1
|
Chen Y, Qiu Y, Lew MD. Resolving the Orientations of and Angular Separation Between a Pair of Dipole Emitters. PHYSICAL REVIEW LETTERS 2025; 134:093805. [PMID: 40131087 PMCID: PMC11937548 DOI: 10.1103/physrevlett.134.093805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 03/26/2025]
Abstract
We prove that it is impossible to distinguish two spatially coinciding fluorescent molecules from a single rotating molecule using polarization-sensitive imaging, even if one modulates the polarization of the illumination or the detection dipole-spread function (DSF). If the target is known to be a dipole pair, existing imaging methods perform poorly for measuring their angular separation. We propose simultaneously modulating the excitation polarization and DSF, which demonstrates robust discrimination between dipole pairs versus single molecules. Our method improves the precision of measuring centroid orientation by 50% and angular separation by two- to four-fold over existing techniques.
Collapse
Affiliation(s)
- Yiyang Chen
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
| | - Yuanxin Qiu
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
| | - Matthew D. Lew
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
| |
Collapse
|
2
|
Chandler T, Guo M, Su Y, Chen J, Wu Y, Liu J, Agashe A, Fischer RS, Mehta SB, Kumar A, Baskin TI, Jaumouillé V, Liu H, Swaminathan V, Nain AS, Oldenbourg R, La Riviere PJ, Shroff H. Volumetric imaging of the 3D orientation of cellular structures with a polarized fluorescence light-sheet microscope. Proc Natl Acad Sci U S A 2025; 122:e2406679122. [PMID: 39982748 PMCID: PMC11874040 DOI: 10.1073/pnas.2406679122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Collapse
Affiliation(s)
- Talon Chandler
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
| | - Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Junyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | - Robert S. Fischer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Abhishek Kumar
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Tobias I. Baskin
- Department of Biology, University of Massachusetts, Amherst, MA01003
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Valentin Jaumouillé
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Vinay Swaminathan
- Department of Clinical Sciences, Lund University, Lund, ScaniaSE-221 00, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, ScaniaSE-221 00, Sweden
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | | | - Patrick J. La Riviere
- Department of Radiology, University of Chicago, Chicago, IL60637
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| |
Collapse
|
3
|
Liao H, Mitten DJ, Knox WH. Polarimetric imaging of peripheral nerves: an intraoperative aid. BIOMEDICAL OPTICS EXPRESS 2025; 16:679-689. [PMID: 39958862 PMCID: PMC11828436 DOI: 10.1364/boe.545146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025]
Abstract
In this work, we present a real-time method to aid intraoperative peripheral nerve identification. Using LEDs as the light sources, the device contains a driving motor that rotates a pair of orthogonally oriented linear polarizers. By performing lock-in processing to frames taken under the rotating crossed polarization imaging (RXPI) system, the AC components of the periodic intensity signal of chicken tissues are acquired and compared. With an area under the curve (AUC) of 93%, the chicken sciatic nerve is distinct for automatic identification. In both chicken thigh and cadaver arm models, the contrasts of nerve tissues are successfully enhanced in the lock-in processed output image. Real-time automatic nerve masking is successfully demonstrated in the chicken model using a portable prototype weighing 525 g. In conclusion, the RXPI system with lock-in processing methods can potentially serve as an intraoperative nerve identification aid.
Collapse
Affiliation(s)
- Haolin Liao
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - David J. Mitten
- Department of Orthopaedics, University of Rochester, Rochester, NY 14627, USA
| | - Wayne H. Knox
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
4
|
Pedrosa TDL, de Araujo RE, Wachsmann-Hogiu S. On-Chip Polarization Light Microscopy. BIOSENSORS 2025; 15:79. [PMID: 39996981 PMCID: PMC11853662 DOI: 10.3390/bios15020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Polarization light microscopy (PLM) enables detailed examination of birefringent materials and reveals unique features that cannot be observed under non-polarized light. Implementation of this technique for quantitative PLM (QPLM) assessment of samples is challenging and requires specialized components and equipment. Here, we demonstrate QPLM on a semiconductor imaging chip that is suitable for point-of-care/need applications. A white LED illumination was used with crossed polarizers and a full wave plate to perform on-chip, non-contact-mode QPLM. Polarization complexity is probed by assessing the multispectral phase shift experienced by white light through the distinct optical paths of the sample. This platform can achieve micrometer-scale spatial resolution with a Field of View determined by the size of the semiconductor sensor. Visualization of a biological sample (Euglena gracilis) was demonstrated, as well as the detection of Monosodium Urate crystals, where the presence of negative birefringence of crystals in synovial fluid is important for the diagnosis of gout.
