1
|
Bozward AG, Davies SP, Morris SM, Kayani K, Oo YH. Cellular interactions in self-directed immune-mediated liver diseases. J Hepatol 2025; 82:1110-1124. [PMID: 39793614 DOI: 10.1016/j.jhep.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The lymphocyte population must traverse a complex path throughout their journey to the liver. The signals which these cells must detect, including cytokines, chemokines and other soluble factors, steer their course towards further crosstalk with other hepatic immune cells, hepatocytes and biliary epithelial cells. A series of specific chemokine receptors and adhesion molecules drive not only the recruitment, migration, and retention of these cells within the liver, but also their localisation. Perturbation of these interactions and failure of self-recognition drive the development of several autoimmune liver diseases. We also describe check point-induced liver injury. Immune cell internalisation into hepatocytes (emperipolesis) in autoimmune hepatitis and into biliary epithelial cells (intra-epithelial lymphocyte) in primary biliary cholangitis are typical features in autoimmune liver diseases. Finally, we describe emerging immune-based therapies, including regulatory T cell, anti-cytokine and anti-chemokine therapies, cytokine supplementation (e.g. interleukin-2), as well as co-inhibitory molecule manipulation, including T-cell engagers, and discuss their potential application in the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Amber G Bozward
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK.
| | - Scott P Davies
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Sean M Morris
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Kayani Kayani
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK; Liver Transplant and Hepatobiliary Department, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
2
|
Alim L, Adityan S, Chen R, Neilson T, Coleborn E, Wilkinson AN, He Y, Irgam G, Bhavsar C, Lourie R, Rogers R, Cabraal N, Jagasia N, Chetty N, Perrin L, Hooper JD, Steptoe R, Wu SY. Antigen presentation potential is variable among human ovarian tumour and syngeneic murine models and dictates pre-clinical outcomes of immunotherapy. Biomed Pharmacother 2025; 187:118141. [PMID: 40347847 DOI: 10.1016/j.biopha.2025.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
High grade serous ovarian carcinoma (HGSC) is a fatal gynaecological malignancy with limited therapeutic options. Immunotherapies targeting MHC-I-dependent antigen presentation offer potential. Currently, the antigen presentation machinery (APM) of widely used syngeneic murine HGSC models remains poorly characterised, limiting translational relevance. Here, we systematically evaluate APM gene expression in syngeneic murine and patient samples. Tap1 and Psmb8 were identified as critical APM markers, deficient in murine models and strongly correlating with MHC-I expression. Hierarchical clustering correlation analysis using these markers revealed that ID8-p53⁻/⁻BRCA1⁻/⁻ was the most strongly correlated model and aligned with the largest patient subset. Moreover, ID8-ip1 correlated to the smaller second patient subset strongly. The low MHC-I expressing IG10 model was unique clustering alongside patient derived LP28 tumour and not fitting either patient subset. In vivo test of a novel combination immune therapy consisting of Flt3L, Poly(I:C), and paclitaxel therapy demonstrated significantly reduced tumour burden in high APM models (p53⁻/⁻BRCA1⁻/⁻, ID8-ip1; p < 0.01), but not IG10. Furthermore, high expressing MHC-I models were linked to enhanced DC expansion, CD8⁺ T-cell infiltration, and effector differentiation (131 % increase in ID8-ip1), alongside improved CD8⁺ T-cell activation and CD86⁺ B-cell co-stimulation. These findings establish MHC-I as a predictive biomarker for immunotherapy response and underscore the need for APM-enhancing strategies in antigen-poor tumours. By bridging murine models to human APM heterogeneity, this work provides a framework for optimising preclinical immunotherapy evaluation and patient stratification, advancing tailored therapeutic approaches for HGSC.
Collapse
Affiliation(s)
- Louisa Alim
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siddharth Adityan
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rui Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Trent Neilson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elaina Coleborn
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew N Wilkinson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yaowu He
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Gowri Irgam
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rohan Lourie
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland 4101, Australia; Mater Health Services, South Brisbane, Queensland 4101, Australia
| | - Rebecca Rogers
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland 4101, Australia; Mater Health Services, South Brisbane, Queensland 4101, Australia
| | - Nimithri Cabraal
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland 4101, Australia; Mater Health Services, South Brisbane, Queensland 4101, Australia
| | - Nisha Jagasia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland 4101, Australia; Mater Health Services, South Brisbane, Queensland 4101, Australia
| | - Naven Chetty
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland 4101, Australia; Mater Health Services, South Brisbane, Queensland 4101, Australia
| | - Lewis Perrin
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland 4101, Australia; Mater Health Services, South Brisbane, Queensland 4101, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia; Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland 4101, Australia
| | - Raymond Steptoe
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Sherry Y Wu
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Ji C, Kumpf S, Qian J, Federspiel JD, Sheehan M, Capunitan D, Atallah E, Astbury S, Arat S, Oziolor E, Ocana MF, Ramaiah SK, Grove J, Aithal GP, Lanz TA. Transcriptomic and proteomic characterization of cell and protein biomarkers of checkpoint inhibitor-induced liver injury. Cancer Immunol Immunother 2025; 74:190. [PMID: 40317333 PMCID: PMC12049347 DOI: 10.1007/s00262-025-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Immune checkpoint inhibitors (ICI) targeting CTLA-4 and PD-1 have shown remarkable antitumor efficacy, but can also cause immune-related adverse events, including checkpoint inhibitor-induced liver injury (ChILI). This multi-omic study aimed to investigate changes in blood samples from treated cancer patients who developed ChILI. PBMCs were sequenced for by transcriptomic and T cell receptor repertoire (bulk and single-cell immune profiling), and extracellular vesicle (EV) enrichment from plasma was analyzed by mass spectroscopy proteomics. Data were analyzed by comparing the ChILI patient group to the control group who did not develop ChILI and by comparing the onset of ChILI to pre-ICI treatment baseline. We identified significant changes in T cell clonality, gene expression, and proteins in peripheral blood mononuclear cells (PBMCs) and plasma in response to liver injury. Onset of ChILI was accompanied by an increase in T cell clonality. Pathway analysis highlighted the involvement of innate and cellular immune responses, mitosis, pyroptosis, and oxidative stress. Single-cell RNA sequencing revealed that these changes were primarily found in select T cell subtypes (including CD8 + effector memory cells), while CD16 + monocytes exhibited enrichment in metabolic pathways. Proteomic analysis of plasma extracellular vesicles showed enrichment in liver-associated proteins among differentially expressed proteins. Interestingly, an increase in PBMC PD-L1 gene expression and plasma PD-L1 protein was also found to be associated with ChILI onset. These findings provide valuable insights into the immune and molecular mechanisms underlying ChILI as well as potential biomarkers of ChILI.Trial registration number NCT04476563.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety R&D, Pfizer Inc, 10777 Science Center Dr., La Jolla, CA, 92121, USA.
| | - Steven Kumpf
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Jessie Qian
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | | | - Mark Sheehan
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Darien Capunitan
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Edmond Atallah
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Seda Arat
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Elias Oziolor
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | | | | | - Jane Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Thomas A Lanz
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA.
| |
Collapse
|
4
|
Bjornsson ES, Arnedillo D, Bessone F. Secondary Sclerosing Cholangitis due to Drugs With a Special Emphasis on Checkpoint Inhibitors. Liver Int 2025; 45:e16163. [PMID: 39620448 DOI: 10.1111/liv.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Secondary sclerosing cholangitis (SSC), is one of the phenotypes of DILI first described in the 1980s. Check point inhibitors (CPIs) are currently the most frequent cause of SCC. AIMS To describe the epidemiology, clinical and biochemical features at presentation, differential diagnoses, pathophysiology, imaging, histological characteristics and management associated with SSC. MATERIALS AND METHODS A language and date-unrestricted Medline literature search was conducted to identify case reports and clinical series on SSC with special emphasis on CPIs (2007-2023). RESULTS We identified 19 different drugs that have been shown to induce SSC. A total of 64 cases with SSC due to CPIs are presented. This was mostly seen in patients treated with anti-Programmed cell death (PD)-1/PD-L1 inhibitors. The most frequent presenting signs and symptoms were abdominal pain and jaundice. Large-duct cholangitis induced by CPIs is a very rare condition while small-duct cholangitis is more common. Nivolumab and pembrolizumab were the most commonly implicated agents. Biopsies have revealed predominant CD8+ T cell infiltration in biliary strictures. Corticosteroids is linked to a low frequency of success and is the only agent recommended to begin the treatment. CONCLUSIONS CPIs-induced SSC seems to affect the entire biliary system. Clinicians should consider and suspect SSC when a probable CPIs-induced hepatitis does not respond to corticosteroids. Additionally, further randomized, controlled trials should prospectively investigate alternative therapies for treatment.
