1
|
Chen Q, Xi Z, Xu Z, Ning M, Yu H, Sun Y, Wang DW, Alnaser AS, Jin H, Cheng HM. Rapid synthesis of metastable materials for electrocatalysis. Chem Soc Rev 2025; 54:4567-4616. [PMID: 40165605 DOI: 10.1039/d5cs00090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Metastable materials are considered promising electrocatalysts for clean energy conversions by virtue of their structural flexibility and tunable electronic properties. However, the exploration and synthesis of metastable electrocatalysts via traditional equilibrium methods face challenges because of the requirements of high energy and precise structural control. In this regard, the rapid synthesis method (RSM), with high energy efficiency and ultra-fast heating/cooling rates, enables the production of metastable materials under non-equilibrium conditions. However, the relationship between RSM and the properties of metastable electrocatalysts remains largely unexplored. In this review, we systematically examine the unique benefits of various RSM techniques and the mechanisms governing the formation of metastable materials. Based on these insights, we establish a framework, linking RSM with the electrocatalytic performance of metastable materials. Finally, we outline the future directions of this emerging field and highlight the importance of high-throughput approaches for the autonomous screening and synthesis of optimal electrocatalysts. This review aims to provide an in-depth understanding of metastable electrocatalysts, opening up new avenues for both fundamental research and practical applications in electrocatalysis.
Collapse
Affiliation(s)
- Qiao Chen
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zichao Xi
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Ziyuan Xu
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Minghui Ning
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Huimin Yu
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Yuanmiao Sun
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Da-Wei Wang
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518071, China
| | - Ali Sami Alnaser
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Materials Research Center, College of Arts and Science, University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Huanyu Jin
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
2
|
Fu Y, Lu Q, Wang J, Sun N, Gao J, Chen P, Wu J, Ma J. Pulsed laser synthesis of free-standing Pt single atoms in an ice block for enhancing photocatalytic hydrogen evolution of g-C 3N 4. NANOSCALE ADVANCES 2025; 7:2474-2482. [PMID: 40177388 PMCID: PMC11959413 DOI: 10.1039/d5na00043b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
This study reports an innovative synthesis method of a Pt/g-C3N4 single atom catalyst for enhancing photocatalytic hydrogen evolution. The method involves the synthesis of free-standing Pt single atoms within an H2PtCl6 ice block using a pulsed laser reduction process, followed by transferring them onto few-layer g-C3N4 through electrostatic adsorption at low temperature. This approach eliminates the need for high-energy lasers and porous support materials during laser solid-phase synthesis. The photocatalytic activities of Pt/g-C3N4 synthesized under various laser conditions are evaluated to optimize the synthesis parameters. The optimal Pt/g-C3N4 catalyst demonstrates a significantly higher photocatalytic hydrogen evolution capability (320 μmol h-1), 129 times that of pure g-C3N4 (2.2 μmol h-1). This work expands the laser-solid phase synthesis method, offering a promising route for the production of single atom catalysts with simple operation, clear synthetic pathways, low cost, and environmental friendliness.
Collapse
Affiliation(s)
- Yongming Fu
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
| | - Qianyu Lu
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
| | - Jianhong Wang
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
| | - Na Sun
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
| | - Jinjun Gao
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
| | - Peng Chen
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
| | - Jizhou Wu
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan 030006 China
| | - Jie Ma
- School of Physics and Electronic Engineering & Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University Taiyuan 030006 China
- Xinzhou Institute of Innovation Ecosystem, Shanxi University Xinzhou 034000 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan 030006 China
| |
Collapse
|
3
|
Zhu X, Xiong C, Zhou H, Wang J, Wu Y. Single-atom nanozymes for enhanced electrochemical biosensing: A review. Talanta 2025; 294:128179. [PMID: 40286743 DOI: 10.1016/j.talanta.2025.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Enzyme-based electrochemical biosensors have broad and significant applications in biomedical, environmental monitoring, and food safety fields. However, the application of natural enzymes is limited due to issues such as poor stability, complex preparation, and high cost. Single-atom nanozymes (SAzymes), with their unique catalytic properties and efficient enzyme-like activities, present a promising alternative in the field of electrochemical biosensing. Compared to traditional enzymes, SAzyme offer enhanced stability and controllability, making them particularly effective in complex detection environments. This work presents the first systematic review of the progress made since 2018 in the use of SAzymes as alternatives to natural enzymes in electrochemical biosensors, and presents the latest advancements in this area. The review begins with a discussion of various enzyme-like activities of single-atom materials, including peroxidase (POD)-like, oxidase (OXD)-like, catalase (CAT)-like, and superoxide dismutase (SOD)-like activities. It then explores the advantages of SAzymes in improving the performance of electrochemical biosensors from multiple perspectives. The review also summarizes the applications of SAzyme-based electrochemical sensors for reactive oxygen species (ROS), metabolites, neurotransmitters, and other analytes, highlighting specific examples to elucidate underlying catalytic mechanisms and understand fundamental structure-performance relationships. In the final section, the challenges faced by SAzyme-based electrochemical biosensing are discussed, along with potential solutions.