Collapse
Affiliation(s)
- Túlio de L. Pedrosa
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-550, Brazil;
| | - Renato E. de Araujo
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-550, Brazil;
| | | |
Collapse
|
5
|
Wang H, Zhang L, Fan C, Huang J, Zhao W, Yang Z, Tian L, Zhao H, Yao C. Refractive Index Morphology Imaging Microscope System Utilizing Polarization Multiplexing for Label-Free Single Living Cells. ACS Sens 2024; 9:6759-6767. [PMID: 39652671 DOI: 10.1021/acssensors.4c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Detections of internal substances and morphologies for label-free living cells are crucial for revealing malignant diseases. With the phase serving as a coupling of refractive index (RI) (marker for substances) and thickness (morphology), existing decoupling methods mainly rely on complex integrated systems or extensive optical field information. Developing simple and rapid decoupling methods remains a challenge. This study introduces a refractive index morphology imaging microscope (RIMIM) system utilizing polarization multiplexing for label-free single living cells. By simultaneous degree of circular polarization (DOCP) imaging and noninterferometric quantitative phase imaging (QPI), the intracellular refractive index distribution (IRID) and morphology can be decoupled. The optical thickness calculated from the phase is input into the circular depolarization decay model (CDDM) of degree of circular polarization to retrieve IRID. Subsequently, the thickness can be decoupled from phase result using retrieved IRID. Experiments conducted on mouse forestomach carcinoma (MFC) cells and human kidney-2 cells (HK-2) demonstrated the RIMIM system's ability to retrieve IRID and decouple fine morphology. Additionally, the RIMIM system effectively detected membrane damage and changes in erastin-induced ferroptotic HK-2 cells, with average and root-mean-square of surface folds 65.5% and 70.0% higher than those of normal HK-2 cells. Overall, the RIMIM system provides a simple and rapid method for decoupling RI and fine morphology, showing great potential for label-free live cells' cytopathology detection.
Collapse
Affiliation(s)
- Huijun Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Fan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Huang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weihao Zhao
- Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zewen Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lifang Tian
- Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Zhang O, Lew MD. Single-molecule orientation-localization microscopy: Applications and approaches. Q Rev Biophys 2024; 57:e17. [PMID: 39710866 PMCID: PMC11771422 DOI: 10.1017/s0033583524000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind to targets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise. Additionally, we compare labeling approaches, imaging hardware, and publicly available analysis software to aid the community in choosing the best SMOLM implementation for their specific biophysical application. Finally, we highlight future directions for SMOLM, such as the development of probes with improved photostability and specificity, the design of “smart” adaptive hardware, and the use of advanced computational approaches to handle large, complex datasets. This review underscores the significant current and potential impact of SMOLM in deepening our understanding of molecular dynamics, paving the way for future breakthroughs in the fields of biophysics, biochemistry, and materials science.