Collapse
Affiliation(s)
- Einar S Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Internal Medicine, Division of Gastroenterology, Landspitali University Hospital Reykjavik, Reykjavík, Iceland
| | - Daiana Arnedillo
- Hospital Provincial del Centenario, Rosario, Argentina
- Facultad de Ciencias Mèdicas, National University of Rosario School of Medicine, Rosario, Argentina
| | - Fernando Bessone
- Hospital Provincial del Centenario, Rosario, Argentina
- Facultad de Ciencias Mèdicas, National University of Rosario School of Medicine, Rosario, Argentina
| |
Collapse
|
5
|
Yasuda T, Ito T, Ishikawa T, Mizuno K, Yamamoto T, Yokoyama S, Yamamoto K, Imai N, Ishizu Y, Honda T, Koshiyama Y, Yasuda S, Toyoda H, Ando Y, Shimoyama Y, Kawashima H. Clinical features and pathological findings by liver biopsy in patients with immune-related sclerosing cholangitis induced by immune checkpoint inhibitors. Dig Liver Dis 2025; 57:877-884. [PMID: 39828442 DOI: 10.1016/j.dld.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Immune-related sclerosing cholangitis (irSC) induced by immune checkpoint inhibitors (ICIs) is relatively rare, and its clinical and pathological features are not well known. AIMS We aimed to compare the clinical course and pathological findings of irSC with those of non-irSC liver injury. METHODS Clinical data were retrospectively collected from 2416 patients with advanced malignancies treated with ICIs between September 2014 and October 2023. The data of patients with severe ICI-induced liver injury who underwent liver biopsy were analyzed and compared between patients with irSC and non-irSC. RESULTS Ninety-three (3.8 %) patients had severe ICI-induced liver injury, and 38 underwent liver biopsy. Of these, five were diagnosed with irSC. The irSC group had a significantly longer time to onset of ICI-induced liver injury and a lower rate of improvement of liver injury than did the non-irSC group (irSC, 3/5; non-irSC, 32/33). Liver biopsies revealed more moderate-to-severe pathological cholangitis in the irSC group than in the non-irSC group (irSC, n = 5/5; non-irSC, n = 16/33). Other pathological findings were similar between the two groups. CONCLUSION Appropriate management of irSC requires an understanding of its characteristics of late onset and steroid resistance, and liver biopsy, in addition to imaging, may be useful for diagnosing irSC.
Collapse
Affiliation(s)
- Tsukasa Yasuda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan.
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Kazuyuki Mizuno
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Takafumi Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Yuichi Koshiyama
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, 4-86 Minaminokawa, Ogaki, Gifu 503-8502, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, 4-86 Minaminokawa, Ogaki, Gifu 503-8502, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, 4-86 Minaminokawa, Ogaki, Gifu 503-8502, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Yoshie Shimoyama
- Department of Pathology and Clinical Laboratories, Nagoya University Hospital, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-Cho, Showa-Ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
6
|
Kleiner DE. Role of liver biopsy in the management of idiosyncratic DILI. Liver Int 2025; 45:e16097. [PMID: 39254214 PMCID: PMC11815619 DOI: 10.1111/liv.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
Drug-induced liver injury (DILI) presents unique challenges in clinical practice. While some types of DILI are mild and resolve quickly after removing the drug, other situations are more complex, with competing aetiologies or underlying liver disease. Guidelines from professional societies agree that the liver biopsy retains a role in understanding and managing DILI in certain situations. Liver biopsy allows characterization of the histological pattern of injury as well as assessment of severity. Inflammatory infiltrates, bile duct injury or loss and vascular injury are all revealed by liver biopsy. Communication between the hepatopathologist and clinical team with clinicopathological correlation of the findings is necessary for the best determination of causality and differentiation from other diseases of exclusion, like autoimmune hepatitis and graft-versus-host disease. This review highlights important aspects of the role of liver biopsy in DILI evaluation.
Collapse
Affiliation(s)
- David E. Kleiner
- Chief Post‐Mortem Section, Laboratory of PathologyNational Cancer InstituteBethesdaMarylandUSA
| |
Collapse
|
7
|
Zhu BK, Chen SY, Li X, Huang SY, Luo ZY, Zhang W. Real-world pharmacovigilance study of drug-induced autoimmune hepatitis from the FAERS database. Sci Rep 2025; 15:4783. [PMID: 39922875 PMCID: PMC11807099 DOI: 10.1038/s41598-025-89272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
This study aims to identify and evaluate the most common drugs associated with the risks of autoimmune hepatitis (AIH) using the FDA Adverse Event Reporting System (FAERS) database. Adverse drug events (ADEs) associated with drug-induced AIH (DI-AIH) were retrieved from the FAERS database (January 2004-June 2024). Disproportionality analysis was performed to identify drugs significantly linked to DI-AIH, and time-to-onset (TTO) analyses were conducted to evaluate the timing and risk profiles of DI-AIH adverse reactions. Our study identified 2,511 ADEs linked to autoimmune hepatitis. Disproportionality analysis identified 22 drugs significantly associated with AIH risk, including 4 antibiotics, 3 antivirals, 4 cardiovascular drugs, 5 antitumor agents, 2 immunomodulators, 2 nonsteroidal anti-inflammatory drugs, and 1 drug each from the respiratory and nervous system categories. The highest DI-AIH risks were observed with minocycline (ROR = 53.97), nitrofurantoin (ROR = 57.02), and doxycycline (ROR = 16.12). Antitumor drugs had the shortest median TTO (77.00 days), whereas cardiovascular drugs exhibited the longest (668.30 days). Through a comprehensive analysis of the FAERS database, our study identified drugs strongly associated with AIH. Preventing DI-AIH requires careful drug selection and monitoring. This study provides evidence-based insights into implicated drugs, aiming to optimize clinical management and mitigate risks.
Collapse
Affiliation(s)
- Bu-Kun Zhu
- Department of Infection, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | | | - Xiang Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Shu-Yun Huang
- Department of Infection, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhan-Yang Luo
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Wei Zhang
- Department of Infection, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Chodup P, Samodelov SL, Visentin M, Kullak‐Ublick GA. Drug-Induced Liver Injury Associated With Emerging Cancer Therapies. Liver Int 2025; 45:e70002. [PMID: 39853863 PMCID: PMC11760653 DOI: 10.1111/liv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Targeted therapies and immunotherapies have shown great promise as best-in-class treatments for several cancers with respect to efficacy and safety. While liver test abnormalities are rather common in patients treated with kinase inhibitors or immunotherapy, events of severe hepatotoxicity in these patients are rare in comparison with those associated with chemotherapeutics. The underlying mechanisms and risk factors for severe hepatotoxicity with novel oncology therapies are not well understood, complicating the drug-induced liver injury (DILI) risk assessment in the preclinical and clinical phases of drug development. The epidemiological and clinical characteristics, as well as mechanisms of liver toxicity, are described here to the current state of knowledge. Tools to study and assess the risk of DILI during drug development are concisely summarised, focusing on caveats thereof for novel oncology treatments. Emerging tools to optimise safety assessments and gather additional mechanistic insights into DILI are introduced. Particularly in oncology, where standard liver signals during drug development are tolerated to a marginally higher degree than in other indications due to the life-saving, life-extending and quality-of-life improvements for patients with severe or advanced cancers versus previous standard-of-care therapeutics, safety assessments must be tailored to the drug and indication. Trends in patient safety-centred drug development programmes and regulatory approval processes must continually be revisited and streamlined via obtaining an overall greater understanding of DILI and the tools available to assess mechanisms of injury, frequency, severity and prognosis.
Collapse
Affiliation(s)
- Piotr Chodup
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
| | - Sophia L. Samodelov
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
| | - Michele Visentin
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
| | - Gerd A. Kullak‐Ublick
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
- Mechanistic Safety, Patient Safety & Pharmacovigilance, Novartis DevelopmentBaselSwitzerland
| |
Collapse
|
9
|
Cardon A, Guinebretière T, Dong C, Gil L, Ado S, Gavlovsky PJ, Braud M, Danger R, Schultheiß C, Doméné A, Paul-Gilloteaux P, Chevalier C, Bernier L, Judor JP, Fourgeux C, Imbert A, Khaldi M, Bardou-Jacquet E, Elkrief L, Lannes A, Silvain C, Schnee M, Tanne F, Vavasseur F, Brusselle L, Brouard S, Kwok WW, Mosnier JF, Lohse AW, Poschmann J, Binder M, Gournay J, Conchon S, Milpied P, Renand A. Single cell profiling of circulating autoreactive CD4 T cells from patients with autoimmune liver diseases suggests tissue imprinting. Nat Commun 2025; 16:1161. [PMID: 39880819 PMCID: PMC11779892 DOI: 10.1038/s41467-025-56363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Autoimmune liver diseases (AILD) involve dysregulated CD4 T cell responses against liver self-antigens, but how these autoreactive T cells relate to liver tissue pathology remains unclear. Here we perform single-cell transcriptomic and T cell receptor analyses of circulating, self-antigen-specific CD4 T cells from patients with AILD and identify a subset of liver-autoreactive CD4 T cells with a distinct B-helper transcriptional profile characterized by PD-1, TIGIT and HLA-DR expression. These cells share clonal relationships with expanded intrahepatic T cells and exhibit transcriptional signatures overlapping with tissue-resident T cells in chronically inflamed environments. Using a mouse model, we demonstrate that, following antigen recognition in the liver, CD4 T cells acquire an exhausted phenotype, play a crucial role in liver damage, and are controlled by immune checkpoint pathways. Our findings thus suggest that circulating autoreactive CD4 T cells in AILD are imprinted by chronic antigen exposure to promote liver inflammation, thereby serving as a potential target for developing biomarkers and therapies for AILD.
