1
|
Ji H, Luo Z, Yang X, Jin X, Zhao T, Duan P. Chiral dual-annihilator model for controllable photon upconversion and multi-dimensional optical modulation. Nat Commun 2025; 16:4952. [PMID: 40436922 PMCID: PMC12119800 DOI: 10.1038/s41467-025-60290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Triplet-triplet annihilation photon upconversion seeks efficient conversion of low-energy photons to high-energy emission. However, the triplet-triplet annihilation photon upconversion system faces limitations in emission gamut because efficient triplet-triplet energy transfer between sensitizer and annihilator relies on triplet energy matching, making it challenging to realize multi-channel luminescence and multi-dimensional optical control. Here, to overcome this barrier, we propose a chiral dual-annihilator model, which mitigates the restriction of energy matching and achieves facile manipulation of circularly polarized luminescence through a dual-channel triplet-triplet energy transfer process. A theoretical equation for quantifying the overall triplet-triplet energy transfer efficiency and the energy flow between the sensitizer and two kinds of annihilators is proposed. Its accuracy is demonstrated by fine-controlling the emission bandwidth of triplet-triplet annihilation photon upconversion (average error less than 4.5%) in the experimental aspect. In addition, by introducing chiral liquid crystals, the dual-annihilator model achieves data coding and multi-dimensional optical encryption applications. This dual-annihilator model deepens the understanding of energy flow and lays the foundation for accurate, multidimensional modulation of photon upconversion.
Collapse
Affiliation(s)
- Honghan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, People's Republic of China
| | - Zhiwang Luo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China.
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Hussain S, AlTowireb SM, Zourob M. Photonic Marvels: Exploring the Self-Assembly of Cellulose Nanocrystals for Sustainable Materials and Beyond. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29021-29046. [PMID: 40356082 DOI: 10.1021/acsami.5c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cellulose nanocrystals (CNCs) are biodegradable, plant-derived colloidal particles that can self-assemble through evaporation-induced self-assembly (EISA) to form photonic films. The ability of CNCs to organize structurally colored films has garnered significant attention as a promising source of sustainable materials. CNCs serve as versatile photonic building blocks for creating biobased colored materials. This review provides a comprehensive overview of the latest advancements in chiral photonic CNC (CPCNC) materials. We delve into the chiral structures of these materials and factors affecting the EISA route, exploring their fundamental principles and bottom-up synthesis techniques. Additionally, various responsive CPCNCs are systematically introduced with a focus on their mechanisms, properties, and potential applications. The review concludes with a discussion of emerging applications, challenges, and future opportunities for CPCNCs. By leveraging the unique properties of CPCNCs within complex responsive polymer networks, we see significant potential for developing innovative physicochemical sensors, structural coatings, and optical devices.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| | - Sara M AlTowireb
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Xiao R, Yu S, Tang Z, Tang J, Zhang H, Zhong S. Monodisperse Silica Microsphere with Extremely Large Specific Surface Area: Preparation and Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11003-11011. [PMID: 40275772 DOI: 10.1021/acs.langmuir.5c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Monodisperse SiO2 microspheres are widely used in catalysis, separation, adsorption, and drug delivery. Their particle size, uniformity, and specific surface area are crucial for these applications. This study reports the novel preparation of monodisperse SiO2 microspheres using cetyltrimethylammonium bromide as the template agent, employing hexadecylamine serving concurrently as a pore-expanding agent and catalyst. By controlling the reactant quantities and reaction conditions, we achieved monodisperse SiO2 microspheres with tunable particle sizes ranging from 800 nm to 2.5 μm with exceptionally large specific surface areas. It is worth mentioning that microspheres with a particle size of 2 μm and extremely uniform size distribution were produced at room temperature. Excitingly, it has a BET specific surface area of 1543 m2/g. Various effects on the preparation of the microspheres were investigated in detail, and the growth mechanism of these microspheres was elucidated.
Collapse
Affiliation(s)
- Ruicheng Xiao
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Siming Yu
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Zhongsheng Tang
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jianping Tang
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hang Zhang
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Shengliang Zhong
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
4
|
Lu X, Tan Y, Gao Z, Ding T. Deterministic Placement of Achiral Emitters in Superchiral Fields for Superior Chiral Photoluminescence. NANO LETTERS 2025; 25:7137-7143. [PMID: 40243183 DOI: 10.1021/acs.nanolett.5c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Chiral luminescence holds promise for various applications, but achieving strong, pixelated emission with a large dissymmetry factor (glum) for on-chip integration remains challenging. Here we address this challenge by optically growing CdS emitters within the superchiral fields of Au spiral metasurfaces. This precise placement enhances emitter-field interaction, yielding chiral photoluminescence with a glum of up to ∼0.5 and an ∼30-fold intensity enhancement. We demonstrate that both the excitation wavelength and emitter location significantly impact chiral luminescence quality, highlighting the critical role of resonant excitation and spatial alignment with superchiral fields. These findings provide crucial guidelines for designing high-performance chiral luminescence devices suitable for on-chip photonic integration.
Collapse
Affiliation(s)
- Xiaolin Lu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yong Tan
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhiyuan Gao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Soltani P, Ten Hacken M, van der Meijden A, Snik F, de Dood MJA. Polarization resolved hyperspectral imaging of the beetle Protaetia speciosa jousselini. OPTICS EXPRESS 2025; 33:14858-14871. [PMID: 40219412 DOI: 10.1364/oe.557318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Understanding and classifying chiral structural color of scarab beetles across the phylogenetic tree is an important scientific tool to explore the origins of the homochiral optical response in biological structures with a potential relation to the homochirality of (chitin) molecules. We report hyperspectral polarization resolved images of the scarab beetle Protaetia speciosa jousselini (Gory & Percheron, 1833) and resolve the state of polarization as a function of both position (spatial resolution of ~20 μm × 10 μm) and wavelength (spectral resolution of 5.5 nm). We observe a strong left-handed chiral Bragg reflectance and analyze the center wavelength and width of the spectrum. The reflectance and state of polarization match scale with the center wavelength of the Bragg reflection, while the relative width of reflectance spectrum is characterized by a chiral photonic strength parameter ψC ≈ 0.14 that is independent of the reflected color and position. Based on the self-similarity of the reflectance spectra we interpret variation in reflectance as variations in the thickness of the chiral Bragg reflector across the beetle.
Collapse
|
6
|
Lai X, Li T, Hou X, Vogelbacher F, Wang J, Song Y, Shi L, Li M. Chiral structural color from microdomes. Proc Natl Acad Sci U S A 2025; 122:e2419113122. [PMID: 39999168 DOI: 10.1073/pnas.2419113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Artificial chiral-structural-color materials can carry high-dimensional information based on multiple optical degrees of freedom, providing possibilities for advanced optical security and information storage. However, current artificial chiral-structural-color materials are hindered by their specific compositions, fine nanostructures, and single polarization modulation. Here, we found that microdomes made from common polymers have chiral structural colors with broadband tunability and multiple polarization-modulated chirality. The microdome patterns are easily fabricated by ordinary printing techniques and have inhomogeneous spatial distributions of full polarization states and customizable colors. Our chiral-structural-color microdomes (CSCMs) provide a promising roadmap for high-capacity information encryption and high-security anti-counterfeiting. We developed multidimensional tunable structural color displays and achieved encryption with high information capacity. To further highlight the application potential, we constructed contact lenses integrated with CSCMs for identity authentication with 232 distinctive cryptograms.
Collapse
Affiliation(s)
- Xintao Lai
- Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tongyu Li
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiaoyu Hou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Florian Vogelbacher
- Department of Engineering Physics, Münster University of Applied Sciences, Steinfurt 48565, Germany
| | - Jiajun Wang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210008, People's Republic of China
| | - Mingzhu Li
- Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
7
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
8
|
Lv J, Sun R, Gao X. Emerging devices based on chiral nanomaterials. NANOSCALE 2025; 17:3585-3599. [PMID: 39750744 DOI: 10.1039/d4nr03998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As advanced materials, chiral nanomaterials have recently gained vast attention due to their special geometry-based physical and chemical properties. The fast development of the related science and technology means that various devices involving polarization-based information encryption, photoelectronic and spintronic devices, 3D displays, biomedical sensors and measurement, photonic engineering, electronic engineering, solar devices, etc., been explored extensively. These fields are at their beginning, and much effort needs to be made, including improving the optical, electronic, and magnetic properties of advanced chiral nanomaterials, precisely designing materials, and developing more efficient construction methods. This review tries to offer a whole picture of these state-of-the-art conditions in these fields and offers perspectives on future development.