Collapse
Affiliation(s)
- Oumeng Zhang
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew D. Lew
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Dean WF, Mattheyses AL. Illuminating cellular architecture and dynamics with fluorescence polarization microscopy. J Cell Sci 2024; 137:jcs261947. [PMID: 39404619 PMCID: PMC11529880 DOI: 10.1242/jcs.261947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Ever since Robert Hooke's 17th century discovery of the cell using a humble compound microscope, light-matter interactions have continuously redefined our understanding of cell biology. Fluorescence microscopy has been particularly transformative and remains an indispensable tool for many cell biologists. The subcellular localization of biomolecules is now routinely visualized simply by manipulating the wavelength of light. Fluorescence polarization microscopy (FPM) extends these capabilities by exploiting another optical property - polarization - allowing researchers to measure not only the location of molecules, but also their organization or alignment within larger cellular structures. With only minor modifications to an existing fluorescence microscope, FPM can reveal the nanoscale architecture, orientational dynamics, conformational changes and interactions of fluorescently labeled molecules in their native cellular environments. Importantly, FPM excels at imaging systems that are challenging to study through traditional structural approaches, such as membranes, membrane proteins, cytoskeletal networks and large macromolecular complexes. In this Review, we discuss key discoveries enabled by FPM, compare and contrast the most common optical setups for FPM, and provide a theoretical and practical framework for researchers to apply this technique to their own research questions.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Bruggeman E, Zhang O, Needham LM, Körbel M, Daly S, Cheetham M, Peters R, Wu T, Klymchenko AS, Davis SJ, Paluch EK, Klenerman D, Lew MD, O'Holleran K, Lee SF. POLCAM: instant molecular orientation microscopy for the life sciences. Nat Methods 2024; 21:1873-1883. [PMID: 39375574 PMCID: PMC11466833 DOI: 10.1038/s41592-024-02382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/17/2024] [Indexed: 10/09/2024]
Abstract
Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells.
Collapse
Affiliation(s)
- Ezra Bruggeman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa-Maria Needham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sam Daly
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Matthew Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ruby Peters
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tingting Wu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Strasbourg, France
| | - Simon J Davis
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Chen W, Song H, Dai C, Huang Z, Wu A, Shan G, Liu H, Jiang A, Liu X, Ru C, Abdalla K, Dhanani SN, Moosavi KF, Pathak S, Librach C, Zhang Z, Sun Y. CP-Net: Instance-aware part segmentation network for biological cell parsing. Med Image Anal 2024; 97:103243. [PMID: 38954941 DOI: 10.1016/j.media.2024.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Instance segmentation of biological cells is important in medical image analysis for identifying and segmenting individual cells, and quantitative measurement of subcellular structures requires further cell-level subcellular part segmentation. Subcellular structure measurements are critical for cell phenotyping and quality analysis. For these purposes, instance-aware part segmentation network is first introduced to distinguish individual cells and segment subcellular structures for each detected cell. This approach is demonstrated on human sperm cells since the World Health Organization has established quantitative standards for sperm quality assessment. Specifically, a novel Cell Parsing Net (CP-Net) is proposed for accurate instance-level cell parsing. An attention-based feature fusion module is designed to alleviate contour misalignments for cells with an irregular shape by using instance masks as spatial cues instead of as strict constraints to differentiate various instances. A coarse-to-fine segmentation module is developed to effectively segment tiny subcellular structures within a cell through hierarchical segmentation from whole to part instead of directly segmenting each cell part. Moreover, a sperm parsing dataset is built including 320 annotated sperm images with five semantic subcellular part labels. Extensive experiments on the collected dataset demonstrate that the proposed CP-Net outperforms state-of-the-art instance-aware part segmentation networks.