Collapse
Affiliation(s)
- Anaïs Cardon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Thomas Guinebretière
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Chuang Dong
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Laurine Gil
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Sakina Ado
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Pierre-Jean Gavlovsky
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Martin Braud
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Richard Danger
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Christoph Schultheiß
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Aurélie Doméné
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | | | | | - Laura Bernier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jean-Paul Judor
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Astrid Imbert
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
| | - Marion Khaldi
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
- Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Nantes, France
| | - Edouard Bardou-Jacquet
- CHU Rennes, Service des maladies du foie, Université Rennes, INSERM, INRAE, Institut NUMECAN, Rennes, France
| | - Laure Elkrief
- CHRU Tours, Service Hépato-Gastroentérologie, Tours, France
| | - Adrien Lannes
- CHU Angers, Service Hépato-Gastroentérologie et Oncologie Digestive, Université d'Angers, Laboratoire HIFIH, UPRES EA3859, SFR 4208, Angers, France
| | | | - Matthieu Schnee
- CHD Vendée-La Roche sur Yon, Service Hépato-Gastroentérologie, F- 85000, la Roche sur Yon, France
| | - Florence Tanne
- CHU Brest, Service Hépato-Gastroentérologie, Brest, France
| | | | - Lucas Brusselle
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jean-François Mosnier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Ansgar W Lohse
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Mascha Binder
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Jérôme Gournay
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
- Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Nantes, France
| | - Sophie Conchon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France.
| | - Amédée Renand
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
10
|
Savino A, Rossi A, Fagiuoli S, Invernizzi P, Gerussi A, Viganò M. Hepatotoxicity in Cancer Immunotherapy: Diagnosis, Management, and Future Perspectives. Cancers (Basel) 2024; 17:76. [PMID: 39796705 PMCID: PMC11718971 DOI: 10.3390/cancers17010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Cancer immunotherapy, particularly immune checkpoint inhibitors, has positively impacted oncological treatments. Despite its effectiveness, immunotherapy is associated with immune-related adverse events (irAEs) that can affect any organ, including the liver. Hepatotoxicity primarily manifests as immune-related hepatitis and, less frequently, cholangitis. Several risk factors, such as pre-existing autoimmune and liver diseases, the type of immunotherapy, and combination regimens, play a role in immune-related hepatotoxicity (irH), although reliable predictive markers or models are still lacking. The severity of irH ranges from mild to severe cases, up to, in rare instances, acute liver failure. Management strategies require regular monitoring for early diagnosis and interventions, encompassing strict monitoring for mild cases to the permanent suspension of immunotherapy for severe forms. Corticosteroids are the backbone of treatment in moderate and high-grade damage, alone or in combination with additional immunosuppressive drugs for resistant or refractory cases. Given the relatively low number of events and the lack of dedicated prospective studies, much uncertainty remains about the optimal management of irH, especially in the most severe cases. This review presents the main features of irH, focusing on injury patterns and mechanisms, and provides an overview of the management landscape, from standard care to the latest evidence.
Collapse
Affiliation(s)
- Alberto Savino
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Alberto Rossi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefano Fagiuoli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Pietro Invernizzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, ERN-RARE LIVER, 20900 Monza, Italy
| | - Alessio Gerussi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, ERN-RARE LIVER, 20900 Monza, Italy
| | - Mauro Viganò
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy (M.V.)
- Gastroenterology, Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
11
|
Nagaretnam I, Kakimoto Y, Yoneshige A, Takeuchi F, Sakimura T, Sato K, Osaki Y, Ishii Y, Ozaki A, Tamura M, Hamada M, Shigeoka T, Ito A, Ishida Y. Granulomatous inflammatory responses are elicited in the liver of PD-1 knockout mice by de novo genome mutagenesis. DISCOVERY IMMUNOLOGY 2024; 4:kyae018. [PMID: 39839810 PMCID: PMC11744370 DOI: 10.1093/discim/kyae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Introduction Programmed death-1 (PD-1) is a negative regulator of immune responses. Upon deletion of PD-1 in mice, symptoms of autoimmunity developed only after they got old. In a model experiment in cancer immunotherapy, PD-1 was shown to prevent cytotoxic T lymphocytes from attacking cancer cells that expressed neoantigens derived from genome mutations. Furthermore, the larger number of genome mutations in cancer cells led to more robust anti-tumor immune responses after the PD-1 blockade. To understand the common molecular mechanisms underlying these findings, we hypothesize that we might have acquired PD-1 during evolution to avoid/suppress autoimmune reactions against neoantigens derived from mutations in the genome of aged individuals. Methods To test the hypothesis, we introduced random mutations into the genome of young PD-1-/- and PD-1+/+ mice. We employed two different procedures of random mutagenesis: administration of a potent chemical mutagen N-ethyl-N-nitrosourea (ENU) into the peritoneal cavity of mice and deletion of MSH2, which is essential for the mismatch-repair activity in the nucleus and therefore for the suppression of accumulation of random mutations in the genome. Results We observed granulomatous inflammatory changes in the liver of the ENU-treated PD-1 knockout (KO) mice but not in the wild-type (WT) counterparts. Such lesions also developed in the PD-1/MSH2 double KO mice but not in the MSH2 single KO mice. Conclusion These results support our hypothesis about the physiological function of PD-1 and address the mechanistic reasons for immune-related adverse events observed in cancer patients having PD-1-blockade immunotherapies.
Collapse
Affiliation(s)
- Ilamangai Nagaretnam
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yoshiya Kakimoto
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Fuka Takeuchi
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Takayuki Sakimura
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Kanato Sato
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yoshiro Osaki
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Yuta Ishii
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Ai Ozaki
- Mouse Phenotype Analysis Division, RIKEN Bioresource Research Center, Tsukuba-shi, Ibaraki, Japan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, RIKEN Bioresource Research Center, Tsukuba-shi, Ibaraki, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Toshiaki Shigeoka
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama-shi, Osaka, Japan
| | - Yasumasa Ishida
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, Japan
| |
Collapse
|
12
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
13
|
Clouston AD, Gouw ASH, Tiniakos D, Bedossa P, Brunt EM, Callea F, Dienes HP, Goodman ZD, Hubscher SG, Kakar S, Kleiner DE, Lackner C, Park YN, Roberts EA, Schirmacher P, Terracciano L, Torbenson M, Wanless IR, Zen Y, Burt AD. Severe acute liver disease in adults: Contemporary role of histopathology. Histopathology 2024; 85:549-561. [PMID: 38773813 DOI: 10.1111/his.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Liver biopsies have consistently contributed to our understanding of the pathogenesis and aetiologies of acute liver disease. As other diagnostic modalities have been developed and refined, the role of biopsy in the management of patients with acute liver failure (ALF), acute-on-chronic liver failure (ACLF) and acute hepatitis, including acute liver injury (ALI), has changed. Liver biopsy remains particularly valuable when first-line diagnostic algorithms fail to determine aetiology. Despite not being identified as a mandatory diagnostic tool in recent clinical guidelines for the management of ALF or ACLF, many centres continue to undertake biopsies given the relative safety of transjugular biopsy in this setting. Several studies have demonstrated that liver biopsy can provide prognostic information, particularly in the context of so-called indeterminate hepatitis, and is extremely useful in excluding conditions such as metastatic tumours that would preclude transplantation. In addition, its widespread use of percutaneous biopsies in cases of less severe acute liver injury, for example in the establishment of a diagnosis of acute presentation of autoimmune hepatitis or confirmation of a probable or definite drug-induced liver injury (DILI), has meant that many centres have seen a shift in the ratio of specimens they are receiving from patients with chronic to acute liver disease. Histopathologists therefore need to be equipped to deal with these challenging specimens. This overview provides an insight into the contemporary role of biopsies (as well as explant and autopsy material) in diagnosing acute liver disease. It outlines up-to-date clinical definitions of liver injury and considers recent recommendations for the diagnosis of AIH and drug-induced, autoimmune-like hepatitis (DI-AIH).
Collapse
Affiliation(s)
- Andrew D Clouston
- Centre for Liver Disease Research, School of Medicine (Southern), University of Queensland, Princess Alexandra Hospital, Ipswich, Australia
| | - Annette S H Gouw
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Elizabeth M Brunt
- Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Hans-Peter Dienes
- Institute of Pathology, Meduniwien, Medical University of Vienn, Wien, Austria
| | - Zachary D Goodman
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Stefan G Hubscher
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sanjay Kakar
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Young N Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eve A Roberts
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michael Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ian R Wanless
- Department of Pathology, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Alastair D Burt
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Herath HMMTB, Lutchman NG, Saleh M, Naidu L, Alagoda SB, Brady S, Wimalaratna S. Neurological manifestations in malignant melanoma. Pract Neurol 2024; 24:428-431. [PMID: 38378269 DOI: 10.1136/pn-2023-003966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Affiliation(s)
| | | | - May Saleh
- Kettering General Hospital, Kettering, UK
| | | | | | - Stefen Brady
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
15
|
Ryan T, Ling S, Trinh A, Segal JP. The role of the microbiome in immune checkpoint inhibitor colitis and hepatitis. Best Pract Res Clin Gastroenterol 2024; 72:101945. [PMID: 39645281 DOI: 10.1016/j.bpg.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 12/09/2024]
Abstract
Immune checkpoint inhibitors have revolutionised management for a variety of different types of malignancies. However, gastrointestinal adverse effects, in particular colitis and hepatitis, are relatively common with up to 30 % of patients being affected. The gut microbiome has emerged as a potential contributor to both the effectiveness of immune checkpoint inhibitors and their side effects. This review will attempt to examine the impact the microbiome has on adverse effects as a result of immune checkpoint inhibitors as well as the potential for manipulation of the microbiome as a form of management for immune mediated colitis.
Collapse
Affiliation(s)
- Thomas Ryan
- Faculty of Medicine, University of Melbourne, Melbourne, Australia.
| | - Sophia Ling
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Andrew Trinh
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jonathan P Segal
- Faculty of Medicine, University of Melbourne, Melbourne, Australia; Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
16
|
Lou S, Wang X, Yuan F, Zhao G, Feng M, Ding Y, Lin L, Liu K, Wang X, Chi W, Wang H. Difficulty in differentiating liver injury from an immune checkpoint inhibitor from chemotherapy. Front Pharmacol 2024; 15:1453595. [PMID: 39221143 PMCID: PMC11362090 DOI: 10.3389/fphar.2024.1453595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the potential of immune checkpoint inhibitors (ICIs) combined with chemotherapy as a promising treatment approach for malignancies. This report focuses on a patient with drug-induced liver injury (DILI) following the administration of chemotherapy and ICIs. A 63-year-old patient with non-small cell lung adenocarcinoma (NSCLC) initially underwent γ-knife treatment and subsequently received a combination of chemotherapy comprising bevacizumab and camrelizumab. Due to liver abnormalities, both chemotherapy and ICIs were stopped on day 21. The patient's liver function improved within a month after methylprednisolone treatment. Subsequently, the patient received carboplatin, pemetrexed, and bevacizumab without complications. This finding supported the notion that DILI was likely triggered by the ICI. This case series details a complex instance of DILI resulting from the use of ICIs and pemetrexed/carboplatin. The alignment of the pathological findings and clinical presentation strongly suggested ICI-induced DILI, which was further supported by the definitive response to steroid treatment. This information is important for clinicians, as it emphasizes the importance of closely monitoring liver function and being aware of potential adverse effects associated with ICIs. Such insights contribute to more effective patient care.