Collapse
Affiliation(s)
- Xiaofei Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China; Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Can Xiong
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China.
| | - Yuen Wu
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Zhou B, Liu K, Yu K, Zhou Q, Gao Y, Gao X, Chen Z, Chen W, Chen P. Ultrafast Synthesis of Single-Atom Catalysts for Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501917. [PMID: 40237142 DOI: 10.1002/smll.202501917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Indexed: 04/18/2025]
Abstract
A recent development in catalytic research, single-atom catalysts (SACs) are one of the most significant categories of catalytic materials. During preparation, individual atoms migrate and agglomerate due to the high surface free energy. The rapid thermal shock strategy addresses this challenge by employing instantaneous high-temperature pulses to synthesize SACs, while minimizing heating duration to prevent metal aggregation and substrate degradation, thereby preserving atomic-level dispersion. The resultant SACs exhibit exceptional catalytic activity, remarkable selectivity, and long-term stability, which have attracted extensive attention in electrocatalysis. In this paper, cutting-edge ultrafast synthesis techniques such as Joule heating, microwave radiation, pulsed discharge, and arc discharge are comprehensively analyzed. Their ability is emphasized to achieve uniform dispersion of separated metal atoms and optimize the catalytic activity for electrocatalytic applications. A systematic summary of SACs synthesized by these rapid methods is provided, with particular emphasis on their implementation in carbon dioxide reduction reaction (CO2RR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR) systems. The review provides an in-depth discussion on the rapid synthesis strategy for development trend, remaining challenges, and the application prospects in electrocatalysis.
Collapse
Affiliation(s)
- Boran Zhou
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Kaiyuan Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Kedi Yu
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Qiang Zhou
- China Academy of Ordnance Science, Beijing, 100089, P. R. China
| | - Yan Gao
- AnHui Provincial Engineering Research Center of Silicon-Based Materials, Bengbu University, Bengbu, Anhui, 233030, P. R. China
| | - Xin Gao
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pengwan Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, Zhejiang, 314019, P. R. China
| |
Collapse
|
5
|
Gao S, Li L, Wu Y, Lu C. Laser-Induced Solid-Phase Strategy to Synthesize Single-Atomic Lithiophilic Sites Enabled Dendrite-Free Lithium Deposition on Graphene Matrix. SMALL METHODS 2024; 8:e2400503. [PMID: 39358928 DOI: 10.1002/smtd.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/08/2024] [Indexed: 10/04/2024]
Abstract
The introduction of metal Single-atom (SA) to construct lithium-philic active sites shows the ability to guide uniform lithium deposition and improve the stability of lithium hosts. Nevertheless, the development of facile and expedient methods for synthesizing SA remains a considerable challenge. Herein, The SA metal loaded on graphene (Bi@LrGO) is designed by laser-induced solid-phase strategy. The bismuth salts simultaneously decompose under the high local temperature and in the reductive atmosphere induced by laser to form SA metal. Simultaneously, graphene oxide (GO) nanosheets absorb photon energy to be reduced/graphitized into graphene, which serves as anchoring sites for Bismuth Sing-atom (Bi SA) immobilization. The SA metals, supported on the graphene not only provide sufficient lithiophilic sites but also significantly increase the adsorption energy (-2.11 eV) with lithium atoms, promote the uniform nucleation and deposition of lithium, and inhibit the growth of lithium dendrites. Additionally, the layered structure of the graphene film adapts to the volume change during the repeated lithium plating/stripping process. Therefore, the symmetrical battery-based Li deposited on Bi@LrGO (Bi@LrGO@Li) achieves an ultra-long stable cycle life of ≈2400 h at 1 mA cm-2. In particular, a full cell with LiFePO4 cathode provides a good capacity retention of 81.2% at 4 C after 600 cycles.