Collapse
Affiliation(s)
- Jiawei Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rui Sun
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
9
|
Liu W, Ju X, Wang Y, Fang X, Wang D, Wang J. Tunable Chiroptical Activity in Branched Ag@Au Nanoparticles with Molecular Chirality and Geometric Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410021. [PMID: 39711280 DOI: 10.1002/smll.202410021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Chiral plasmonic nanomaterials have attracted significant awareness due to their applications in chiral catalysis, biosensing, photonics, and separation. Constructing plasmonic core-shell nanomaterials with geometric chirality and desirable optical chirality is a crucial yet challenging task for extending the range of chiral plasmonic nanomaterials. Here, a two-step method is reported for the synthesis of Gold (Au) branches wrapped silver (Ag) nanocubes (L/DBAg@Au) with strong and tunable circular dichroism (CD) signals under the regulation of L/D-cysteine (L/D-Cys). The Au branches consisted of multiple pinwheel-like Au. Both experimental results and theoretical simulations have demonstrated that the CD signals of these structures originated from the synergism between molecular chirality and geometrical chirality. The CD signals in the visible region could be enhanced through coupling effects between Au and Ag. The CD signals and geometries evolved with the variations in Cys concentration, chiral molecule type, and incubation time. This work provides valuable insights to guide the rational design of plasmonic core-shell nanomaterials with geometric chirality.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xinfeng Ju
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaoyu Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
10
|
Huang Y, Zhou Y, Guo X, Tong Z, Zhuang T. Near-infrared circularly polarized luminescence enabled by chiral inorganic nanomaterials. NANOSCALE 2025; 17:1922-1931. [PMID: 39651574 DOI: 10.1039/d4nr03743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Near-infrared circularly polarized luminescence (NIR-CPL) has attracted widespread attention owing to its fascinating characteristic-circular polarization in specific illumination regions-offering advances in applications such as information security and cancer detection. For the generation of NIR-CPL, chiral inorganic nanomaterials have emerged as the desirable candidates due to their extraordinary chiroptical properties. In this mini-review, we first highlight the recent advances in NIR-CPL produced from chiral inorganic nanomaterials. Thereafter, we present the applications of NIR-CPL in information security and cancer detection. Finally, we prospect the challenges in this field and provide new perspectives and insights for the development of novel NIR-CPL materials and new applications.
Collapse
Affiliation(s)
- Yanji Huang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yajie Zhou
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Xueru Guo
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Zhi Tong
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Taotao Zhuang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
11
|
Lu H, Qi F, Wang H, He T, Sun B, Gao X, Comstock AH, Gull S, Zhang Y, Qiao T, Shao T, Zheng YX, Sun D, Chen Y, Zhang HL, Tang Z, Long G. Strong Magneto-Chiroptical Effects through Introducing Chiral Transition-Metal Complex Cations to Lead Halide. Angew Chem Int Ed Engl 2025; 64:e202415363. [PMID: 39630104 DOI: 10.1002/anie.202415363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/14/2024]
Abstract
The interplay between chirality with magnetism can break both the space and time inversion symmetry and have wide applications in information storage, photodetectors, multiferroics and spintronics. Herein, we report the chiral transition-metal complex cation-based lead halide, R-CDPB and S-CDPB. In contrast with the traditional chiral metal halides with organic cations, a novel strategy for chirality transfer from the transition-metal complex cation to the lead halide framework is developed. The chiral complex cations directly participate the band structure and introduce the d-d transitions and tunable magneto-chiroptical effects in both the ultraviolet and full visible range into R-CDPB and S-CDPB. Most importantly, the coupling between magnetic moment of the complex cation and chiroptical properties is confirmed by the magneto-chiral dichroism. For the band-edge transition, the unprecedented modulation of +514 % for S-CDPB and -474 % for R-CDPB was achieved at -1.3 Tesla. Our findings demonstrate a novel strategy to combine chirality with magnetic moment, and provide a versatile material platform towards magneto-chiroptical and chiro-spintronic applications.
Collapse
Affiliation(s)
- Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Fenglian Qi
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hebin Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei He
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Bing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Andrew H Comstock
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Sehrish Gull
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yunxin Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianjiao Qiao
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianyin Shao
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dali Sun
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
12
|
He W, Chen C, Wu S, Wong WPD, Wu Z, Chang K, Wang J, Gao H, Loh KP. Dion-Jacobson Perovskites with a Ferroelectrically Switchable Chiral Nonlinear Optical Response. J Am Chem Soc 2025; 147:811-820. [PMID: 39699582 DOI: 10.1021/jacs.4c13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported. Here, we demonstrate the electro-optic modulation of SHG based on the multipolar effect in a chiral ferroelectric two-dimensional hybrid perovskite s-(FBDA)CdCl4 (s-FBDA = (2s)-2-fluorobutane-1,4-diamine). s-(FBDA)CdCl4 (s-FCC) crystals are highly stable in air, and its SHG response exhibits circular dichroism (i.e., SHG-CD) that can be ferroelectrically switched. The ferroelectrically switchable SHG-CD arises from the reconfiguration of distinct chirality-induced multipolar moments during the ferroelectric switching process. This reconfiguration induces a π/2 circular difference in SHG, leading to a reversal of circularly polarized light sensitivity. As a proof of concept, we demonstrate that the electrically controlled SHG-CD of s-FCC can be used in the transmission of encrypted optical communications.
Collapse
Affiliation(s)
- Weixin He
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Changjiang Chen
- Physics Department, Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Shiyao Wu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhenyue Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Kai Chang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Jiesu Wang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Heng Gao
- Physics Department, Institute for Quantum Science and Technology, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
13
|
Li H, Zhang S, Zhu QL, Sheng TL, Wu XT, Wen Y. Fluorescent Dye-Based Chiral Crystalline Organic Salt Networks for Circularly Polarized Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408874. [PMID: 39449222 DOI: 10.1002/smll.202408874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 10/26/2024]
Abstract
A facile and general strategy is developed herein for the construction of circularly polarized luminescence (CPL) materials with simultaneously high fluorescence quantum efficiency (Φ) and large luminescence dissymmetry factor (glum). The self-assembly of fluorescent dye, disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (CBS), with chiral diamines such as (R,R)/(S,S)-1,2-diaminocyclohexane (R/S-DACH) and R/S-1,2-diaminopropane (R/S-DAP), produces four chiral crystalline organic salt networks (COSNs). These as-synthesized organic salts emit strong blue-color CPL upon excitation, with both high Φ and glum values of up to 79% and 0.022. The well-defined molecular structures and arrangements of CBS are directly observed through single crystal X-ray analysis, offering crucial information regarding the origins of high-efficiency CPL performance. The chirality of amine is effectively transferred to CBS and further amplified to the supramolecular structure by multiple hydrogen bonding and π-π stacking interactions, giving rise to the large glum factors; meanwhile, the fixation and the ordered arrangement of CBS by these multiple interactions empower efficient suppression of molecular motions, facilitating strong fluorescence. This work can inspire the assembly of CPL organic materials with high Φ and glum via charge-assisted hydrogen bonds between fluorescent dyes and chiral inducers. It also offers important insight into the structural origins of supramolecular chirality and CPL performance.