Collapse
Affiliation(s)
- Wenyuan Chen
- Department of Computer Science, University of Toronto, Toronto, M5S 2E4, Canada
| | - Haocong Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Changsheng Dai
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongjie Huang
- Suzhou Boundless Medical Technology Ltd., Co.,, Suzhou 215000, China
| | - Andrew Wu
- Division of Engineering Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Hang Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Aojun Jiang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Xingjian Liu
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | | | | | | | - Shruti Pathak
- CReATe Fertility Centre, Toronto, ON M5G 1N8, Canada
| | | | - Zhuoran Zhang
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
10
|
Ren W, Guan M, Liang Q, Li M, Jin B, Duan G, Zhang L, Ge X, Xu H, Hou Y, Gao B, Sodmergen, Xi P. Expanding super-resolution imaging versatility in organisms with multi-confocal image scanning microscopy. Natl Sci Rev 2024; 11:nwae303. [PMID: 40040644 PMCID: PMC11879394 DOI: 10.1093/nsr/nwae303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 03/06/2025] Open
Abstract
Resolving complex three-dimensional (3D) subcellular dynamics noninvasively in live tissues demands imaging tools that balance spatiotemporal resolution, field-of-view and phototoxicity. Image scanning microscopy (ISM), as an advancement of confocal laser scanning microscopy, provides a 2-fold 3D resolution enhancement. Nevertheless, the relatively low imaging speed has been the major obstacle for ISM to be further employed in in vivo imaging of biological tissues. Our proposed solution, multi-confocal image scanning microscopy (MC-ISM), aims to overcome the limitations of existing techniques in terms of spatiotemporal resolution balancing by optimizing pinhole diameter and pitch, eliminating out-of-focus signals, and introducing a frame reduction reconstruction algorithm. The imaging speed is increased by 16 times compared with multifocal structured illumination microscopy. We further propose a single-galvo scan, akin to the Archimedes spiral in spinning disk confocal systems, to ensure a high-speed and high-accuracy scan without the galvanometer's inertial motion. Benefitting from its high photon efficiency, MC-ISM allows continuous imaging of mitochondria dynamics in live cells for 1000 frames without apparent phototoxicity, reaching an imaging depth of 175 μm. Noteworthy, MC-ISM enables the observation of the inner membrane structure of living mitochondria in Arabidopsis hypocotyl for the first time, demonstrating its outstanding performance.
Collapse
Affiliation(s)
- Wei Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Meiling Guan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing 100094, China
| | - Qianxi Liang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Boya Jin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Guangxing Duan
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Liya Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Hong Xu
- Airy Technologies Co. Ltd., Beijing 100086, China
| | - Yiwei Hou
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Sodmergen
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Mishra YN, Wang P, Bauer FJ, Gudipati MS, Wang LV. Single-pulse ultrafast real-time simultaneous planar imaging of femtosecond laser-nanoparticle dynamics in flames. LIGHT, SCIENCE & APPLICATIONS 2024; 13:221. [PMID: 39209815 PMCID: PMC11362337 DOI: 10.1038/s41377-024-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The creation of carbonaceous nanoparticles and their dynamics in hydrocarbon flames are still debated in environmental, combustion, and material sciences. In this study, we introduce single-pulse femtosecond laser sheet-compressed ultrafast photography (fsLS-CUP), an ultrafast imaging technique specifically designed to shed light on and capture ultrafast dynamics stemming from interactions between femtosecond lasers and nanoparticles in flames in a single-shot. fsLS-CUP enables the first-time real-time billion frames-per-second (Gfps) simultaneous two-dimensional (2D) imaging of laser-induced fluorescence (LIF) and laser-induced heating (LIH) that are originated from polycyclic aromatic hydrocarbons (PAHs) and soot particles, respectively. Furthermore, fsLS-CUP provides the real-time spatiotemporal map of femtosecond laser-soot interaction as elastic light scattering (ELS) at an astonishing 250 Gfps. In contrast to existing single-shot ultrafast imaging approaches, which are limited to millions of frames per second only and require multiple laser pulses, our method employs only a single pulse and captures the entire dynamics of laser-induced signals at hundreds of Gfps. Using a single pulse does not change the optical properties of nanoparticles for a following pulse, thus allowing reliable spatiotemporal mapping. Moreover, we found that particle inception and growth are derived from precursors. In essence, as an imaging modality, fsLS-CUP offers ultrafast 2D diagnostics, contributing to the fundamental understanding of nanoparticle's inception and broader applications across different fields, such as material science and biomedical engineering.