Collapse
Affiliation(s)
- ShuaiYu Gao
- Dalian University, Dalian, 116622, P. R. China
| | - Lin Li
- Dalian University, Dalian, 116622, P. R. China
| | - Yingbin Wu
- Dalian University, Dalian, 116622, P. R. China
| | - Chunlan Lu
- Dalian University, Dalian, 116622, P. R. China
| |
Collapse
|
6
|
Zhu L, Zhao Y, Zhai T, Yan Y, Jiang Y, Zhang H, Zhang R, Gan Y, Zhang P, Zhou K, Wu S, Tian C, Jiang N, Liu P. Laser Irradiation Induced Electronic Structure Modulation of the Palladium-Based Nanosheets for Efficient Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405107. [PMID: 39300865 DOI: 10.1002/smll.202405107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Palladium nanosheets (Pd NSs) are widely used as electrocatalysts due to their high atomic utilization efficiency, and long-term stability. Here, the electronic structure modulation of the Pd NSs is realized by a femtosecond laser irradiation strategy. Experimental results indicate that laser irradiation induces the variation in the atomic structures and the macrostrain effects in the Pd NSs. The electronic structure of Pd NSs is modulated by laser irradiation through the balancing between Au-Pd charge transfer and the macros-strain effects. Finite element analysis (FEA) indicates that the lattice of the nanostructures undergoes fast heating and cooling during laser irradiation. The structural evolution mechanism is disclosed by a combined FEA and molecule dynamics (MD) simulation. These results coincide well with the experimental results. The L-AuPd NSs exhibit excellent mass activity and specific activity of 7.44 A mg-1 Pd and 18.70 mA cm-2 toward ethanol oxidation reaction (EOR), 4.3 and 4.4 times higher than the commercial Pd/C. The 2500-cycle accelerated durability (ADT) test confirms the outstanding catalytic stability of the L-AuPd NSs. Density functional theory (DFT) calculations reveal the catalytic mechanism. This unique strategy provides a new pathway to design the ultrathin nanosheet-based materials with excellent performance.
Collapse
Affiliation(s)
- Liye Zhu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianrui Zhai
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yinzhou Yan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yijian Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Huanzhen Zhang
- School of Mathematics and Physics, Hebei University of Engineering, Handan, 056000, P. R. China
| | - Ran Zhang
- Research Centre for Laser Extreme Manufacturing, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuqi Gan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengju Zhang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kailing Zhou
- Key Laboratory of Advanced Functional Materials Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Shengbo Wu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chenhe Tian
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Nan Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing, 100124, P. R. China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, P. R. China
- Institute of Matter Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Peng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
8
|
Wang Z, Peng L, Zhu P, Wang W, Yang C, Hu HY, Wu Q. Electron Redistribution in Iridium-Iron Dual-Metal-Atom Active Sites Enables Synergistic Enhancement for H 2O 2 Decomposition. ACS NANO 2024; 18:2885-2897. [PMID: 38236146 DOI: 10.1021/acsnano.3c07223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.