Collapse
Affiliation(s)
- Haitao Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuyu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuehong Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Wang Y, Zhang X, Xie D, Chen C, Huang Z, Li ZA. Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202419610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/03/2025]
Abstract
AbstractChirality, the property of objects that are nonsuperimposable on their mirror images, plays a crucial role in biological processes and cellular behaviors. Chiral engineered biomaterials have emerged as a promising approach to regulating cellular fate in regenerative medicine. However, few reviews provide a comprehensive examination of recent advancements in chiral biomaterials and their applications in cellular fate regulation. Herein, various fabrication techniques available for chiral biomaterials, including the use of chiral molecules, surface patterning, and self‐assembly are discussed. The mechanisms through which chiral biomaterials influence cellular responses, such as modulation of adhesion receptors, intracellular signaling, and gene expression, are explored. Notably, chiral biomaterials have demonstrated their ability to guide stem cell differentiation and augment tissue‐specific functions. The potential applications of chiral biomaterials in musculoskeletal disorders, neurodegenerative diseases, cardiovascular diseases, and wound healing are highlighted. Challenges and future perspectives, including standardization of fabrication methods and translation to clinical settings, are addressed. In conclusion, chiral engineered biomaterials offer exciting prospects for precisely controlling cellular fate, advancing regenerative medicine, and enabling personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Xin Zhang
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital Beijing 100191 China
| | - Denghui Xie
- Department of Orthopaedic Surgery Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou 510630 China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases Guangzhou 510630 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety New Cornerstone Science Laboratory National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifeng Huang
- Department of Chemistry The Chinese University of Hong Kong Shatin Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Zhong Alan Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shenzhen Research Institute The Chinese University of Hong Kong No.10, 2nd Yuexing Road, Nanshan Shenzhen Guangdong Province 518057 China
| |
Collapse
|
15
|
Liu W, Fang X, Ju X, Gao K, Wang D, Xu H, Wang J. Amino acid-induced synthesis of chiral AgAuPt nanoparticles with branched structure for circularly polarized enantioselective photoelectrocatalytic water splitting. J Colloid Interface Sci 2024; 675:74-83. [PMID: 38964126 DOI: 10.1016/j.jcis.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Chiral Plasmonic nanomaterials have gradually illustrated intriguing circularly polarized light (CPL)-dependent properties in photocatalysis due to their unique chiral optical activity. However, the connection between chiral characteristics and catalytic performance of these materials in cooperative systems is rarely reported and remains a challenge task. In this work, branched AgAuPt nanoparticles induced by L/d-cysteine (Cys) with strong and perfectly symmetric circular dichroism (CD) signals are synthesized. Chiral branched AgAuPt nanoparticles firstly exhibit superior typical electrocatalytic performance. In the photoelectrocatalytic system, chiral branched AgAuPt nanoparticles demonstrate selective catalytic water splitting performance. Specifically, chiral branched AgAuPt with related CPL irradiation exhibits enhanced acidic hydrogen evolution reaction (HER) performance. Under the continuous irradiation of related CPL, the chiral catalyst generates more heat, which further increases the catalytic activity. This contribution of heat is supported by density functional theory (DFT) calculation results. The changes in chiroptical activity during this process are recorded by variable temperature CD spectra. This work provides a novel paradigm for designing chiral catalysis systems and emphasizes the profound promise of chiral plasmonic nanomaterials as chiral catalysts.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiaoyu Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xinfeng Ju
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Kang Gao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
16
|
Skrypnik MY, Kurtina DA, Karamysheva SP, Stepanidenko EA, Vasil'eva IS, Chang S, Lebedev AI, Vasiliev RB. Menthol-Induced Chirality in Semiconductor Nanostructures: Chiroptical Properties of Atomically Thin 2D CdSe Nanoplatelets Capped with Enantiomeric L-(-)/D-(+)-Menthyl Thioglycolates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1921. [PMID: 39683309 DOI: 10.3390/nano14231921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Semiconductor colloidal nanostructures capped with chiral organic molecules are a research hotspot due to their wide range of important implications for photonic and spintronic applications. However, to date, the study of chiral ligands has been limited almost exclusively to naturally occurring chiral amino and hydroxy acids, which typically contain only one stereocenter. Here, we show the pronounced induction of chirality in atomically thin CdSe nanoplatelets (NPLs) by capping them with enantiopure menthol derivatives as multi-stereocenter molecules. L-(-)/D-(+)-menthyl thioglycolate, easily synthesized from L-(-)/D-(+)-menthol, is attached to Cd-rich (001) basal planes of 2- and 3-monolayer (ML) CdSe NPLs. We show the appearance of narrow sign-alternating bands in the circular dichroism (CD) spectra of 2 ML NPLs corresponding to heavy-hole (HH) and light-hole (LH) excitons with maximal dissymmetry g-factor up to 2.5 × 10-4. The most intense CD bands correspond to the lower-energy HH exciton, and in comparison with the N-acetyl-L-Cysteine ligand, the CD bands for L-(-)-menthyl thioglycolate have the opposite sign. The CD measurements are complemented with magnetic CD measurements and first-principles modeling. The obtained results may be of interest for designing new chiral semiconductor nanostructures and improving understanding of their chiroptical properties.
Collapse
Affiliation(s)
- Maria Yu Skrypnik
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria A Kurtina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sofia P Karamysheva
- PhysNano Department, ITMO University, Kronverksky pr.49, 197101 St. Petersburg, Russia
| | | | - Irina S Vasil'eva
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071 Moscow, Russia
| | - Shuai Chang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China
| | - Alexander I Lebedev
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman B Vasiliev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Sun Y, Zhang Y, Ni J, Shen Y, Yu H, Lee HK, Hu J, Zhan X, Zhou C, Han J. Chiral Inorganic Polar BaTiO 3/BaCO 3 Nanohybrids with Spin Selection for Asymmetric Photocatalysis. NANO LETTERS 2024. [PMID: 39561320 DOI: 10.1021/acs.nanolett.4c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Chirality-dependent photocatalysis is an emerging domain that leverages unique chiral light-matter interactions for enabling asymmetric catalysis driven by spin polarization induced by circularly polarized light selection. Herein, we synthesize chiral inorganic polar BaTiO3/BaCO3 nanohybrids for asymmetric photocatalysis via a hydrothermal method employing chiral glucose as a structural inducer. When excited by opposite circularly polarized light, the same material exhibits significant asymmetric catalysis, while enantiomers present an opposite polarization preference. More importantly, the preferred circularly polarized light undergoes reversal with reversal of the CD signal. Systematic experimental results demonstrate that more photogenerated carriers are generated in chiral semiconductors under suitable circularly polarized light irradiation, including more spin-polarized electrons, which inhibits the recombination of electron-hole pairs and promotes the activation of oxygen molecules into reactive oxygen species, thus inducing this asymmetric photocatalytic feature. This study provides valuable insights for the development of highly efficient polarization-sensitive chiral perovskite nanostructures as promising candidates for next-generation, multifunctional chiral device applications.
Collapse
Affiliation(s)
- Yemeng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jingren Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yihui Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hongjian Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiuqin Zhan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chuanqiang Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
18
|
Okuda S, Ikai T, Okutsu H, Ando M, Hattori M, Ishidate R, Yashima E. Helix-Sense-Selective Memory Polymerization of Biphenylylacetylenes Bearing Carboxy and Amino Groups in Water. Angew Chem Int Ed Engl 2024; 63:e202412752. [PMID: 39043565 DOI: 10.1002/anie.202412752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
We report the helix-sense-selective memory polymerization (HSMP) of achiral biphenylylacetylenes bearing carboxy and amino pendant groups in the presence of basic and acidic chiral guests in water, respectively. The HSMP proceeds in a highly helix-sense-selective manner driven by noncovalent chiral ionic interactions between the monomers and guests under kinetic control, producing the one-handed helical polymers with a static memory of helicity in one-pot during the polymerization in a very short time, accompanied by amplification of asymmetry. The carboxy-bound helicity-memorized polymer self-assembles into a cholesteric liquid crystal in concentrated water, in which a variety of basic achiral fluorophores further co-assembles to form supramolecular helical aggregates that exhibit an induced circularly polarized luminescence in a color tunable manner.
Collapse
Affiliation(s)
- Shogo Okuda
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) Kawaguchi, Saitama, 332-0012, Japan
| | - Hinako Okutsu
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Mitsuka Ando
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masaki Hattori
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ryoma Ishidate
- Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Present address: Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, R.O.C
| |
Collapse
|
19
|
Xiao Y, Shi A, Yang G, Yu Y, Nie Q, Qi S, Xiang C, Zhang T. Induced Circularly Polarized Luminescence From 0D Quantum Dots by 2D Chiral Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404913. [PMID: 39235369 DOI: 10.1002/smll.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Materials with circularly polarized luminescence (CPL) exhibit great application potential in biological scenes such as cell imaging, optical probes, etc. However, most developed materials are non-aqueous and toxic, which seriously restricts their compatibility with the life systems. Thus, it is necessary to explore a water-based CPL system with high biocompatibility so that to promote the biologic application process. Herein, a facile and efficient route to achieve the CPL properties of a functional aqueous solution is demonstrated by the combination of 0D quantum dots (QDs) and 2D chiral nanosheets. Benefited by the specific absorption ability of nanosheets for left/right-handed CPL, the QDs adsorbed onto the surface of nanosheets through hydrogen bond interactions showed apparent CPL features. In addition, this system has a good extensibility as the CPL property can be effectively regulated by changing the kind of emissive QDs. More importantly, this water-based nano-composite with facile fabrication process (one-step mixing) is suitable for the real applications, which is undoubtedly beneficial for the further progress of functional CPL materials.
Collapse
Affiliation(s)
- Yuqi Xiao
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Yang Yu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, P. R. China
| | - Quan Nie
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Qi
- Institute of Biomedical Engineering, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
20
|
Zou G, Jiang Z, Li D, Li Q, Cheng Y. Efficient helical columnar emitters of chiral homoleptic Pt(ii) metallomesogens for circularly polarized electroluminescence. Chem Sci 2024:d4sc05781c. [PMID: 39430933 PMCID: PMC11488679 DOI: 10.1039/d4sc05781c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Chiral organometallic Pt(ii) complexes have been demonstrated to be excellent circularly polarized luminescence (CPL) materials due to their rich phosphorescence and strong self-assembly characteristics. However, it remains a formidable task to simultaneously achieve high luminance (L) and electroluminescence dissymmetry factor (g EL) values for circularly polarized electroluminescence (CP-EL) devices of Pt(ii) complex-based emitters. In this study, we carry out a straightforward and efficient protocol to construct highly CPL-active helical columnar () emitters by using chiral homoleptic triazolatoplatinum(ii) metallomesogens (R/S-HPt). The peripheral flexible groups can not only improve solubility but also favor the induction of chirality and liquid crystal behavior. The resultant complexes R/S-HPt can self-assemble into the mesophase over a broad temperature range (6-358 °C) and exhibit excellent phosphorescence (Φ: up to 86%), resulting in intense CPL signals after thermal annealing (λ em = 615 nm and |g em| = 0.051). Using emitting layers (EML) based on R/S-HPt in solution-processed CP-EL devices, L max and |g EL| of CP-EL can reach up to 11 379 cd m-2 and 0.014, respectively. With comprehensive consideration of L max and g EL, this investigation shows the excellent performances among Pt(ii) complex-based CP-EL devices.
