenesis in a variety of diseases. Mechanistically, CD34+ cells are involved in both direct incorporation into the expanding vasculature and paracrine activity through angiogenesis, anti-inflammatory, immunomodulatory, and anti-apoptosis/fibrosis roles, which support the developing microvasculature. Preclinical, pilot, and clinical trials have well documented a track record of safety, practicality, and validity of CD34+ cell therapy in various diseases. However, the clinical application of CD34+ cell therapy has triggered scientific debates and controversies in last decade. This review covers all preexisting scientific literature and prepares an overview of the comprehensive biology of CD34+ cells as well as the preclinical/clinical details of CD34+ cell therapy for regenerative medicine.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Amankeldi A. Salybekov
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Shuzo Kobayashi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- *Correspondence: Takayuki Asahara,
| |
Collapse
|
18
|
Hénon P, Kowalczyk M, Aries A, Vignon C, Trébuchet G, Lahlil R. Industrialized GMP Production of CD34 + Cells (ProtheraCytes®) at Clinical Scale for Treatment of Ischemic Cardiac Diseases Is Feasible and Safe. Stem Cell Rev Rep 2022; 18:1614-1626. [PMID: 35420389 PMCID: PMC9209364 DOI: 10.1007/s12015-022-10373-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/08/2023]
Abstract
Regenerative medicine now needs to pass a crucial turning point, from academic research to the market. Several sources/types of cells have been experimented with, more or less successfully. CD34+ cells have demonstrated multipotent or even pluripotent capacities, making them good candidates for regenerative medicine, particularly for treating heart diseases. Strongly encouraged by the results we achieved in a pilot study using CD34+ stem cells in patients with poor-prognosis acute myocardial infarcts (AMIs), we soon began the development of an industrialized platform making use of a closed automated device (StemXpand®) and a disposable kit (StemPack®) for the large-scale expansion of CD34+ cells with reproducible good manufacturing practice (GMP). This scalable platform can produce expanded CD34+ cells (ProtheraCytes®) of sufficient quality that, interestingly, express early markers of the cardiac and endothelial pathways and early cardiac-mesoderm markers. They also contain CD34+ pluripotent cells characterized as very small embryonic-like stem cells (VSELs), capable of differentiating under appropriate stimuli into different tissue lineages, including endothelial and cardiomyocytic ones.
Collapse
Affiliation(s)
| | | | - Anne Aries
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | | | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| |
Collapse
|