Collapse
Affiliation(s)
- Yogeshwar Nath Mishra
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cheng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA, 91125, USA
- Science Division, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
- Lehrstuhl für Technische Thermodynamik (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Peng Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cheng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA, 91125, USA
| | - Florian J Bauer
- Lehrstuhl für Technische Thermodynamik (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Murthy S Gudipati
- Science Division, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cheng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA, 91125, USA.
| |
Collapse
|
12
|
Pang C, Xu H, Xu J, Zhang L, Wang J, Jing S. Qualifying P-glycoprotein in drug-resistant ovarian cancer cells: a dual-mode aptamer probe approach. Analyst 2024; 149:3928-3938. [PMID: 38916121 DOI: 10.1039/d4an00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Drug resistance presents a significant obstacle in treating human ovarian cancer. The development of effective methods for detecting drug-resistant cancer cells is pivotal for tailoring personalized therapies and prognostic assessments. In this investigation, we introduce a dual-mode detection technique employing a fluorogenic aptamer probe for the qualification of P-glycoprotein (P-gp) in drug-resistant ovarian cancer cells. The probe, initially in an "off" state due to the proximity of a quencher to the fluorophore, exhibits increased fluorescence intensity upon binding with the target. The fluorescence enhancement shows a linear correlation with both the concentration of P-gp and the presence of P-gp in drug-resistant ovarian cancer cells. This correlation is quantifiable, with detection limits of 1.56 nM and 110 cells per mL. In an alternate mode, the optimized fluorophores, attached to the aptamer, form larger complexes upon binding to the target protein, which diminishes the rotation speed, thereby augmenting fluorescence polarization. The alteration in fluorescence polarization enables the quantitative analysis of P-gp in the cells, ranging from 100 to 1500 cells per milliliter, with a detection limit of 40 cells per mL. Gene expression analyses, protein expression studies, and immunofluorescence imaging further validated the reliability of our aptamer-based probe for its specificity towards P-gp in drug-resistant cancer cells. Our findings underscore that the dual-mode detection approach promises to enhance the diagnosis and treatment of multidrug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Chaobin Pang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Heng Xu
- Jiangsu Provincial Institute of Materia Medica, Nanjing Tech University, Nanjing, 211816, China
- Nanjing Health Run Biotechnology Co., Ltd, Nanjing, 211316, China
| | - Jichao Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jinhua Wang
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing 210009, Jiangsu Province, China.
- Department of Gynaecology, NO.1 Hospital of Xining, 10 Huzhuxiang Road, Xining 810099, Qinghai Province, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
13
|
Chandler T, Guo M, Su Y, Chen J, Wu Y, Liu J, Agashe A, Fischer RS, Mehta SB, Kumar A, Baskin TI, Jamouillé V, Liu H, Swaminathan V, Nain A, Oldenbourg R, Riviére PL, Shroff H. Three-dimensional spatio-angular fluorescence microscopy with a polarized dual-view inverted selective-plane illumination microscope (pol-diSPIM). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584243. [PMID: 38712306 PMCID: PMC11071302 DOI: 10.1101/2024.03.09.584243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Collapse
Affiliation(s)
- Talon Chandler
- CZ Biohub SF, San Francisco, 94158, California, USA
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
| | - Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Junyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Robert S. Fischer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Shalin B. Mehta
- CZ Biohub SF, San Francisco, 94158, California, USA
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Abhishek Kumar
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Tobias I. Baskin
- Biology Department, University of Massachusetts, Amherst, 01003, Maryland, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Valentin Jamouillé
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A 1S6, British Columbia, Canada
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Vinay Swaminathan
- Department of Clinical Sciences, Lund University, Lund, SE-221 00, Scania, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, SE-221 00, Scania, Sweden
| | - Amrinder Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, 24061, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Rudolf Oldenbourg
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Patrick La Riviére
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| |
Collapse
|
14
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
15
|
Jin Y, Spiller NP, He C, Faulkner G, Booth MJ, Elston SJ, Morris SM. Zwitterion-doped liquid crystal speckle reducers for immersive displays and vectorial imaging. LIGHT, SCIENCE & APPLICATIONS 2023; 12:242. [PMID: 37735157 PMCID: PMC10514055 DOI: 10.1038/s41377-023-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Lasers possess many attractive features (e.g., high brightness, narrow linewidth, well-defined polarization) that make them the ideal illumination source for many different scientific and technological endeavors relating to imaging and the display of high-resolution information. However, their high-level of coherence can result in the formation of noise, referred to as speckle, that can corrupt and degrade images. Here, we demonstrate a new electro-optic technology for combatting laser speckle using a chiral nematic liquid crystal (LC) dispersed with zwitterionic dopants. Results are presented that demonstrate when driven at the optimum electric field conditions, the speckle noise can be reduced by >90% resulting in speckle contrast (C) values of C = 0.07, which is approaching that required to be imperceptible to the human eye. This LC technology is then showcased in an array of different display and imaging applications, including a demonstration of speckle reduction in modern vectorial laser-based imaging.