Collapse
Affiliation(s)
- Guo Zou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhenhao Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Dong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Qihuan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
21
|
Wang S, Gou X, Shi P, Lin M, Yang A, Du L, Yuan X. Unveiling the Loss Mode Enabled Tunable Plasmonic Chirality at Flat Metal Surface. ACS NANO 2024; 18:27503-27510. [PMID: 39324866 DOI: 10.1021/acsnano.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Plasmonic chirality has garnered significant interest in the past decade due to its enhanced chiral light-matter interactions. Current methods for achieving plasmonic chirality often rely on complex nanostructures or metamaterials, which are hampered by intricate fabrication processes. In this work, we present an approach to generate plasmonic chiral structured surface plasmon polariton (s-SPP) fields on a single, flat metal surface, bypassing elaborate fabrication techniques. The plasmonic chiral s-SPP fields are excited by the superposition of multiple differently oriented transverse magnetic polarized plane waves. We demonstrate, both theoretically and experimentally, the flexible tuning of chiral plasmonic patterns by adjusting the symmetry and phase differences of the incident waves. This method provides a facile mean to optically tailor plasmonic chiral properties on a subwavelength scale, offering potential applications in sensing, enantioselective reactions, imaging, and reconfigurable chiral switches.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xinxin Gou
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Peng Shi
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Min Lin
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Aiping Yang
- Research Institute of Interdisciplinary Sciences (RISE) and School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Luping Du
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Li SJ, Sun YW, Li ZW. Two-Step Chirality Transfer to Twisted Assemblies: Synergistic Interplay of Chiral and Aggregation Interactions. ACS NANO 2024; 18:26560-26567. [PMID: 39298663 DOI: 10.1021/acsnano.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Chirality plays a pivotal role in both the origin of life and the self-assembly of materials. However, the governing principles behind chirality transfer in hierarchical self-assembly across multiple length scales remain elusive. Here, we propose a concise and versatile simulation strategy using the patchy particle chain model to investigate the self-assembly of rods interacting through chiral and aggregation interactions. We reveal that chiral interaction possessing an entropic nature, amplifies the fluctuations and twists in the alignment of rods, while aggregation interaction serves as a foundational platform for aggregation and assembly. When both interactions exhibit moderate absolute and relative values, their synergistic interplay facilitates the chirality transfer from rods to assemblies, resulting in the formation of chiral mesoscale ordered structures. Furthermore, we observe a two-step chirality transfer process by monitoring the formation kinetics of the twisted assemblies. This work not only provides a comprehensive insight into chirality transfer mechanisms, but also introduces a versatile mesoscale simulation framework for exploring the role of chirality in hierarchical self-assembly.
Collapse
Affiliation(s)
- Shu-Jia Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Chen J, Wang Z, Yu Y, Huang J, Chen X, Du T, Song X, Yuan H, Zhou S, Hu XG, Zeng X, Zhong S, Lan R. Dynamic handedness inversion of self-organized helical superstructures enabled by novel thermally stable light-driven chiral hydrazone switches. Chem Sci 2024; 15:d4sc05007j. [PMID: 39328194 PMCID: PMC11421039 DOI: 10.1039/d4sc05007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Chiral hydrazone photoswitch features are its high thermal stability and negative photochromy, making it desirable in the fabrication of thermally stable optical device. However, chiral hydrazones capable of reversibly inversing chirality is scarcely reported. Herein, a series of new chiral hydrazone switches, HI-1, HI-2 and HI-3, were designed and synthesized. Due to the photoinduced configuration changes, the newly synthesized hydrazone photoswitch presents a surprising chirality inversion upon light stimulation. Photoisomerization of light-driven hydrazone switch molecules was investigated by nuclear magnetic resonance (NMR) spectra and Raman spectroscopy. The effect of the intramolecular hydrogen bond on photoresponsiveness was analyzed. By incorporating the photoswitch into a liquid crystal (LC) host, light-driven cholesteric liquid crystals (CLCs) with handedness invertibility, a feasible photonic bandgap tunability, and superior thermal stability were achieved. In addition, according to the optical-driven thermal stability of the hydrazone switches, the fine regulation of light-driven CLC materials with multistage photo stationary states was realized, and the application of CLC materials in erasable and rewritable display panels was also demonstrated.
Collapse
Affiliation(s)
- Jingyu Chen
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Zichen Wang
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yuexin Yu
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Jun Huang
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Xinyu Chen
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Tongji Du
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Xinyue Song
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Haiyang Yuan
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Shuai Zhou
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Xiang-Guo Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 China
| | - Xingping Zeng
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Shengliang Zhong
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| | - Ruochen Lan
- College of Chemistry and Materials, Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
24
|
Rusen E, Mocanu A, Dinescu A, Boldeiu A, Romanitan C, Iordanescu S, Aldrigo M, Somoghi R, Mitran R, Ghebaur A. Different morphologies of super-balls obtained to form photonic crystals of cholesteryl benzoate liquid crystals. NANOSCALE ADVANCES 2024:d4na00431k. [PMID: 39258118 PMCID: PMC11382146 DOI: 10.1039/d4na00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
The current study highlights the synthesis and characterization of some nanocomposite materials formed by polymer particles and liquid crystals. The liquid crystals used were cholesteryl benzoate (CLB), and the particles were synthesized by emulsion polymerization in the absence of the emulsifier. Through SEM and DLS analysis, the synthesis of particles of the same size was emphasized, and the amount of CLB showed no influence on these parameters. The lack of signal for CLB in the case of DSC and XRD analyses for the sample with the smallest amount of liquid crystal is attributed to the detection limits of the devices. To complete the surface characterization of the particles, XPS analysis was performed. Through XPS it was underlined that in the case of the smallest amount and the largest amount of CLB, respectively, it is encapsulated in the polymer particles, unlike the case of the average amount used, in which core-shell type morphologies have been obtained. For the electrical characterization of the samples, a Vector Network Analyzer (VNA) connected to two rectangular X-band (i.e., 8.2-12.4 GHz) waveguides through coaxial cables was used.
Collapse
Affiliation(s)
- Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Sergiu Iordanescu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Martino Aldrigo
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Raluca Somoghi
- Oil-Gas University of Ploiesti 39 B-dul Bucuresti 100520 Ploiesti Romania
- The National Institute for Research & Development in Chemistry and Petrochemistry 202, Spl. Independentei 060021 Bucharest Romania
| | - Raul Mitran
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy 202 Splaiul Indepedentei Bucharest 060021 Romania
| | - Adi Ghebaur
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnology Romania
| |
Collapse
|
25
|
Grelet E, Tortora MMC. Elucidating chirality transfer in liquid crystals of viruses. NATURE MATERIALS 2024; 23:1276-1282. [PMID: 38783105 DOI: 10.1038/s41563-024-01897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Chirality is ubiquitous in nature across all length scales, with major implications spanning fields from biology, chemistry and physics to materials science. How chirality propagates from nanoscale building blocks to meso- and macroscopic helical structures remains an open issue. Here, working with a canonical system of filamentous viruses, we demonstrate that their self-assembly into chiral liquid crystal phases quantitatively results from the interplay between two main mechanisms of chirality transfer: electrostatic interactions from the helical charge patterns on the virus surface, and fluctuation-based helical deformations leading to viral backbone helicity. Our experimental and theoretical approach provides a comprehensive framework for deciphering how chirality is hierarchically and quantitatively propagated across spatial scales. Our work highlights the ways in which supramolecular helicity may arise from subtle chiral contributions of opposite handedness that act either cooperatively or competitively, thus accounting for the multiplicity of chiral behaviours observed for nearly identical molecular systems.
Collapse
Affiliation(s)
- Eric Grelet
- Centre de Recherche Paul Pascal (CRPP, UMR 5031), Univ. Bordeaux, CNRS, Pessac, France.
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC, UMR 5239, Inserm 1293), Univ. Claude Bernard Lyon 1, ENS de Lyon, CNRS, Lyon, France.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Zhang R, Song Z, Cao W, Gao G, Yang L, He Y, Han J, Zhang Z, Wang T, Zhu J. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding. LIGHT, SCIENCE & APPLICATIONS 2024; 13:223. [PMID: 39209835 PMCID: PMC11362162 DOI: 10.1038/s41377-024-01541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A novel multispectral smart window has been proposed, which features dynamic modulation of light transmittance and effective shielding against electromagnetic microwave radiation. This design integrates liquid crystal dynamic scattering and dye doping techniques, enabling the dual regulation of transmittance and scattering within a single-layer smart window. Additionally, the precise control of conductive film thickness ensures the attainment of robust microwave signal shielding. We present a theoretical model for ion movement in the presence of an alternating electric field, along with a novel approach to manipulate negative dielectric constant. The proposed model successfully enables a rapid transition between light transparent, absorbing and haze states, with an optimum drive frequency adjustable to approximately 300 Hz. Furthermore, the resistive design of the conductive layer effectively mitigates microwave radiation within the 2-18 GHz range. These findings offer an innovative perspective for future advancements in environmental construction.