Collapse
Affiliation(s)
- Shike Lou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangde Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Feng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yezhou Ding
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanyi Lin
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kehui Liu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqing Chi
- Epidemiology of Microbial Disease, Yale University School of Public Health, New Haven, CT, United States
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhuang D, Zhang D, Riordan S. Hepatobiliary complications of immune checkpoint inhibitors in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:955-970. [PMID: 39280244 PMCID: PMC11390294 DOI: 10.37349/etat.2024.00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 09/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically changed the landscape of cancer therapy. Over the last decade, both their primary focus in trials and clinical application have exponentially risen, with repeated demonstrations of their efficacy in improving survival in various cancer types. The adverse effects of these drugs on various organ systems were recognised in early phase studies. Given their relatively new emergence on the market, there has been increasing interest into short- and long-term effects and management of ICIs in real-world settings. ICI-related hepatobiliary toxicities are often challenging to diagnose and difficult to distinguish from other causes of deranged liver biochemical tests. The aim of this review is to provide an up-to-date and detailed exploration of the hepatobiliary complications of ICIs, including pathogenesis and approaches to diagnosis and management.
Collapse
Affiliation(s)
- Donna Zhuang
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
- Faculty of Medicine and Health, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - David Zhang
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
- Faculty of Medicine and Health, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Stephen Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
- Faculty of Medicine and Health, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
18
|
Meng Y, Lv Y, Shen M, Yu W, Liu Y, Liu T, Liu G, Ma S, Hui Z, Ren X, Liu L. Establishment of an animal model of immune-related adverse events induced by immune checkpoint inhibitors. Cancer Med 2024; 13:e70011. [PMID: 39001676 PMCID: PMC11245635 DOI: 10.1002/cam4.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE Immunotherapy, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer treatment. However, it can also cause immune-related adverse events (irAEs). This study aimed to develop a clinically practical animal model of irAEs using BALB/c mice. METHODS Subcutaneous tumors of mouse breast cancer 4T1 cells were generated in inbred BALB/c mice. The mice were treated with programmed death-1 (PD-1) and cytotoxic t-lymphocyte antigen 4 (CTLA-4) inhibitors once every 3 days for five consecutive administration cycles. Changes in tumor volume and body weight were recorded. Lung computed tomography (CT) scans were conducted. The liver, lungs, heart, and colon tissues of the mice were stained with hematoxylin-eosin (H&E) staining to observe inflammatory infiltration and were scored. Serum samples were collected, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ferritin, glutamic-pyruvic transaminase (ALT), tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-6 (IL-6). Mouse liver and lung cell suspensions were prepared, and changes in macrophages, T cells, myeloid-derived suppressor cells (MDSCs), and regulatory (Treg) cells were detected by flow cytometry. RESULTS Mice treated with PD-1 and CTLA-4 inhibitors showed significant reductions in tumor volume and body weight. The tissue inflammatory scores in the experimental group were significantly higher than those in the control group. Lung CT scans of mice in the experimental group showed obvious inflammatory spots. Serum levels of ferritin, IL-6, TNF-α, IFN-γ, and ALT were significantly elevated in the experimental group. Flow cytometry analysis revealed a substantial increase in CD3+T cells, Treg cells, and macrophages in the liver and lung tissues of mice in the experimental group compared with the control group, and the change trend of MDSCs was opposite. CONCLUSIONS The irAE-related animal model was successfully established in BALB/c mice using a combination of PD-1 and CTLA-4 inhibitors through multiple administrations with clinical translational value and practical. This model offers valuable insights into irAE mechanisms for further investigation.
Collapse
Affiliation(s)
- Yuan Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yingge Lv
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Meng Shen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yumeng Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Ting Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Gen Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Shiya Ma
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Zhenzhen Hui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of ImmunologyTianjin Medical University Cancer Institute and HospitalTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
- Haihe Laboratory of Cell Ecosystem Innobation FundTianjinChina
| | - Liang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| |
Collapse
|
19
|
Wang W, Ding M, Wang Q, Song Y, Huo K, Chen X, Xiang Z, Liu L. Advances in Foxp3+ regulatory T cells (Foxp3+ Treg) and key factors in digestive malignancies. Front Immunol 2024; 15:1404974. [PMID: 38919615 PMCID: PMC11196412 DOI: 10.3389/fimmu.2024.1404974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Foxp3+ regulatory T cells (Foxp3+ Treg) play a role in regulating various types of tumors, but uncertainty still exists regarding the exact mechanism underlying Foxp3+ Treg activation in gastrointestinal malignancies. As of now, research has shown that Foxp3+ Treg expression, altered glucose metabolism, or a hypoxic tumor microenvironment all affect Foxp3+ Treg function in the bodies of tumor patients. Furthermore, it has been demonstrated that post-translational modifications are essential for mature Foxp3 to function properly. Additionally, a considerable number of non-coding RNAs (ncRNAs) have been implicated in the activation of the Foxp3 signaling pathway. These mechanisms regulating Foxp3 may one day serve as potential therapeutic targets for gastrointestinal malignancies. This review primarily focuses on the properties and capabilities of Foxp3 and Foxp3+Treg. It emphasizes the advancement of research on the regulatory mechanisms of Foxp3 in different malignant tumors of the digestive system, providing new insights for the exploration of anticancer treatments.
Collapse
Affiliation(s)
- Wanyao Wang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Minglu Ding
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuhong Wang
- Mudanjiang Hospital for Cardiovascular Diseases, Department of Anesthesiology, Mudanjiang, Heilongjiang, China
| | - Yidan Song
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Keyuan Huo
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaojie Chen
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zihan Xiang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
20
|
Gudd CLC, Mitchell E, Atkinson SR, Mawhin MA, Turajlic S, Larkin J, Thursz MR, Goldin RD, Powell N, Antoniades CG, Woollard KJ, Possamai LA, Triantafyllou E. Therapeutic inhibition of monocyte recruitment prevents checkpoint inhibitor-induced hepatitis. J Immunother Cancer 2024; 12:e008078. [PMID: 38580334 PMCID: PMC11002390 DOI: 10.1136/jitc-2023-008078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Checkpoint inhibitor-induced hepatitis (CPI-hepatitis) is an emerging problem with the widening use of CPIs in cancer immunotherapy. Here, we developed a mouse model to characterize the mechanism of CPI-hepatitis and to therapeutically target key pathways driving this pathology. METHODS C57BL/6 wild-type (WT) mice were dosed with toll-like receptor (TLR)9 agonist (TLR9-L) for hepatic priming combined with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) plus anti-programmed cell death 1 (PD-1) ("CPI") or phosphate buffered saline (PBS) control for up to 7 days. Flow cytometry, histology/immunofluorescence and messenger RNA sequencing were used to characterize liver myeloid/lymphoid subsets and inflammation. Hepatocyte damage was assessed by plasma alanine transaminase (ALT) and cytokeratin-18 (CK-18) measurements. In vivo investigations of CPI-hepatitis were carried out in Rag2-/- and Ccr2rfp/rfp transgenic mice, as well as following anti-CD4, anti-CD8 or cenicriviroc (CVC; CCR2/CCR5 antagonist) treatment. RESULTS Co-administration of combination CPIs with TLR9-L induced liver pathology closely resembling human disease, with increased infiltration and clustering of granzyme B+perforin+CD8+ T cells and CCR2+ monocytes, 7 days post treatment. This was accompanied by apoptotic hepatocytes surrounding these clusters and elevated ALT and CK-18 plasma levels. Liver RNA sequencing identified key signaling pathways (JAK-STAT, NF-ΚB) and cytokine/chemokine networks (Ifnγ, Cxcl9, Ccl2/Ccr2) as drivers of CPI-hepatitis. Using this model, we show that CD8+ T cells mediate hepatocyte damage in experimental CPI-hepatitis. However, their liver recruitment, clustering, and cytotoxic activity is dependent on the presence of CCR2+ monocytes. The absence of hepatic monocyte recruitment in Ccr2rfp/rfp mice and CCR2 inhibition by CVC treatment in WT mice was able to prevent the development and reverse established experimental CPI-hepatitis. CONCLUSION This newly established mouse model provides a platform for in vivo mechanistic studies of CPI-hepatitis. Using this model, we demonstrate the central role of liver infiltrating CCR2+ monocyte interaction with tissue-destructive CD8+ T cells in the pathogenesis of CPI-hepatitis and highlight CCR2 inhibition as a novel therapeutic target.