Collapse
Affiliation(s)
- Yihan Jin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Nathan P Spiller
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Grahame Faulkner
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Steve J Elston
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Stephen M Morris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
16
|
Qiu L, Su Y, Xu KM, Cui H, Zheng D, Zhu Y, Li L, Li F, Zhao W. A high-precision multi-dimensional microspectroscopic technique for morphological and properties analysis of cancer cell. LIGHT, SCIENCE & APPLICATIONS 2023; 12:129. [PMID: 37248287 DOI: 10.1038/s41377-023-01153-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Raman and Brillouin scattering are sensitive approaches to detect chemical composition and mechanical elasticity pathology of cells in cancer development and their medical treatment researches. The application is, however, suffering from the lack of ability to synchronously acquire the scattering signals following three-dimensional (3D) cell morphology with reasonable spatial resolution and signal-to-noise ratio. Herein, we propose a divided-aperture laser differential confocal 3D Geometry-Raman-Brillouin microscopic detection technology, by which reflection, Raman, and Brillouin scattering signals are simultaneously in situ collected in real time with an axial focusing accuracy up to 1 nm, in the height range of 200 μm. The divided aperture improves the anti-noise capability of the system, and the noise influence depth of Raman detection reduces by 35.4%, and the Brillouin extinction ratio increases by 22 dB. A high-precision multichannel microspectroscopic system containing these functions is developed, which is utilized to study gastric cancer tissue. As a result, a 25% reduction of collagen concentration, 42% increase of DNA substances, 17% and 9% decrease in viscosity and elasticity are finely resolved from the 3D mappings. These findings indicate that our system can be a powerful tool to study cancer development new therapies at the sub-cell level.
Collapse
Affiliation(s)
- Lirong Qiu
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Yunhao Su
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Ke-Mi Xu
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Han Cui
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Dezhi Zheng
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Yuanmin Zhu
- Department of Gastroenterology, Aerospace Central Hospital, Peking University Aerospace School of Clinical Medicine, 100081, Beijing, China
| | - Lin Li
- Department of Gastroenterology, Aerospace Central Hospital, Peking University Aerospace School of Clinical Medicine, 100081, Beijing, China
| | - Fang Li
- Department of Pathology, Aerospace Central Hospital, Peking University Aerospace School of Clinical Medicine, 100081, Beijing, China
| | - Weiqian Zhao
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
17
|
Steves M, Knappenberger KL. Distinguishing Single-Metal Nanoparticles with Subdiffraction Spatial Resolution Using Variable-Polarization Fourier Transform Nonlinear Optical Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:91-98. [PMID: 37122832 PMCID: PMC10131489 DOI: 10.1021/cbmi.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023]
Abstract
The development and use of interferometric variable-polarization Fourier transform nonlinear optical (vpFT-NLO) imaging to distinguish colloidal nanoparticles colocated within the optical diffraction limit is described. Using a collinear train of phase-stabilized pulse pairs with orthogonal electric field vectors, the polarization of nonlinear excitation fields are controllably modulated between linear, circular, and various elliptical states. Polarization modulation is achieved by precise control over the time delay separating the orthogonal pulse pairs to within hundreds of attoseconds. The resultant emission from gold nanorods is imaged to a 2D array detector and correlated to the excitation field polarization and plasmon resonance frequency by Fourier transformation. Gold nanorods with length-to-diameter aspect ratios of 2 support a longitudinal surface plasmon resonance at approximately 800 nm, which is resonant with the excitation fundamental carrier wavelength. Differences in the intrinsic linear and circular dichroism resulting from variation in their relative alignment with respect to the laboratory frame enable optical differentiation of nanorods separated within 50 nm, which is an approximate 5-fold improvement over the diffraction limit of the microscope. The experimental results are supported by analytical simulations. In addition to subdiffraction spatial resolution, the vpFT-NLO method intrinsically provides the polarization- and frequency-dependent resonance response of the nanoparticles-providing spectroscopic information content along with super-resolution imaging capabilities.