Collapse
Affiliation(s)
- Zhiwei Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lu Peng
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ping Zhu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Wenlong Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Cheng Yang
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Hong-Ying Hu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qianyuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
9
|
Sha Y, Moissinac F, Zhu M, Huang K, Guo H, Wang L, Liu Y, Li L, Thomas A, Liu Z. Laser Synthesis of Nonprecious Metal-Based Single-Atom Catalysts for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37890070 DOI: 10.1021/acsami.3c09556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Development of nonprecious metal-based single-atom catalysts (SACs) has provided opportunities to substitute Pt group metals and offer maximum atom utilization and unique coordination environments. Among these catalysts, Fe-N-C catalysts with atomically dispersed Fe-N4 active sites have emerged as some of the most promising oxygen reduction reaction (ORR) catalysts. However, furnace synthesis of Fe-N-C catalysts with carbon substrate derived from metal-organic framework (MOF) involves a high-temperature procedure, in which nitrogen from the carbonized MOF tends to be removed, subsequently leading to a low density of active sites. In this work, we developed a rapid and simple solid-state route to fabricate SACs through laser-induced thermal activation (LITA) of carbonized zeolitic imidazolate framework-8 (ZIF-8) adsorbed with Fe precursors. The results demonstrate that the laser process effectively avoids the loss of nitrogen in the nitrogen-doped carbon substrate and achieves a loading of Fe single atoms of 2.3 wt %, in comparison with that of 1.2 wt % from the conventional furnace treatment. The Fe-N-C catalyst synthesized in the study presents a half-wave potential of 0.91 V for ORR in alkaline media, which is higher than that of commercial Pt/C (0.87 V). When used as a cathode catalyst in zinc-air batteries (ZABs), the battery exhibits excellent electrochemical performance. This work also demonstrates the versatility of the technique through the successful synthesis of Co-N-C and Ni-N-C single atoms on nitrogen-doped carbon substrates.
Collapse
Affiliation(s)
- Yang Sha
- Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Francis Moissinac
- Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Menghui Zhu
- Laser Processing Research Centre, Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Kun Huang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hengyi Guo
- Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Lingtao Wang
- Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Yuxiang Liu
- Research Centre for Laser Extreme Manufacturing, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lin Li
- Laser Processing Research Centre, Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Research Centre for Laser Extreme Manufacturing, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Andrew Thomas
- Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- The Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Zhu Liu
- Research Centre for Laser Extreme Manufacturing, Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
10
|
Borodaenko Y, Khairullina E, Levshakova A, Shmalko A, Tumkin I, Gurbatov S, Mironenko A, Mitsai E, Modin E, Gurevich EL, Kuchmizhak AA. Noble-Metal Nanoparticle-Embedded Silicon Nanogratings via Single-Step Laser-Induced Periodic Surface Structuring. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1300. [PMID: 37110886 PMCID: PMC10146168 DOI: 10.3390/nano13081300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Here, we show that direct femtosecond laser nanostructuring of monocrystalline Si wafers in aqueous solutions containing noble-metal precursors (such as palladium dichloride, potassium hexachloroplatinate, and silver nitrate) allows for the creation of nanogratings decorated with mono- (Pd, Pt, and Ag) and bimetallic (Pd-Pt) nanoparticles (NPs). Multi-pulse femtosecond-laser exposure was found to drive periodically modulated ablation of the Si surface, while simultaneous thermal-induced reduction of the metal-containing acids and salts causes local surface morphology decoration with functional noble metal NPs. The orientation of the formed Si nanogratings with their nano-trenches decorated with noble-metal NPs can be controlled by the polarization direction of the incident laser beam, which was justified, for both linearly polarized Gaussian and radially (azimuthally) polarized vector beams. The produced hybrid NP-decorated Si nanogratings with a radially varying nano-trench orientation demonstrated anisotropic antireflection performance, as well as photocatalytic activity, probed by SERS tracing of the paraaminothiophenol-to-dimercaptoazobenzene transformation. The developed single-step maskless procedure of liquid-phase Si surface nanostructuring that proceeds simultaneously with the localized reduction of noble-metal precursors allows for the formation of hybrid Si nanogratings with controllable amounts of mono- and bimetallic NPs, paving the way toward applications in heterogeneous catalysis, optical detection, light harvesting, and sensing.