Collapse
Affiliation(s)
- Cathrin L C Gudd
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Eoin Mitchell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Atkinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marie-Anne Mawhin
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nick Powell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Kevin J Woollard
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Lucia A Possamai
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
21
|
Riveiro-Barciela M, Barreira-Díaz A, Salcedo MT, Callejo-Pérez A, Muñoz-Couselo E, Iranzo P, Ortiz-Velez C, Cedrés S, Díaz-Mejía N, Ruiz-Cobo JC, Morales R, Aguilar-Company J, Zamora E, Oliveira M, Sanz-Martínez MT, Viladomiu L, Martínez-Gallo M, Felip E, Buti M. An algorithm based on immunotherapy discontinuation and liver biopsy spares corticosteroids in two thirds of cases of severe checkpoint inhibitor-induced liver injury. Aliment Pharmacol Ther 2024; 59:865-876. [PMID: 38327102 DOI: 10.1111/apt.17898] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND There are few data on corticosteroids (CS)-sparing strategies for checkpoint inhibitor (ICI)-induced liver injury (ChILI). AIM We aimed to assess the performance of a 2-step algorithm for severe ChILI, based on ICI temporary discontinuation (step-1) and, if lack of biochemical improvement, CS based on the degree of necroinflammation at biopsy (step-2). METHODS Prospective study that included all subjects with grade 3/4 ChILI. Peripheral extended immunophenotyping was performed. Indication for CS: severe necroinflammation; mild or moderate necroinflammation with later biochemical worsening. RESULTS From 111 subjects with increased transaminases (January 2020 to August 2023), 44 were diagnosed with grade 3 (N = 35) or grade 4 (N = 9) ChILI. Main reason for exclusion was alternative diagnosis. Lung cancer (13) and melanoma (12) were the most common malignancies. ICI: 23(52.3%) anti-PD1, 8(18.2%) anti-PD-L1, 3(6.8%) anti-CTLA-4, 10(22.7%) combined ICI. Liver injury pattern: hepatocellular (23,52.3%) mixed (12,27.3%) and cholestatic (9,20.5%). 14(32%) presented bilirubin >1.2 mg/dL. Overall, 30(68.2%) patients did not require CS: 22(50.0%) due to ICI discontinuation (step-1) and 8/22 (36.4%) based on the degree of necroinflammation (step-2). Biopsy mainly impacted on grade 3 ChILI, sparing CS in 8 out of 15 (53.3%) non-improvement patients after ICI discontinuation. CD8+ HLA-DR expression (p = 0.028), central memory (p = 0.046) were lower in CS-free managed subjects, but effector-memory cells (p = 0.002) were higher. Time to transaminases normalisation was shorter in those CS-free managed (overall: p < 0.001, grade 3: p < 0.001). Considering our results, a strategy based on ICI discontinuation and biopsy for grade 3 ChILI is proposed. CONCLUSIONS An algorithm based on temporary immunotherapy discontinuation and biopsy allows CS avoidance in two thirds of cases of severe ChILI.
Collapse
Affiliation(s)
- Mar Riveiro-Barciela
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERehd, Instituto Carlos III, Barcelona, Spain
| | - Ana Barreira-Díaz
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María-Teresa Salcedo
- Human Pathology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Callejo-Pérez
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eva Muñoz-Couselo
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Patricia Iranzo
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carolina Ortiz-Velez
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Susana Cedrés
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nely Díaz-Mejía
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Carlos Ruiz-Cobo
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rafael Morales
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Aguilar-Company
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ester Zamora
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mafalda Oliveira
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María-Teresa Sanz-Martínez
- Immunology Division, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Lluis Viladomiu
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Enriqueta Felip
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Buti
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERehd, Instituto Carlos III, Barcelona, Spain
| |
Collapse
|
22
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallego-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:401-432. [PMID: 38228461 DOI: 10.1016/j.gastrohep.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2% to 40%, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
- Mar Riveiro-Barciela
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona (UAB), Department of Medicine, Spain.
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Universitat de Barcelona, Spain
| | - Álvaro Díaz-González
- Gastroenterology Department, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Míriam Mañosa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Joaquín Cubiella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitario de Ourense, Grupo de Investigación en Oncología Digestiva-Ourense, Spain
| | - Paula Jiménez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - María Varela
- Gastroenterology Department, Hospital Universitario Central de Asturias, IUOPA, ISPA, FINBA, University of Oviedo, Oviedo, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo - CEIMI, Instituto de Investigación Sanitaria Gregorio, Marañón, Spain; Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Bruno Sangro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Unit, Cancer Center Clinica Universidad de Navarra, Pamplona-Madrid, Spain
| | - Ana Fernández-Montes
- Medical Oncology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Francisco Mesonero
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Universidad de Alcalá de Henares, Spain
| | - Miguel Ángel Rodríguez-Gandía
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Fernando Rivera
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - María-Carlota Londoño
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat de Barcelona, Spain; Liver Unit, Hospital Clínic Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Spain
| |
Collapse
|
23
|
Nakayama Y, Sawa N, Suwabe T, Yamanouchi M, Ikuma D, Mizuno H, Hasegawa E, Sekine A, Oba Y, Ishiwata K, Wake A, Hatano M, Kitajima I, Kono K, Kinowaki K, Takazawa Y, Takemura T, Ubara Y. Histologically Proven Recurrent Synovitis after Nivolumab Treatment. Intern Med 2024; 63:867-871. [PMID: 37495530 PMCID: PMC11009007 DOI: 10.2169/internalmedicine.2221-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
A 58-year-old woman with rheumatoid arthritis was diagnosed with methotrexate-associated Hodgkin lymphoma. After receiving several chemotherapy regimens, she started nivolumab treatment. Two weeks later, she was hospitalized with worsening finger, wrist, and elbow joint pain. A synovial biopsy of the wrist joint showed villous synovial proliferation and linear infiltration of CD68-/CD3-positive T cells (with more CD8 than CD4 T cells) but no CD20-positive B cells or CD138-positive macrophages. These findings corresponded to synovitis associated with immune-related adverse events, which are induced mainly by T cells and are different from typical rheumatoid arthritis (RA), in which B cells play a central role.
Collapse
Affiliation(s)
- Yuki Nakayama
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Naoki Sawa
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Tatsuya Suwabe
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Masayuki Yamanouchi
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Daisuke Ikuma
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Hiroki Mizuno
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Eiko Hasegawa
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Akinari Sekine
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Yuki Oba
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Toranomon Hospital Kajigaya, Japan
| | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Japan
| | - Masaki Hatano
- Department of Orthopaedic Surgery, Toranomon Hospital Kajigaya, Japan
| | - Izuru Kitajima
- Department of Orthopaedic Surgery, Toranomon Hospital Kajigaya, Japan
| | - Kei Kono
- Department of Pathology, Toranomon Hospital Kajigaya, Japan
| | | | | | - Tamiko Takemura
- Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Yoshifumi Ubara
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| |
Collapse
|
24
|
Tanabe K, Yokoyama K, Kanno A, Ikeda E, Ando K, Nagai H, Koyanagi T, Sakaguchi M, Nakaya T, Tamada K, Niki T, Fukushima N, Lefor AK, Yamamoto H. Immune Checkpoint Inhibitor-induced Pancreatitis with Pancreatic Enlargement Mimicking Autoimmune Pancreatitis: A Case Report and Review of the Literature. Intern Med 2024; 63:791-798. [PMID: 37532549 PMCID: PMC11008994 DOI: 10.2169/internalmedicine.1943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
A 61-year-old woman was administered 35 cycles of pembrolizumab for the treatment of recurrent endometrial cancer, achieving a complete response. She presented with asymptomatic pancreatic enlargement and elevated hepatobiliary enzymes, but amylase and lipase levels were within the normal ranges. Intrapancreatic bile duct stenosis due to pancreatic enlargement was present, mimicking autoimmune pancreatitis on computed tomography performed before the onset of clinical manifestations. A histological examination of a biopsy specimen showed lymphocyte and plasma cell infiltration with dense fibrosis in the stroma. The patient was successfully treated with oral prednisolone. There were no manifestations of recurrent pancreatitis after tapering the prednisolone dose.
Collapse
Affiliation(s)
- Kiyokuni Tanabe
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | - Kensuke Yokoyama
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | - Atsushi Kanno
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | - Eriko Ikeda
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | - Kozue Ando
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | - Hiroki Nagai
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | - Takahiro Koyanagi
- Department of Obstetrics & Gynecology, Jichi Medical University, Japan
| | - Mio Sakaguchi
- Department of Diagnostic Pathology, Jichi Medical University, Japan
| | - Takeo Nakaya
- Department of Diagnostic Pathology, Jichi Medical University, Japan
| | - Kiichi Tamada
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| | - Toshiro Niki
- Department of Diagnostic Pathology, Jichi Medical University, Japan
| | | | | | - Hironori Yamamoto
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Japan
| |
Collapse
|
25
|
Tran SD, Lin J, Galvez C, Rasmussen LV, Pacheco J, Perottino GM, Rahbari KJ, Miller CD, John JD, Theros J, Vogel K, Dinh PV, Malik S, Ramzan U, Tegtmeyer K, Mohindra N, Johnson JL, Luo Y, Kho A, Sosman J, Walunas TL. Rapid identification of inflammatory arthritis and associated adverse events following immune checkpoint therapy: a machine learning approach. Front Immunol 2024; 15:1331959. [PMID: 38558818 PMCID: PMC10978703 DOI: 10.3389/fimmu.2024.1331959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Immune checkpoint inhibitor-induced inflammatory arthritis (ICI-IA) poses a major clinical challenge to ICI therapy for cancer, with 13% of cases halting ICI therapy and ICI-IA being difficult to identify for timely referral to a rheumatologist. The objective of this study was to rapidly identify ICI-IA patients in clinical data and assess associated immune-related adverse events (irAEs) and risk factors. Methods We conducted a retrospective study of the electronic health records (EHRs) of 89 patients who developed ICI-IA out of 2451 cancer patients who received ICI therapy at Northwestern University between March 2011 to January 2021. Logistic regression and random forest machine learning models were trained on all EHR diagnoses, labs, medications, and procedures to identify ICI-IA patients and EHR codes indicating ICI-IA. Multivariate logistic regression was then used to test associations between ICI-IA and cancer type, ICI regimen, and comorbid irAEs. Results Logistic regression and random forest models identified ICI-IA patients with accuracies of 0.79 and 0.80, respectively. Key EHR features from the random forest model included ICI-IA relevant features (joint pain, steroid prescription, rheumatoid factor tests) and features suggesting comorbid irAEs (thyroid function tests, pruritus, triamcinolone prescription). Compared to 871 adjudicated ICI patients who did not develop arthritis, ICI-IA patients had higher odds of developing cutaneous (odds ratio [OR]=2.66; 95% Confidence Interval [CI] 1.63-4.35), endocrine (OR=2.09; 95% CI 1.15-3.80), or gastrointestinal (OR=2.88; 95% CI 1.76-4.72) irAEs adjusting for demographics, cancer type, and ICI regimen. Melanoma (OR=1.99; 95% CI 1.08-3.65) and renal cell carcinoma (OR=2.03; 95% CI 1.06-3.84) patients were more likely to develop ICI-IA compared to lung cancer patients. Patients on nivolumab+ipilimumab were more likely to develop ICI-IA compared to patients on pembrolizumab (OR=1.86; 95% CI 1.01-3.43). Discussion Our machine learning models rapidly identified patients with ICI-IA in EHR data and elucidated clinical features indicative of comorbid irAEs. Patients with ICI-IA were significantly more likely to also develop cutaneous, endocrine, and gastrointestinal irAEs during their clinical course compared to ICI therapy patients without ICI-IA.