Collapse
Affiliation(s)
| | - Kenneth L. Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Dean WF, Mattheyses AL. Defining domain-specific orientational order in the desmosomal cadherins. Biophys J 2022; 121:4325-4341. [PMID: 36225113 PMCID: PMC9703042 DOI: 10.1016/j.bpj.2022.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Desmosomes are large, macromolecular protein assemblies that mechanically couple the intermediate filament cytoskeleton to sites of cadherin-mediated cell adhesion, thereby providing structural integrity to tissues that routinely experience large forces. Proper desmosomal adhesion is necessary for the normal development and maintenance of vertebrate tissues, such as epithelia and cardiac muscle, while dysfunction can lead to severe disease of the heart and skin. Therefore, it is important to understand the relationship between desmosomal adhesion and the architecture of the molecules that form the adhesive interface, the desmosomal cadherins (DCs). However, desmosomes are embedded in two plasma membranes and are linked to the cytoskeletal networks of two cells, imposing extreme difficulty on traditional structural studies of DC architecture, which have yielded conflicting results. Consequently, the relationship between DC architecture and adhesive function remains unclear. To overcome these challenges, we utilized excitation-resolved fluorescence polarization microscopy to quantify the orientational order of the extracellular and intracellular domains of three DC isoforms: desmoglein 2, desmocollin 2, and desmoglein 3. We found that DC ectodomains were significantly more ordered than their cytoplasmic counterparts, indicating a drastic difference in DC architecture between opposing sides of the plasma membrane. This difference was conserved among all DCs tested, suggesting that it may be an important feature of desmosomal architecture. Moreover, our findings suggest that the organization of DC ectodomains is predominantly the result of extracellular adhesive interactions. We employed azimuthal orientation mapping to show that DC ectodomains are arranged with rotational symmetry about the membrane normal. Finally, we performed a series of mathematical simulations to test the feasibility of a recently proposed antiparallel arrangement of DC ectodomains, finding that it is supported by our experimental data. Importantly, the strategies employed here have the potential to elucidate molecular mechanisms for diseases that result from defective desmosome architecture.
Collapse
Affiliation(s)
- William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
19
|
Brasselet S. Fluorescence polarization modulation super-resolution imaging provides refined dynamics orientation processes in biological samples. LIGHT, SCIENCE & APPLICATIONS 2022; 11:322. [PMID: 36336677 PMCID: PMC9637731 DOI: 10.1038/s41377-022-01018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Combining polarization modulation Fourier analysis and spatial information in a joint reconstruction algorithm for polarization-resolved fluorescence imaging provides not only a gain in spatial resolution but also a sensitive readout of anisotropy in cell samples.
Collapse
Affiliation(s)
- Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France.
| |
Collapse
|
20
|
Xi P, Wei X, Qu J, Tuchin VV. Shedding light on biology and healthcare-preface to the special issue on Biomedical Optics. LIGHT, SCIENCE & APPLICATIONS 2022; 11:156. [PMID: 35650200 PMCID: PMC9160079 DOI: 10.1038/s41377-022-00804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 05/11/2023]
Abstract
This special issue collects 20 excellent papers, spanning NIR II imaging, high-speed imaging, adaptive wavefront shaping, label-free imaging, ultrasensitive detection, polarization optics, photodynamic therapy, and preclinical applications. [Image: see text]
Collapse
Affiliation(s)
- Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.
| | - Xunbin Wei
- Department of Biomedical Engineering, Peking University, 100081, Beijing, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, 518060, Shenzhen, China
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov, 410012, Russia
| |
Collapse
|