Collapse
Affiliation(s)
- Ruicong Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Zicheng Song
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Wenxin Cao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Gang Gao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Lei Yang
- Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150080, China
| | - Yurong He
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiecai Han
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhibo Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Tianyu Wang
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Jiaqi Zhu
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| |
Collapse
|
27
|
He J, Hara M, Ohnuki R, Yoshioka S, Ikai T, Takeoka Y. Circularly Polarized Luminescence Chirality Inversion and Dual Anticounterfeiting Labels Based on Fluorescent Cholesteric Liquid Crystal Particles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43991-44003. [PMID: 39054591 DOI: 10.1021/acsami.4c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of materials with circularly polarized luminescence (CPL) properties is a promising but challenging frontier in advanced materials science. Modulating the chiral properties of chiral polymers has also been a focus of research. Studies have been conducted to control the ground-state chirality of chiral polymers by adjusting the concentration of the chiral dopant. However, the chirality inversion of CPL of fluorescent liquid crystal particles by chiral dopant concentration has not been reported. Here, we report the preparation of fluorescent cholesteric liquid crystal (FCLC) particles that display polarizable structural color and CPL, demonstrating how varying the chiral dopant amount can reverse the CPL direction, leading to systems where the rotation directions of polarizable structural color and CPL either align or differ. This study confirmed the critical role played by the formation of the twist grain boundary phase in inducing the inversion of the ground-state chirality of FCLC particles and, subsequently, triggering the inversion process of CPL chirality. Furthermore, it leverages chiral structural color and fluorescence of FCLC particles to develop a sophisticated dual verification system. This system, utilizing both circularly polarized light and fluorescence, offers enhanced anticounterfeiting protection for high-value items.
Collapse
Affiliation(s)
- Jialei He
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryosuke Ohnuki
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Shinya Yoshioka
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Tomoyuki Ikai
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
28
|
Zhou Y, Zhang Y, Rosi NL. Imparting Stability to Chiral Helical Gold Nanoparticle Superstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39018267 PMCID: PMC11295200 DOI: 10.1021/acs.langmuir.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Realizing the promise of chiral inorganic nanomaterials hinges on improving their structural stability under various chemical and environmental conditions. Here, we examine the stability of 1-D gold nanoparticle (Au NP) single helices prepared using the amphiphilic peptide conjugate Cx-(PEPAuM-ox)2 (PEPAuM-ox = AYSSGAPPMoxPPF; x = 16-22). We present a general template-independent strategy of tuning helix stability that relies on controlling the dimensions of constituent NPs. As NP dimensions increase, Au NP single helices become both more thermally stable and more stable in the presence of chemical denaturants and protein digestion agents (e.g., urea and proteinase K, respectively). We use this strategy for imparting helix stability to create colloidal suspensions of thermally robust Au NP single helices which maintain their plasmonic chiroptical activity up to ∼80 °C.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuyu Zhang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
29
|
Zhang L, Xiao J, Xu X, Li K, Li D, Li J. Functionalized Chiral Materials for Use in Chiral Sensors. Crit Rev Anal Chem 2024:1-20. [PMID: 39012839 DOI: 10.1080/10408347.2024.2376233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chirality represents a fundamental attribute within living systems and is a pervasive phenomenon in the natural world. The identification and analysis of chiral materials within natural environments and biological systems hold paramount importance in clinical, chemical, and biological sciences. Within chiral analysis, there is a burgeoning focus on developing chiral sensors exhibiting exceptional selectivity, sensitivity, and stability, marking it as a forefront area of research. In the past decade (2013-2023), approximately 1990 papers concerning the application of various chiral materials in chiral sensors have been published. Biological materials and nanomaterials have important applications in the development of chiral sensors, which accounting for 26.67% and 45.24% of the material-related applications in these sensors, respectively; moreover, the development of chiral nanomaterials is closely related to the development of portable and stable chiral sensors. Natural chiral materials, utilized as selective recognition units, are combined with carriers characterized by good physical and chemical properties through functionalization to form various functional chiral materials, which improve the recognition efficiency of chiral sensors. In this article, from the perspective of biological materials, polymer materials, nanomaterials, and other functional chiral materials, the applications of chiral sensors are summarized and the research prospects of chiral sensors are discussed.
Collapse
Affiliation(s)
- Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jiaxi Xiao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xuemei Xu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kaiting Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
30
|
Ji Y, Song T, Yu H. Assembly-Induced Dynamic Structural Color in a Host-Guest System for Time-Dependent Anticounterfeiting and Double-Lock Encryption. Angew Chem Int Ed Engl 2024; 63:e202401208. [PMID: 38597254 DOI: 10.1002/anie.202401208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Manipulation of periodic micro/nanostructures in polymer film is of great importance for academics and industrial applications in anticounterfeiting. However, with the increasing demand on information security, materials with time-dependent features are urgently required, especially the material where the same information can appear more than once on the time scale. Here, one concise strategy to realize time-dependent anticounterfeiting and "double-lock" information encryption based on a host-guest system is proposed, with one photoresponsive azopolymer as the host and one liquid-crystalline molecule as the guest. The system exhibits a tunable mass transport in pre-designed periodic micro/nanostructures by tailoring the process of cis-to-trans recovery of azo groups and assembly of mesogenic trans-isomers, resulting in a dynamic structural color in film. Taking advantage of this extraordinary feature, time-dependent dynamic anticounterfeiting has been achieved. More importantly, the time of each state's appearance in the whole process can be modulated by changing the host-guest ratio. Combining the manipulatable process of mass transport with the unique decoding method, the stored information in film can be decrypted correctly. This work provides an unprecedented dynamic approach for advanced anticounterfeiting technology with a higher level of security and high-end applications in information encryption.
Collapse
Affiliation(s)
- Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianfu Song
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
31
|
Li S, Tang Y, Fan Q, Li Z, Zhang X, Wang J, Guo J, Li Q. When quantum dots meet blue phase liquid crystal elastomers: visualized full-color and mechanically-switchable circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2024; 13:140. [PMID: 38876989 PMCID: PMC11178798 DOI: 10.1038/s41377-024-01479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Polymer-based circularly polarized luminescence (CPL) materials with the advantage of diversified structure, easy fabrication, high thermal stability, and tunable properties have garnered considerable attention. However, adequate and precise tuning over CPL in polymer-based materials remains challenging due to the difficulty in regulating chiral structures. Herein, visualized full-color CPL is achieved by doping red, green, and blue quantum dots (QDs) into reconfigurable blue phase liquid crystal elastomers (BPLCEs). In contrast to the CPL signal observed in cholesteric liquid crystal elastomers (CLCEs), the chiral 3D cubic superstructure of BPLCEs induces an opposite CPL signal. Notably, this effect is entirely independent of photonic bandgaps (PBGs) and results in a high glum value, even without matching between PBGs and the emission bands of QDs. Meanwhile, the lattice structure of the BPLCEs can be reversibly switched via mechanical stretching force, inducing on-off switching of the CPL signals, and these variations can be further fixed using dynamic disulfide bonds in the BPLCEs. Moreover, the smart polymer-based CPL systems using the BPLCEs for anti-counterfeiting and information encryption have been demonstrated, suggesting the great potential of the BPLCEs-based CPL active materials.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qingyan Fan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ziyuan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
32
|
Yang XX, Li N, Li C, Jin ZB, Ma ZZ, Gu ZG, Zhang J. Chiral Liquid Crystalline Metal-Organic Framework Thin Films for Highly Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:16213-16221. [PMID: 38814730 DOI: 10.1021/jacs.4c04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Combining metal-organic frameworks (MOFs) with liquid crystals to construct liquid crystalline MOFs (LCMOF) offers the advantage of endowing and enhancing their functionality, yet it remains a challenging task. Herein, we report chiral liquid crystalline MOF (CLCMOF) thin films by cross-linking the chiral liquid crystals (CLC) with MOF thin films to realize highly circular polarization luminescence (CPL) performance with photo and thermal switching. By layer by layer cross-linking stilbene-containing CLC with stilbene-based MOF (CLC/MOF) thin film, the CLCMOF thin films were successfully obtained after UV irradiation due to the abundant [2 + 2] photocycloaddition. The resulted CLCMOF thin films have strong chirality, obvious photochromic fluorescent, and strong CPL performance (the asymmetry factor reaches to 0.4). Furthermore, due to the photochromic fluorescent MOF and thermotropic CLC, the CPL can be reversed and red-shifted after heating and UV irradiation treatment, showing photo- and thermal CPL switching. Such MOF-based CPL thin films with photo/thermal CPL switching were prepared to patterns and codes for the demonstration of potential application in advanced information anticounterfeit and encryption. This study not only opens a strategy for developing chiral thin films combining MOFs and liquid crystals but also offers a new route to achieve CPL switching in optical applications.