Collapse
Affiliation(s)
- Steven D. Tran
- Center for Health Information Partnerships, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jean Lin
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carlos Galvez
- Hematology and Oncology, University of Illinois Health, Chicago, IL, United States
| | - Luke V. Rasmussen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jennifer Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Kian J. Rahbari
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Charles D. Miller
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jordan D. John
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jonathan Theros
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kelly Vogel
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick V. Dinh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sara Malik
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Umar Ramzan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kyle Tegtmeyer
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nisha Mohindra
- Department of Medicine, Division of Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Jodi L. Johnson
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Departments of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Abel Kho
- Center for Health Information Partnerships, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Medicine, Division of General Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey Sosman
- Department of Medicine, Division of Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Theresa L. Walunas
- Center for Health Information Partnerships, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Medicine, Division of General Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
26
|
Salazar González F, Quiñones Palacios CA, Manzaneque Gordón A, Mazarico Gallego JM, Díaz A, Molas Ferrer G. Delayed immune-related hepatitis after 24 months of pembrolizumab treatment: a case report and literature review. Anticancer Drugs 2024; 35:284-287. [PMID: 37948346 DOI: 10.1097/cad.0000000000001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1) pathway have revolutionized cancer immunotherapy by enhancing the immune system's ability to combat cancer cells. However, this innovative approach comes with a distinctive set of challenges, as these therapies can lead to immune-related adverse events (irAEs) due to their mechanism of action. The most common irAEs involve the skin, gastrointestinal tract, liver, endocrine system, and lungs. These events can range from mild skin rashes to severe colitis, pneumonitis, or even autoimmune organ damage. These adverse effects usually appear with an average of 5-15 weeks from the start of treatment depending on the affected organ. This article presents a case report of a delayed related-mediated hepatitis, after 24 months of treatment with pembrolizumab and almost 3 months after its termination, and a review of the scientific literature on cases of delayed immune-related hepatitis caused by anti-PD1. This case highlights the importance of monitoring patients treated with immune checkpoint inhibitors after cessation as a growing number of patients stop treatment due to achieving durable responses.
Collapse
Affiliation(s)
| | | | | | | | - Alba Díaz
- Pathology Department, Hospital Clínic de Barcelona, IDIBAPS and Universitat de Barcelona, CIBEREHD, ISCIII, Barcelona, Spain
| | | |
Collapse
|
27
|
McKenzie J, Sneath E, Trinh A, Nolan M, Spain L. Updates in the pathogenesis and management of immune-related enterocolitis, hepatitis and cardiovascular toxicities. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100704. [PMID: 38357008 PMCID: PMC10865026 DOI: 10.1016/j.iotech.2024.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have become a cornerstone of treatment for many solid organ malignancies. Alongside increasing use, the occurrence of immune-related adverse events (irAEs) has also increased and remains a significant challenge when treating patients with ICI. The underlying pathophysiology of irAE development for many organ systems is yet to be elucidated, but may involve unmasking of latent autoimmunity, increased T-cell recognition of shared antigens on cancer and normal tissue and ICI-triggered immune dysregulation with overactivation of proinflammatory pathways and suppression of immune control pathways. Management strategies for irAEs have historically been borrowed from paradigms for conventional autoimmune conditions such as inflammatory bowel disease and autoimmune hepatitis; however, recent translational efforts have clearly demonstrated key differences in underlying immune signalling pathways. As we begin to understand these differences, we must adapt a more targeted approach to immunosuppression and exercise a more nuanced approach with the multiple biologic agents available to mitigate ICI-related toxicity without reversing the antitumour effect of ICI. In this review, we focus on three key immune-related toxicities where recent clinical and translational work has provided nuanced insights into pathogenesis and treatment strategies: enterocolitis, hepatitis and cardiovascular toxicity including myocarditis.
Collapse
Affiliation(s)
- J. McKenzie
- Department of Medical Oncology, Melbourne, Australia
| | - E. Sneath
- Department of Medical Oncology, Melbourne, Australia
| | - A. Trinh
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Australia
| | - M. Nolan
- Department of Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - L. Spain
- Department of Medical Oncology, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| |
Collapse
|
28
|
Mok K, Wu C, Chan S, Wong G, Wong VWS, Ma B, Lui R. Clinical Management of Gastrointestinal and Liver Toxicities of Immune Checkpoint Inhibitors. Clin Colorectal Cancer 2024; 23:4-13. [PMID: 38172003 DOI: 10.1016/j.clcc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Immune checkpoint inhibitors have transformed the treatment paradigm for various types of cancer. Nonetheless, with the utilization of these groundbreaking treatments, immune-related adverse events (irAEs) are increasingly encountered. Colonic and hepatic involvement are among the most frequently encountered irAEs. Drug-induced side effects, infectious causes, and tumor-related symptoms are the key differentials for irAE complications. Potential risk factors for the development of irAEs include combination use of immune checkpoint inhibitors, past development of irAEs with other immunotherapy treatments, certain concomitant drugs, and a pre-existing personal or family history of autoimmune illness such as inflammatory bowel disease. The importance of early recognition, timely and proper management cannot be understated, as there are profound clinical implications on the overall cancer treatment plan and prognosis once these adverse events occur. Herein, we cover the clinical management of the well-established gastrointestinal irAEs of enterocolitis and hepatitis, and also provide an overview of several other emerging entities.
Collapse
Affiliation(s)
- Kevin Mok
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claudia Wu
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Wong
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brigette Ma
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rashid Lui
- Department of Clinical Oncology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
29
|
Lasagna A, Sacchi P. The ABC of Immune-Mediated Hepatitis during Immunotherapy in Patients with Cancer: From Pathogenesis to Multidisciplinary Management. Cancers (Basel) 2024; 16:795. [PMID: 38398187 PMCID: PMC10886483 DOI: 10.3390/cancers16040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Immune-mediated hepatotoxicity (IMH) is not-so-rare complication during treatment with immune checkpoint inhibitors (ICIs). This narrative review aims to report the current knowledge on hepatic immune-related adverse events (irAEs) during immunotherapy from pathogenesis to multidisciplinary management. The majority of cases of IMH are asymptomatic and only a few patients may have clinical conditions. The severity of IMH is usually stratified according to Common Terminology for Clinical Adverse Events (CTCAE) criteria, but these scores may overestimate the clinical severity of IMH compared to the Drug-Induced Liver Injury Network (DILIN) scale. The differential diagnosis of IMH is challenging because the elevated liver enzymes can be due to a number of etiologies such as viral infection, autoimmune and metabolic diseases, liver metastases, biliary diseases, and other drugs. The cornerstones of IMH management are represented by withholding or delaying ICI administration and starting immunosuppressive therapy. A multidisciplinary team, including oncologists, hepatologists, internists, and emergency medicine physicians, is essential for the management of IMH.
Collapse
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Sacchi
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
30
|
Baumert LS, Shih AR, Chung RT. HBV reactivation and clinical resolution in an isolated anti-HBc-positive patient during immune checkpoint inhibition. MED 2024; 5:126-131.e1. [PMID: 38340708 DOI: 10.1016/j.medj.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI)-related liver injury is a growing concern as ICIs are increasingly used in cancer treatment regimens. Interestingly, ICIs have exhibited antiviral effects among patients with chronic hepatitis B virus (HBV). However, the underlying mechanisms remain unclear, and clinical data on patients with previous HBV infection/exposure and isolated anti-HBV core antibodies (IAHBcs) are lacking. METHODS We report a case illustrating the dual effects of ICIs in a patient experiencing panlobular hepatitis and concurrent HBV reactivation. FINDINGS A 68-year-old male patient positive for IAHBcs was admitted with panlobular hepatitis and HBV reactivation after receiving systemic chemotherapy (several months before admission) and ICI treatment (4 weeks before admission) subsequent to metastatic primary lung cancer (NSCLC stage IV). This was followed by a rapid and significant decrease of HBV DNA viral load before and during antiviral treatment. CONCLUSIONS This unique case sheds light on the dynamics of ICI therapy in IAHBc-positive patients experiencing HBV reactivation during chemotherapy and underscores the dual impact of ICIs. Moreover, it emphasizes the need for assessment of HBV serology and prophylaxis in IAHBc-positive patients undergoing chemotherapy and ICI treatment. FUNDING R.T.C. was supported by the MGH Research Scholars Program.