Collapse
Affiliation(s)
- Yulia Borodaenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Evgeniia Khairullina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Aleksandra Levshakova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Alexander Shmalko
- Interdisciplinary Resource Center for Nanotechnology of Research Park of SPbSU, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Ilya Tumkin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Eugeny Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC nanoGUNE BRTA, E-20018 Donostia-San Sebastian, Spain
| | - Evgeny L. Gurevich
- Laser Center (LFM), University of Applied Sciences Munster, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Aleksandr A. Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
11
|
Hu X, Zuo D, Cheng S, Chen S, Liu Y, Bao W, Deng S, Harris SJ, Wan J. Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chem Soc Rev 2023; 52:1103-1128. [PMID: 36651148 DOI: 10.1039/d2cs00322h] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Energy and environmental issues have attracted increasing attention globally, where sustainability and low-carbon emissions are seriously considered and widely accepted by government officials. In response to this situation, the development of renewable energy and environmental technologies is urgently needed to complement the usage of traditional fossil fuels. While a big part of advancement in these technologies relies on materials innovations, new materials discovery is limited by sluggish conventional materials synthesis methods, greatly hindering the advancement of related technologies. To address this issue, this review introduces and comprehensively summarizes emerging ultrafast materials synthesis methods that could synthesize materials in times as short as nanoseconds, significantly improving research efficiency. We discuss the unique advantages of these methods, followed by how they benefit individual applications for renewable energy and the environment. We also highlight the scalability of ultrafast manufacturing towards their potential industrial utilization. Finally, we provide our perspectives on challenges and opportunities for the future development of ultrafast synthesis and manufacturing technologies. We anticipate that fertile opportunities exist not only for energy and the environment but also for many other applications.
Collapse
Affiliation(s)
- Xueshan Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Shaoru Cheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Sihui Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenzhong Bao
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Sili Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Stephen J Harris
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
| | - Jiayu Wan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Sun Z, Yang Y, Fang C, Yao Y, Qin F, Gu H, Liu Q, Xu W, Tang H, Jiang Z, Ge B, Chen W, Chen Z. Atomic-Level Pt Electrocatalyst Synthesized via Iced Photochemical Method for Hydrogen Evolution Reaction with High Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203422. [PMID: 35871552 DOI: 10.1002/smll.202203422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In heterogeneous catalysis, metal particle morphology and size can influence markedly the activity. It is of great significance to rationally design and control the synthesis of Pt at the atomic level to demonstrate the structure-activity relationship toward electrocatalysis. Herein, a powerful strategy is reported to synthesize graphene-supported platinum-based electrocatalyst, that is, nanocatalysts with controllable size can be prepared by iced photochemical method, including single atoms (Pt-SA@HG), nanoclusters (Pt-Clu@HG), and nanocrystalline (Pt-Nc@HG). The Pt-SA@HG exhibits unexpected electrocatalytic hydrogen evolution reaction (HER) performances with 13 mV overpotential at 10 mA cm-2 current densities which surpass Pt-Clu@HG and Pt-Nc@HG. The in situ X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations determine the Pt-C3 active site is linchpin to the excellent HER performance of Pt-SA@HG. Compared with the traditional Pt-Nx coordination structure, the pure carbon coordinated Pt-C3 site is more favorable for HER. This work opens up a new way to adjust the metal particle size and catalytic performance of graphene at a multiscale level.
Collapse
Affiliation(s)
- Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuqi Yang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chaohe Fang
- CNPC Research Institute of Petroleum, Exploration & Development, Beijing, 100083, China
| | - Yinchao Yao
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongfei Gu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingqing Liu
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Wenjing Xu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hao Tang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Anhui, 230601, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhuo Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
13
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Akkanen STM, Fernandez HA, Sun Z. Optical Modification of 2D Materials: Methods and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110152. [PMID: 35139583 DOI: 10.1002/adma.202110152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
2D materials are under extensive research due to their remarkable properties suitable for various optoelectronic, photonic, and biological applications, yet their conventional fabrication methods are typically harsh and cost-ineffective. Optical modification is demonstrated as an effective and scalable method for accurate and local in situ engineering and patterning of 2D materials in ambient conditions. This review focuses on the state of the art of optical modification of 2D materials and their applications. Perspectives for future developments in this field are also discussed, including novel laser tools, new optical modification strategies, and their emerging applications in quantum technologies and biotechnologies.
Collapse
Affiliation(s)
| | - Henry Alexander Fernandez
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| |
Collapse
|