Collapse
Affiliation(s)
- Xue-Xian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
| | - Na Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
| | - Chong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
| | - Zhi-Bin Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Zhou Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Cao H, Yang E, Kim Y, Zhao Y, Ma W. Biomimetic Chiral Nanomaterials with Selective Catalysis Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306979. [PMID: 38561968 PMCID: PMC11187969 DOI: 10.1002/advs.202306979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Chiral nanomaterials with unique chiral configurations and biocompatible ligands have been booming over the past decade for their interesting chiroptical effect, unique catalytical activity, and related bioapplications. The catalytic activity and selectivity of chiral nanomaterials have emerged as important topics, that can be potentially controlled and optimized by the rational biochemical design of nanomaterials. In this review, chiral nanomaterials synthesis, composition, and catalytic performances of different biohybrid chiral nanomaterials are discussed. The construction of chiral nanomaterials with multiscale chiral geometries along with the underlying principles for enhancing chiroptical responses are highlighted. Various biochemical approaches to regulate the selectivity and catalytic activity of chiral nanomaterials for biocatalysis are also summarized. Furthermore, attention is paid to specific chiral ligands, materials compositions, structure characteristics, and so on for introducing selective catalytic activities of representative chiral nanomaterials, with emphasis on substrates including small molecules, biological macromolecule, and in-site catalysis in living systems. Promising progress has also been emphasized in chiral nanomaterials featuring structural versatility and improved chiral responses that gave rise to unprecedented chances to utilize light for biocatalytic applications. In summary, the challenges, future trends, and prospects associated with chiral nanomaterials for catalysis are comprehensively proposed.
Collapse
Affiliation(s)
- Honghui Cao
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyNo. 100 Haiquan RoadShanghai201418China
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| | - En Yang
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Yoonseob Kim
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong SAR999077China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Wei Ma
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
34
|
Xu Y, Huang Z, Zhang Z, Ding B, Li P, Liu J, Hao Y, Dai L, Zhang H, Zhu C, Cai W, Liu B. An Electro-Optical Kerr Device Based on 2D Boron Nitride Liquid Crystals for Solar-Blind Communications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307330. [PMID: 38497596 DOI: 10.1002/adma.202307330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Achieving light modulation in the spectral range of 200-280 nm is a prerequisite for solar-blind ultraviolet communication, where current technologies are mainly based on the electro-luminescent self-modulation of the ultraviolet source. External light modulation through the electro-birefringence control of liquid crystal (LC) devices has shown success in the visible-to-infrared regions. However, the poor stability of conventional LCs against ultraviolet irradiation and their weak electro-optical response make it challenging to modulate ultraviolet light. Here, an external ultraviolet light modulator is demonstrated using two-dimensional boron nitride LC. It exhibits robust ultraviolet stability and a record-high specific electro-optical Kerr coefficient of 5.1 × 10⁻2 m V-2, being three orders of magnitude higher than those of other known electro-optical media that are transparent (or potentially transparent) in the ultraviolent spectral range. The sensitive response enables fabricating transmissive and stable ultraviolet-C electro-optical Kerr modulators for solar-blind ultraviolet light. An M-ary coding array with high transmission density is also demonstrated for solar-blind ultraviolet communication.
Collapse
Affiliation(s)
- Youan Xu
- Xi'an Research Institute of High Technology, Xi'an, 710025, China
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ziyang Huang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zehao Zhang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baofu Ding
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality/Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, 518055, China
| | - Peixuan Li
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiarong Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yugan Hao
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lixin Dai
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Zhang
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen, 518060, China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen, 518060, China
| | - Wei Cai
- Xi'an Research Institute of High Technology, Xi'an, 710025, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
35
|
Wang Y, Li N, Chu L, Hao Z, Chen J, Huang J, Yan J, Bian H, Duan P, Liu J, Fang Y. Dual Enhancement of Phosphorescence and Circularly Polarized Luminescence through Entropically Driven Self-Assembly of a Platinum(II) Complex. Angew Chem Int Ed Engl 2024; 63:e202403898. [PMID: 38497553 DOI: 10.1002/anie.202403898] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Addressing the dual enhancement of circular polarization (glum) and luminescence quantum yield (QY) in circularly polarized luminescence (CPL) systems poses a significant challenge. In this study, we present an innovative strategy utilizing the entropically driven self-assembly of amphiphilic phosphorescent platinum(II) complexes (L-Pt) with tetraethylene glycol chains, resulting in unique temperature dependencies. The entropically driven self-assembly of L-Pt leads to a synergistic improvement in phosphorescence emission efficiency (QY was amplified from 15 % at 25 °C to 53 % at 60 °C) and chirality, both in the ground state and the excited state (glum value has been magnified from 0.04×10-2 to 0.06) with increasing temperature. Notably, we observed reversible modulation of phosphorescence and chirality observed over at least 10 cycles through successive heating and cooling, highlighting the intelligent control of luminescence and chiroptical properties by regulating intermolecular interactions among neighboring L-Pt molecules. Importantly, the QY and glum of the L-Pt assembly in solid state were measured as 69 % and 0.16 respectively, representing relatively high values compared to most self-assembled CPL systems. This study marks the pioneering demonstration of dual thermo-enhancement of phosphorescence and CPL and provides valuable insights into the thermal effects on high-temperature and switchable CPL materials.
Collapse
Affiliation(s)
- Yanqing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Na Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Liangwen Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Zelin Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Junyu Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jiang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Junlin Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
36
|
Zhang X, Li L, Chen Y, Valenzuela C, Liu Y, Yang Y, Feng Y, Wang L, Feng W. Mechanically Tunable Circularly Polarized Luminescence of Liquid Crystal-Templated Chiral Perovskite Quantum Dots. Angew Chem Int Ed Engl 2024; 63:e202404202. [PMID: 38525500 DOI: 10.1002/anie.202404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
Endowing perovskite quantum dots (PQDs) with circularly polarized luminescence (CPL) offers great promise for innovative chiroptical applications, but the existing strategies are inefficient in acquiring stimuli-responsive flexible chiral perovskite films with large, tunable dissymmetry factor (glum) and long-term stability. Here, we report a strategy for the design and synthesis of luminescent cholesteric liquid crystal elastomer (Lumin-CLCE) films with mechanically tunable CPL, which is enabled by liquid crystal-templated chiral self-assembly and in situ covalent cross-linking of judiciously designed photopolymerizable CsPbX3 (X=Cl, Br, I) PQD nanomonomers into the elastic polymer networks. The resulting Lumin-CLCE films showcase circularly polarized structural color in natural light and noticeable CPL with a maximum glum value of up to 1.5 under UV light. The manipulation of CPL intensity and rotation direction is achieved by controlling the self-assembled helicoidal nanostructure and the handedness of soft helices. A significant breakthrough lies in the achievement of a reversible, mechanically tunable perovskite-based CPL switch activated by biaxial stretching, which enables flexible, dynamic anti-counterfeiting labels capable of decrypting preset information in specific polarization states. This work can provide new insights for the development of advanced chiral perovskite materials and their emerging applications in information encryption, flexible 3D displays, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yufan Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| |
Collapse
|
37
|
Lyu P, Broer DJ, Liu D. Advancing interactive systems with liquid crystal network-based adaptive electronics. Nat Commun 2024; 15:4191. [PMID: 38760356 PMCID: PMC11101476 DOI: 10.1038/s41467-024-48353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Achieving adaptive behavior in artificial systems, analogous to living organisms, has been a long-standing goal in electronics and materials science. Efforts to integrate adaptive capabilities into synthetic electronics traditionally involved a typical architecture comprising of sensors, an external controller, and actuators constructed from multiple materials. However, challenges arise when attempting to unite these three components into a single entity capable of independently coping with dynamic environments. Here, we unveil an adaptive electronic unit based on a liquid crystal polymer that seamlessly incorporates sensing, signal processing, and actuating functionalities. The polymer forms a film that undergoes anisotropic deformations when exposed to a minor heat pulse generated by human touch. We integrate this property into an electric circuit to facilitate switching. We showcase the concept by creating an interactive system that features distributed information processing including feedback loops and enabling cascading signal transmission across multiple adaptive units. This system responds progressively, in a multi-layered cascade to a dynamic change in its environment. The incorporation of adaptive capabilities into a single piece of responsive material holds immense potential for expediting progress in next-generation flexible electronics, soft robotics, and swarm intelligence.