Collapse
Affiliation(s)
- Lukas S Baumert
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Angela R Shih
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Zhang Q, Chen L, Guo X, Shen L, Huang Y, Chen Y, Zhang N, Ge N, Gao H, Zhang W, Hou Y, Ji Y. Morphology of immune-mediated hepatitis: A comparison between immune checkpoint inhibitor therapy and combined immune checkpoint inhibitor/anti-angiogenic therapy. Ann Diagn Pathol 2024; 68:152225. [PMID: 38016303 DOI: 10.1016/j.anndiagpath.2023.152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The combination of immune checkpoint inhibitors (ICIs) with anti-angiogenic drugs has shown promising anticancer effects. However, ICIs can trigger immune-mediated hepatitis (IMH). We aimed to clarify whether the combined use of anti-angiogenic drugs and ICIs would increase the severity of IMH. METHODS One hundred IMH patients (ICI monotherapy vs. ICI plus anti-angiogenic therapy 30 vs. 70) were retrospectively enrolled. Clinicopathological parameters were compared between the two groups. RESULTS IMH mainly showed variable degrees of panlobular hepatitis (84 %), while some cases presented mixed cholangio-hepatitic (14 %) or cholangitic (2 %) pattern. The incidence of moderate-severe injury was not significantly different between the two groups (combination vs. monotherapy 38.6 % vs. 20.0 %, p = 0.109). Specifically, the rates of marked lobular injury and portal inflammation were higher in the combination group than in the monotherapy cohort (p < 0.005), while the frequencies of interface hepatitis, bile duct injury, histiocytosis aggregates, and endothelialitis were comparable between the two groups (p > 0.05). Compared to mild IMH cases, severe IMH cases showed higher immunostaining expression levels of PD-L1 (60.7 % vs. 19.4 %, p < 0.0001). Treatments and outcomes of IMH were not significantly different between the two groups (p > 0.05). CONCLUSIONS Compared to ICI monotherapy, the administration of anti-angiogenic drugs in combination with ICIs was not associated with increased hepatotoxicity.
Collapse
Affiliation(s)
- Qiongyan Zhang
- Zhongshan Hospital Fudan University, Department of Pathology. 200032. Shanghai. China.
| | - Lingli Chen
- Zhongshan Hospital Fudan University, Department of Pathology. 200032. Shanghai. China.
| | - Xinxin Guo
- Zhongshan Hospital Fudan University, Department of Pathology. 200032. Shanghai. China.
| | - Licheng Shen
- Zhongshan Hospital Fudan University, Department of Pathology. 200032. Shanghai. China.
| | - Yufeng Huang
- Zhongshan Hospital Fudan University, Department of Pathology. 200032. Shanghai. China.
| | - Yi Chen
- Zhongshan Hospital Fudan University, Department of Liver Medical Oncology, 200032 Shanghai, China.
| | - Ningping Zhang
- Zhongshan Hospital Fudan University, Department of Gastroenterology, 200032 Shanghai, China.
| | - Ningling Ge
- Zhongshan Hospital Fudan University, Department of Liver Medical Oncology, 200032 Shanghai, China.
| | - Hong Gao
- Zhongshan Hospital Fudan University, Department of Gastroenterology, 200032 Shanghai, China.
| | - Wen Zhang
- Zhongshan Hospital Fudan University, Department of Intervention, 200032 Shanghai, China.
| | - Yingyong Hou
- Zhongshan Hospital Fudan University, Department of Pathology. 200032. Shanghai. China.
| | - Yuan Ji
- Zhongshan Hospital Fudan University, Department of Pathology. 200032. Shanghai. China.
| |
Collapse
|
32
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallgo-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:83-113. [PMID: 38226597 DOI: 10.17235/reed.2024.10250/2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2 % to 40 %, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
| | | | | | - Miriam Mañosa
- Gastroenterology, Hospital Universitari Germans Trias i Pujol
| | | | | | | | - María Varela
- Gastroenterology, Hospital Universitario Central de Asturias
| | - Luis Menchén
- Digestive Diseases, Instituto de Investigación Sanitaria Gregorio Marañón
| | | | | | | | | | - Fernando Rivera
- Hospital Universitario Marqués de Valdecilla, Medical Oncology
| | | |
Collapse
|
33
|
Velarde-Ruiz Velasco JA, Tapia Calderón DK, Cerpa-Cruz S, Velarde-Chávez JA, Uribe Martínez JF, García Jiménez ES, Aldana Ledesma JM, Díaz-González Á, Crespo J. Immune-mediated hepatitis: Basic concepts and treatment. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2024; 89:106-120. [PMID: 38485561 DOI: 10.1016/j.rgmxen.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 04/20/2024]
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized advanced cancer management. Nevertheless, the generalized use of these medications has led to an increase in the incidence of adverse immune-mediated events and the liver is one of the most frequently affected organs. Liver involvement associated with the administration of immunotherapy is known as immune-mediated hepatitis (IMH), whose incidence and clinical characteristics have been described by different authors. It often presents as mild elevations of amino transferase levels, seen in routine blood tests, that spontaneously return to normal, but it can also manifest as severe transaminitis, possibly leading to the permanent discontinuation of treatment. The aim of the following review was to describe the most up-to-date concepts regarding the epidemiology, diagnosis, risk factors, and progression of IMH, as well as its incidence in different types of common cancers, including hepatocellular carcinoma. Treatment recommendations according to the most current guidelines are also provided.
Collapse
Affiliation(s)
- J A Velarde-Ruiz Velasco
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico; Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | | | - S Cerpa-Cruz
- Servicio de Reumatología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - J A Velarde-Chávez
- Servicio de Medicina Interna, Hospital Civil de Guadalajara Juan I. Menchaca, Guadalajara, Jalisco, Mexico
| | - J F Uribe Martínez
- Servicio de Reumatología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - E S García Jiménez
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - J M Aldana Ledesma
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Á Díaz-González
- Servicio de Gastroenterología y Hepatología, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - J Crespo
- Servicio de Gastroenterología y Hepatología, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
34
|
Roser LA, Luckhardt S, Ziegler N, Thomas D, Wagner PV, Damm G, Scheffschick A, Hewitt P, Parnham MJ, Schiffmann S. Immuno-inflammatory in vitro hepatotoxicity models to assess side effects of biologicals exemplified by aldesleukin. Front Immunol 2023; 14:1275368. [PMID: 38045689 PMCID: PMC10693457 DOI: 10.3389/fimmu.2023.1275368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Hepatotoxicity induced by immunotherapeutics is an appearing cause for immune-mediated drug-induced liver injury. Such immuno-toxic mechanisms are difficult to assess using current preclinical models and the incidence is too low to detect in clinical trials. As hepatotoxicity is a frequent reason for post-authorisation drug withdrawal, there is an urgent need for immuno-inflammatory in vitro models to assess the hepatotoxic potential of immuno-modulatory drug candidates. We developed several immuno-inflammatory hepatotoxicity test systems based on recombinant human interleukin-2 (aldesleukin). Methods Co-culture models of primary human CD8+ T cells or NK cells with the hepatocyte cell line HepaRG were established and validated with primary human hepatocytes (PHHs). Subsequently, the HepaRG model was refined by increasing complexity by inclusion of monocyte-derived macrophages (MdMs). The main readouts were cytotoxicity, inflammatory mediator release, surface marker expression and specific hepatocyte functions. Results We identified CD8+ T cells as possible mediators of aldesleukin-mediated hepatotoxicity, with MdMs being implicated in increased aldesleukin-induced inflammatory effects. In co-cultures of CD8+ T cells with MdMs and HepaRG cells, cytotoxicity was induced at intermediate/high aldesleukin concentrations and perforin was upregulated. A pro-inflammatory milieu was created measured by interleukin-6 (IL-6), c-reactive protein (CRP), interferon gamma (IFN-γ), and monocyte chemoattractant protein-1 (MCP-1) increase. NK cells responded to aldesleukin, however, only minor aldesleukin-induced cytotoxic effects were measured in co-cultures. Results obtained with HepaRG cells and with PHHs were comparable, especially regarding cytotoxicity, but high inter-donor variations limited meaningfulness of the PHH model. Discussion The in vitro test systems developed contribute to the understanding of potential key mechanisms in aldesleukin-mediated hepatotoxicity. In addition, they may aid assessment of immune-mediated hepatotoxicity during the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luise A. Roser
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Nicole Ziegler
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Pia Viktoria Wagner
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J. Parnham
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
35
|
Gunay G, Maier KN, Hamsici S, Carvalho F, Timog TA, Acar H. Peptide aggregation-induced immunogenic cell death in a breast cancer spheroid model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565012. [PMID: 37961293 PMCID: PMC10635027 DOI: 10.1101/2023.10.31.565012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Utilizing multicellular aggregates (spheroids) for in vitro cancer research offers a physiologically relevant model that closely mirrors the intricate tumor microenvironment, capturing properties of solid tumors such as cell interactions and drug resistance. In this research, we investigated the Peptide-Aggregation Induced Immunogenic Response (PAIIR), an innovative method employing engineered peptides we designed specifically to induce immunogenic cell death (ICD). We contrasted PAIIR-induced ICD with standard ICD and non-ICD inducer chemotherapeutics within the context of three-dimensional breast cancer tumor spheroids. Our findings reveal that PAIIR outperforms traditional chemotherapeutics in its efficacy to stimulate ICD. This is marked by the release of key damage-associated molecular patterns (DAMPs), which bolster the phagocytic clearance of dying cancer cells by dendritic cells (DCs) and, in turn, activate powerful anti-tumor immune responses. Additionally, we observed that PAIIR results in elevated dendritic cell activation and increased antitumor cytokine presence. This study not only showcases the utility of tumor spheroids for efficient high-throughput screening but also emphasizes PAIIR's potential as a formidable immunotherapeutic strategy against breast cancer, setting the stage for deeper exploration and potential clinical implementation.
Collapse
|
36
|
Gudd CLC, Sheth R, Thursz MR, Triantafyllou E, Possamai LA. Immune Checkpoint Inhibitor-Induced Liver Injury. Semin Liver Dis 2023; 43:402-417. [PMID: 38101418 DOI: 10.1055/s-0043-1776761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In recent years cancer treatment has been revolutionized by the development and wide application of checkpoint inhibitor (CPI) drugs, which are a form of immunotherapy. CPI treatment is associated with immune-related adverse events, off-target tissue destructive inflammatory complications, which may affect a range of organs, with liver inflammation (hepatitis) being one of the more commonly noted events. This is a novel form of drug-induced liver injury and a rapidly evolving field, as our understanding of both the basic immunopathology of CPI hepatitis (CPI-H) and optimal clinical management, races to catch up with the increasing application of this form of immunotherapy in clinical practice. In this review, we summarize current evidence and understanding of CPI-H, from fundamental immunology to practical patient management.