Collapse
Affiliation(s)
- Pengrong Lyu
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Dirk J Broer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Danqing Liu
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.
| |
Collapse
|
38
|
Liu Y, Hao A, Xing P. Ultrasensitive Solvatochirochromism of Single Benzene Chromophores. Chemistry 2024; 30:e202400059. [PMID: 38409631 DOI: 10.1002/chem.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Solvents influence the structure, aggregation and folding behaviors of solvatochromic compounds. Ultrasensitive solvent mediated chiroptical response is conducive to the fabrication of molecular platform for sensing and recognition, which however, remains great challenges in conceptual or applicable design. Here we report a cysteine-based single benzene chromophore system that shows ultrasensitivity to solvents. Compared to the ratiometrically responsive systems, the chiroptical activities could be triggered or inverted depending on the substituents of chiral entities with an ultralow solvent volume fraction (<1 vol %). One drop of dipolar solvents shall significantly induce the emergence or inversion of chiroptical signals in bulky phases. Based on the experimental and computational studies, the ultrasensitivity is contributed to the intimate interplay between solvents and chiral compounds that anchors the specific chiral conformation. It illustrates that structurally simple organic compounds without aggregation or folding behaviors possess pronounced solvatochiroptical properties, which sheds light on the next-generation of chiroptical sensors and switches.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| |
Collapse
|
39
|
Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, Gun'ko YK. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308912. [PMID: 38241607 PMCID: PMC11167410 DOI: 10.1002/adma.202308912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design and discovery, and reducing the need for time-consuming and labor-intensive experiments and simulations. In contrast to their achiral counterparts, the application of machine learning for chiral nanomaterials is still in its infancy, with a limited number of publications to date. This is despite the great potential of machine learning to advance the development of new sustainable chiral materials with high values of optical activity, circularly polarized luminescence, and enantioselectivity, as well as for the analysis of structural chirality by electron microscopy. In this review, an analysis of machine learning methods used for studying achiral nanomaterials is provided, subsequently offering guidance on adapting and extending this work to chiral nanomaterials. An overview of chiral nanomaterials within the framework of synthesis-structure-property-application relationships is presented and insights on how to leverage machine learning for the study of these highly complex relationships are provided. Some key recent publications are reviewed and discussed on the application of machine learning for chiral nanomaterials. Finally, the review captures the key achievements, ongoing challenges, and the prospective outlook for this very important research field.
Collapse
Affiliation(s)
- Vera Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Áine Coogan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Dmitry Botov
- Everypixel Media Innovation Group, 021 Fillmore St., PMB 15, San Francisco, CA, 94115, USA
- Neapolis University Pafos, 2 Danais Avenue, Pafos, 8042, Cyprus
| | - Yulia Gromova
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA, 02138, USA
| | - Elena V Ushakova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| |
Collapse
|
40
|
Li Y, Chen Y, Luo J, Quan Y, Cheng Y. Light-Driven Sign Inversion of Circularly Polarized Luminescence Enabled by Dichroism Modulation in Cholesteric Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312331. [PMID: 38217293 DOI: 10.1002/adma.202312331] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Stimuli-responsive circularly polarized luminescence (CPL) materials show great promise in applying information encryption and anticounterfeiting. Herein, light-driven CPL sign inversion is achieved by combining a photoresponsive achiral negative dichroic dye (KG) and a static achiral positive dichroic dye (NR) as dopants at the 0.5:0.5 weight ratio into the cholesteric liquid crystal (CLC) host. The side chains of KG undergo trans/cis isomerization after 365 nm UV light irradiation, leading to the dichroism (SF) decrease. The |glum| value of CLC doping with KG (CLC-KG) weakens from 0.67 to 0.28 in response to the order degree change. Taking advantage of its unique CPL response property, the light-driven CPL sign inversion is achieved (from -0.20/0.14 to 0.02/-0.04) by incorporating NR (0.5:0.5) into the CLC-KG with helical superstructure static. Based on the synergistic use of circular polarization and responsiveness state as cryptographic primitives, the multidimensional information encryption CLC system can be realized.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaxin Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
41
|
Chen RQ, Wang ST, Liu YJ, Zhang J, Fang WH. Assembly of Homochiral Aluminum Oxo Clusters for Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:7524-7532. [PMID: 38451059 DOI: 10.1021/jacs.3c13244] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chiral aluminum oxo clusters (cAlOCs) are distinguished from other classes of materials on account of their abundance in the earth's crust and their potential for sustainable development. However, the practical synthesis of cAlOCs is rarely known. Herein, we adopt a synergistic coordination strategy by using chiral amino acid ligands as bridges and auxiliary pyridine-2,6-dicarboxylic acid as chelating ligands and successfully isolate an extensive family of cAlOCs. They integrate molecular chirality, absolute helicity, and intrinsic hydrogen-bonded chiral topology. Moreover, they have the structural characteristics of one-dimensional channels and replaceable counteranions, which make them well combined with fluorescent dyes for circularly polarized luminescence (CPL). The absolute luminescence dissymmetry factor (glum) of up to the 10-3 order is comparable to several noble metals, revealing the enormous potential of cAlOCs in low-cost chiral materials. We hope this work will inspire new discoveries in the field of chirality and provide new opportunities for constructing low-cost chiral materials.
Collapse
Affiliation(s)
- Ran-Qi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Yang Z, Jaiswal A, Yin Q, Lin X, Liu L, Li J, Liu X, Xu Z, Li JJ, Yong KT. Chiral nanomaterials in tissue engineering. NANOSCALE 2024; 16:5014-5041. [PMID: 38323627 DOI: 10.1039/d3nr05003c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Addressing significant medical challenges arising from tissue damage and organ failure, the field of tissue engineering has evolved to provide revolutionary approaches for regenerating functional tissues and organs. This involves employing various techniques, including the development and application of novel nanomaterials. Among them, chiral nanomaterials comprising non-superimposable nanostructures with their mirror images have recently emerged as innovative biomaterial candidates to guide tissue regeneration due to their unique characteristics. Chiral nanomaterials including chiral fibre supramolecular hydrogels, polymer-based chiral materials, self-assembling peptides, chiral-patterned surfaces, and the recently developed intrinsically chiroptical nanoparticles have demonstrated remarkable ability to regulate biological processes through routes such as enantioselective catalysis and enhanced antibacterial activity. Despite several recent reviews on chiral nanomaterials, limited attention has been given to the specific potential of these materials in facilitating tissue regeneration processes. Thus, this timely review aims to fill this gap by exploring the fundamental characteristics of chiral nanomaterials, including their chiroptical activities and analytical techniques. Also, the recent advancements in incorporating these materials in tissue engineering applications are highlighted. The review concludes by critically discussing the outlook of utilizing chiral nanomaterials in guiding future strategies for tissue engineering design.
Collapse
Affiliation(s)
- Zhenxu Yang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arun Jaiswal
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiankun Yin
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhejun Xu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
43
|
Huang W, Zhu Y, Zhou K, Chen L, Zhao Z, Zhao E, He Z. Boosting Circularly Polarized Luminescence from Alkyl-Locked Axial Chirality Scaffold by Restriction of Molecular Motions. Chemistry 2024; 30:e202303667. [PMID: 38057693 DOI: 10.1002/chem.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Boosting the circularly polarized luminescence of small organic molecules has been a stubborn challenge because of weak structure rigidity and dynamic molecular motions. To investigate and eliminate these factors, here, we carried out the structure-property relationship studies on a newly-developed axial chiral scaffold of bidibenzo[b,d]furan. The molecular rigidity was finely tuned by gradually reducing the alkyl-chain length. The environmental factors were considered in solution, crystal, and polymer matrix at different temperatures. As a result, a significant amplification of the dissymmetry factor glum from 10-4 to 10-1 was achieved, corresponding to the situation from (R)-4C in solution to (R)-1C in polymer film at room temperature. A synergistic strategy of increasing the intramolecular rigidity and enhancing the intermolecular interaction to restrict the molecular motions was thus proposed to improve circularly polarized luminescence. The though-out demonstrated relationship will be of great importance for the development of high-performance small organic chiroptical systems in the future.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuxin Zhu
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Letian Chen
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
44
|
Li Z, Gu Q. Topological hyperbolic metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:825-839. [PMID: 39634373 PMCID: PMC11501501 DOI: 10.1515/nanoph-2023-0768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/04/2024] [Indexed: 12/07/2024]
Abstract
Hyperbolic metamaterial (HMM) is a unique type of anisotropic material that can exhibit metal and dielectric properties at the same time. This unique characteristic results in it having unbounded isofrequency surface contours, leading to exotic phenomena such as spontaneous emission enhancement and applications such as super-resolution imaging. However, at optical frequencies, HMM must be artificially engineered and always requires a metal constituent, whose intrinsic loss significantly limits the experimentally accessible wave vector values, thus negatively impacting the performance of these applications. The need to reduce loss in HMM stimulated the development of the second-generation HMM, termed active HMM, where gain materials are utilized to compensate for metal's intrinsic loss. With the advent of topological photonics that allows robust light transportation immune to disorders and defects, research on HMM also entered the topological regime. Tremendous efforts have been dedicated to exploring the topological transition from elliptical to hyperbolic dispersion and topologically protected edge states in HMM, which also prompted the invention of lossless HMM formed by all-dielectric material. Furthermore, emerging twistronics can also provide a route to manipulate topological transitions in HMMs. In this review, we survey recent progress in topological effects in HMMs and provide prospects on possible future research directions.
Collapse
Affiliation(s)
- Zhitong Li
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing100876, China
| | - Qing Gu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC27695, USA
- Department of Physics, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
45
|
Ma X, Han Y, Zhang YS, Geng Y, Majumdar A, Lagerwall JPF. Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsions. Nat Commun 2024; 15:1404. [PMID: 38360960 PMCID: PMC10869789 DOI: 10.1038/s41467-024-45674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Multiple emulsions are usually stabilized by amphiphilic molecules that combine the chemical characteristics of the different phases in contact. When one phase is a liquid crystal (LC), the choice of stabilizer also determines its configuration, but conventional wisdom assumes that the orientational order of the LC has no impact on the stabilizer. Here we show that, for the case of amphiphilic polymer stabilizers, this impact can be considerable. The mode of interaction between stabilizer and LC changes if the latter is heated close to its isotropic state, initiating a feedback loop that reverberates on the LC in form of a complete structural rearrangement. We utilize this phenomenon to dynamically tune the configuration of cholesteric LC shells from one with radial helix and spherically symmetric Bragg diffraction to a focal conic domain configuration with highly complex optics. Moreover, we template photonic microparticles from the LC shells by photopolymerizing them into solids, retaining any selected LC-derived structure. Our study places LC emulsions in a new light, calling for a reevaluation of the behavior of stabilizer molecules in contact with long-range ordered phases, while also enabling highly interesting photonic elements with application opportunities across vast fields.
Collapse
Affiliation(s)
- Xu Ma
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg
| | - Yucen Han
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Yan-Song Zhang
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg
| | - Yong Geng
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg
| | - Apala Majumdar
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Jan P F Lagerwall
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg.
| |
Collapse
|
46
|
Zhang Y, Yang H, Chen Y, Yu H. Progress in Fabrication and Applications of Cholesteric Liquid Crystal Microcapsules. Chemistry 2024; 30:e202303198. [PMID: 37971158 DOI: 10.1002/chem.202303198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Liquid crystals (LCs) are well known for inherent responsiveness to external stimuli, such as light, thermal, magnetic, and electric fields. Cholesteric LCs are among the most fascinating, since they possess distinctive optical properties due to the helical molecular orientation. However, the good flow, easy contamination, and poor stability of small-molecule LCs limit their further applications, and microencapsulation as one of the most effective tools can evade these disadvantages. Microencapsulation can offer shell-core structure with LCs in the core can strengthen their stability, avoiding interference with the environment while maintaining the stimuli-responsiveness and optical properties. Here, we report recent progress in the fabrication and applications of cholesteric LC microcapsules (CLCMCs). We summarize general properties and basic principles, fabrication methods including interfacial polymerization, in-situ polymerization, complex coacervation, solvent evaporation, microfluidic and polymerization of reactive mesogens, and then give a comprehensive overview of their applications in various popular domains, including smart fabrics, smart sensor, smart displays, anti-counterfeiting, information encryption, biomedicine and actuators. Finally, we discuss the currently facing challenges and the potential development directions in this field.
Collapse
Affiliation(s)
- Yajun Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100020, Beijing, China
| | - Haixiao Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100020, Beijing, China
| | - Yinjie Chen
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, 102600, Beijing, China
| | - Haifeng Yu
- School of Materials Science and Engineering and, Key Laboratory of Polymer Chemistry and, Physics of Ministry of Education, Peking University, 100871, Beijing, China
| |
Collapse
|
47
|
Bi R, Li X, Ou X, Huang J, Huang D, Chen G, Sheng Y, Hong W, Wang Y, Hu W, Guo SZ. 3D-Printed Biomimetic Structural Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306646. [PMID: 37759391 DOI: 10.1002/smll.202306646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 09/29/2023]
Abstract
Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.
Collapse
Affiliation(s)
- Ran Bi
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohong Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xingcheng Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiaqi Huang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dantong Huang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guoliang Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yu Sheng
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wei Hong
- Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510050, P. R. China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Guangdong, 525000, P. R. China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
48
|
Liu W, Han H, Wang J. Recent Advances in the 3D Chiral Plasmonic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305725. [PMID: 37828637 DOI: 10.1002/smll.202305725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Indexed: 10/14/2023]
Abstract
From the view of geometry, chirality is that an object cannot overlap with its mirror image, which has been a fundamental scientific problem in biology and chemistry since the 19th century. Chiral inorganic nanomaterials serve as ideal templates for investigating chiral transfer and amplification mechanisms between molecule and bulk materials, garnering widespread attentions. The chiroptical property of chiral plasmonic nanomaterials is enhanced through localized surface plasmon resonance effects, which exhibits distinctive circular dichroism (CD) response across a wide wavelength range. Recently, 3D chiral plasmonic nanomaterials are becoming a focal research point due to their unique characteristics and planar-independence. This review provides an overview of recent progresses in 3D chiral plasmonic nanomaterials studies. It begins by discussing the mechanisms of plasmonic enhancement of molecular CD response, following by a detailed presentation of novel classifications of 3D chiral plasmonic nanomaterials. Finally, the applications of 3D chiral nanomaterials such as biology, sensing, chiral catalysis, photology, and other fields have been discussed and prospected. It is hoped that this review will contribute to the flourishing development of 3D chiral nanomaterials.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Han
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
49
|
Urbańska M, Zając M, Perkowski P, Deptuch A. The Influence of the Molecular Structure of Compounds on Their Properties and the Occurrence of Chiral Smectic Phases. MATERIALS (BASEL, SWITZERLAND) 2024; 17:618. [PMID: 38591460 PMCID: PMC10856103 DOI: 10.3390/ma17030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 04/10/2024]
Abstract
We have designed new chiral smectic mesogens with the -CH2O group near the chiral center. We synthesized two unique rod-like compounds. We determined the mesomorphic properties of these mesogens and confirmed the phase identification using dielectric spectroscopy. Depending on the length of the oligomethylene spacer (i.e., the number of methylene groups) in the achiral part of the molecules, the studied materials show different phase sequences. Moreover, the temperature ranges of the observed smectic phases are different. It can be seen that as the length of the alkyl chain increases, the liquid crystalline material shows more mesophases. Additionally, its clearing (isotropization) temperature increases. The studied compounds are compared with the structurally similar smectogens previously synthesized. The helical pitch measurements were performed using the selective reflection method. These materials can be useful and effective as chiral components and dopants in smectic mixtures targeted for optoelectronics and photonics.
Collapse
Affiliation(s)
- Magdalena Urbańska
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Monika Zając
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Paweł Perkowski
- Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Aleksandra Deptuch
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland;
| |
Collapse
|
50
|
Li SL, Chen ZY, Chen P, Hu W, Huang C, Li SS, Hu X, Lu YQ, Chen LJ. Geometric phase-encoded stimuli-responsive cholesteric liquid crystals for visualizing real-time remote monitoring: humidity sensing as a proof of concept. LIGHT, SCIENCE & APPLICATIONS 2024; 13:27. [PMID: 38263398 PMCID: PMC10805905 DOI: 10.1038/s41377-023-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Liquid crystals are a vital component of modern photonics, and recent studies have demonstrated the exceptional sensing properties of stimuli-responsive cholesteric liquid crystals. However, existing cholesteric liquid crystal-based sensors often rely on the naked eye perceptibility of structural color or the measurement of wavelength changes by spectrometric tools, which limits their practical applications. Therefore, developing a platform that produces recognizable sensing signals is critical. In this study, we present a visual sensing platform based on geometric phase encoding of stimuli-responsive cholesteric liquid crystal polymers that generates real-time visual patterns, rather than frequency changes. To demonstrate this platform's effectiveness, we used a humidity-responsive cholesteric liquid crystal polymer film encoded with a q-plate pattern, which revealed that humidity causes a shape change in the vortex beam reflected from the encoded cholesteric liquid crystal polymers. Moreover, we developed a prototype platform towards remote humidity monitoring benefiting from the high directionality and long-range transmission properties of laser beams carrying orbital angular momentum. Our approach provides a novel sensing platform for cholesteric liquid crystals-based sensors that offers promising practical applications. The ability to generate recognizable sensing signals through visual patterns offers a new level of practicality in the sensing field with stimuli-responsive cholesteric liquid crystals. This platform might have significant implications for a broad readership and will be of interest to researchers working in the field of photonics and sensing technology.
Collapse
Affiliation(s)
- Shi-Long Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhao-Yi Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, 361005, Xiamen, China
| | - Peng Chen
- College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Wei Hu
- College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Chaohong Huang
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, 361005, Xiamen, China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, 361005, Xiamen, China
| | - Sen-Sen Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, 361005, Xiamen, China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, 361005, Xiamen, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, 361005, Xiamen, China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, 361005, Xiamen, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China.
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, 361005, Xiamen, China.
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|