Collapse
Affiliation(s)
- Cathrin L C Gudd
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Roosey Sheth
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Liver and Antiviral Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lucia A Possamai
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Liver and Antiviral Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
37
|
Sato K, Inoue J, Ninomiya M, Iwata T, Sano A, Tsuruoka M, Onuki M, Sawahashi S, Ouchi K, Masamune A. Effectiveness of tacrolimus in a case of immune checkpoint inhibitor-induced hepatotoxicity that was refractory to steroids and mycophenolate mofetil. Clin J Gastroenterol 2023; 16:720-725. [PMID: 37480423 DOI: 10.1007/s12328-023-01832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Immune checkpoint inhibitors (ICIs) sometimes induce immune-mediated hepatotoxicity (IMH), and corticosteroids and mycophenolate mofetil (MMF) are recommended for the treatment of IMH. However, there is no consensus on the treatment of IMH refractory to these drugs. Here, we report a case of refractory IMH that was successfully treated with tacrolimus. A 69-year-old man presented with liver injury after receiving durvalumab, an ICI, for lung cancer. He was diagnosed with IMH and received corticosteroids including methylprednisolone pulses and MMF, but his liver damage did not improve. Liver histology showed infiltration of inflammatory cells, mainly CD8 + T cells, in the portal area. Tacrolimus was added to corticosteroid and MMF to suppress mainly T cells. After the tacrolimus administration, the liver damage promptly improved. Since IMH is thought to be caused by activated CD8 + T-cell infiltration, T-cell suppression may be an effective treatment. This case suggests that tacrolimus may be an effective option for IMH refractory to corticosteroids or MMF if CD8 + T-cell infiltration is confirmed in the liver tissue.
Collapse
Affiliation(s)
- Kosuke Sato
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan.
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Tomoaki Iwata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Akitoshi Sano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Mio Tsuruoka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masazumi Onuki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Satoko Sawahashi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Keishi Ouchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| |
Collapse
|
38
|
Masuda J, Sakai H, Tsurutani J, Tanabe Y, Masuda N, Iwasa T, Takahashi M, Futamura M, Matsumoto K, Aogi K, Iwata H, Hosonaga M, Mukohara T, Yoshimura K, Imamura CK, Miura S, Yamochi T, Kawabata H, Yasojima H, Tomioka N, Yoshimura K, Takano T. Efficacy, safety, and biomarker analysis of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR-positive HER2-negative metastatic breast cancer: a phase II study (WJOG11418B NEWFLAME trial). J Immunother Cancer 2023; 11:e007126. [PMID: 37709297 PMCID: PMC10503337 DOI: 10.1136/jitc-2023-007126] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Hormone receptor (HR)-positive breast cancer is a disease for which no immune checkpoint inhibitors have shown promise as effective therapies. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors synergistically increased the effectiveness of antiprogrammed cell death protein-1 (anti-PD-1)/programmed death-ligand 1 (PD-L1) antibodies in preclinical studies. METHODS This non-randomized, multicohort, phase II study evaluated the efficacy and safety of the anti-PD-1 antibody nivolumab 240 mg administered every 2 weeks in combination with the CDK4/6 inhibitor abemaciclib 150 mg twice daily and either fulvestrant (FUL) or letrozole (LET) as a first-line or second-line treatment for HR-positive HER2-negative metastatic breast cancer. The primary end point was the objective response rate (ORR), and secondary end points were toxicity, progression-free survival, and overall survival. Blood, tissue, and fecal samples were collected at multiple points for correlative studies to evaluate immunity biomarkers. RESULTS From June 2019 to early study termination due to safety concerns on July 2020, 17 patients were enrolled (FUL: n=12, LET: n=5). One patient with a prior treatment history in the FUL cohort was excluded. ORRs were 54.5% (6/11) and 40.0% (2/5) in the FUL and LET cohorts, respectively. Treatment-emergent (TE) adverse events (AEs) of grade ≥3 occurred in 11 (92%) and 5 (100%) patients in the FUL and LET cohorts, respectively. The most common grade ≥3 TEAEs were neutropenia (7 (58.3%) and 3 (60.0%) in the FUL and LET cohorts, respectively), followed by alanine aminotransferase elevation (5 (41.6%) and 4 (80.0%)). One treatment-related death from interstitial lung disease occurred in the LET cohort. Ten patients developed liver-related grade ≥3 AEs. Liver biopsy specimens from 3 patients showed hepatitis characterized by focal necrosis with predominant CD8+ lymphocyte infiltration. Marked elevation of tumor necrosis factor-related cytokines and interleukin-11, and a decrease in peripheral regulatory T cells (Tregs), were observed in patients with hepatotoxicity. These findings suggest that treatment-related toxicities were immune-related AEs likely caused by proinflammatory cytokine production and suppression of Treg proliferation due to the addition of abemaciclib to nivolumab therapy. CONCLUSIONS Although the combination of nivolumab and abemaciclib was active, it caused severe and prolonged immune-related AEs. TRIAL REGISTRATION NUMBER JapicCTI-194782, jRCT2080224706, UMIN000036970.
Collapse
Affiliation(s)
- Jun Masuda
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
- Department of Medical Oncology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Hitomi Sakai
- Advanced Cancer Translational Research Institute, Showa University, Shinagawa-ku, Tokyo, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Yuko Tanabe
- Department of Medical Oncology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Norikazu Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masato Takahashi
- Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Koji Matsumoto
- Department of Medical Oncology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Kenjiro Aogi
- Department of Breast Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Mari Hosonaga
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno-oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Chiyo K Imamura
- Advanced Cancer Translational Research Institute, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Sakiko Miura
- Department of Pathology, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Toshiko Yamochi
- Department of Pathology, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Hiroyuki Yasojima
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Nobumoto Tomioka
- Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Kenichi Yoshimura
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshimi Takano
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
- Department of Medical Oncology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| |
Collapse
|
39
|
Parrack PH, Zucker SD, Zhao L. Liver Pathology Related to Onco-Therapeutic Agents. Surg Pathol Clin 2023; 16:499-518. [PMID: 37536885 DOI: 10.1016/j.path.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Oncotherapeutic agents can cause a wide range of liver injuries from elevated liver functions tests to fulminant liver failure. In this review, we emphasize a newer generation of drugs including immune checkpoint inhibitors, protein kinase inhibitors, monoclonal antibodies, and hormonal therapy. A few conventional chemotherapy agents are also discussed.
Collapse
Affiliation(s)
- Paige H Parrack
- Department of Pathology, Brigham and Women's Hospital, 75 Francis street, Boston, MA, 02115, USA; Harvard Medical School
| | - Stephen D Zucker
- Harvard Medical School; Department of Medicine, Brigham and Women's Hospital, 75 Francis street, Boston, MA, 02115, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, 75 Francis street, Boston, MA, 02115, USA; Harvard Medical School.
| |
Collapse
|
40
|
Kramer S, van Hee K, Blokzijl H, van der Heide F, Visschedijk MC. Immune Checkpoint Inhibitor-related Pancreatitis: A Case Series, Review of the Literature and an Expert Opinion. J Immunother 2023; 46:271-275. [PMID: 37216403 PMCID: PMC10405787 DOI: 10.1097/cji.0000000000000472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various malignancies, but are associated with serious adverse events like pancreatitis. Current guidelines are limited to the first step in treating acute ICI-related pancreatitis with steroids but lack treatment advices for steroid dependent pancreatitis. We describe a case series of 3 patients who developed ICI-related pancreatitis with chronic features such as exocrine insufficiency and pancreatic atrophy at imaging. Our first case developed after treatment with pembrolizumab. The pancreatitis responded well after discontinuation of immunotherapy but imaging showed pancreatic atrophy and exocrine pancreatic insufficiency persisted. Cases 2 and 3 developed after treatment with nivolumab. In both, pancreatitis responded well to steroids. However during steroid tapering, pancreatitis recurred and the latter developed exocrine pancreatic insufficiency and pancreatic atrophy at imaging. Our cases demonstrate resemblances with autoimmune pancreatitis based on clinical and imaging findings. In line, both diseases are T-cell mediated and for autoimmune pancreatitis azathioprine is considered as maintenance therapy. Guidelines of other T-cell mediated diseases like ICI-related hepatitis suggest tacrolimus. After adding tacrolimus in case 2 and azathioprine in case 3, steroids could be completely tapered and no new episodes of pancreatitis have occurred. These findings support the idea that the treatment modalities for other T-cell mediated diseases are worthwhile options for steroid dependent ICI-related pancreatitis.
Collapse
Affiliation(s)
- Sjoerd Kramer
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Koen van Hee
- Department of Gastroenterology and Hepatology, Jeroen Bosch Hospital, GZ ‘s-Hertogenbosch, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans van der Heide
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marijn C. Visschedijk
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Andrade RJ, Aithal GP, de Boer YS, Liberal R, Gerbes A, Regev A, Terziroli Beretta-Piccoli B, Schramm C, Kleiner DE, De Martin E, Kullak-Ublick GA, Stirnimann G, Devarbhavi H, Vierling JM, Manns MP, Sebode M, Londoño MC, Avigan M, Robles-Diaz M, García-Cortes M, Atallah E, Heneghan M, Chalasani N, Trivedi PJ, Hayashi PH, Taubert R, Fontana RJ, Weber S, Oo YH, Zen Y, Licata A, Lucena MI, Mieli-Vergani G, Vergani D, Björnsson ES. Nomenclature, diagnosis and management of drug-induced autoimmune-like hepatitis (DI-ALH): An expert opinion meeting report. J Hepatol 2023; 79:853-866. [PMID: 37164270 PMCID: PMC10735171 DOI: 10.1016/j.jhep.2023.04.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Drug-induced liver injury (DILI) can mimic almost all other liver disorders. A phenotype increasingly ascribed to drugs is autoimmune-like hepatitis (ALH). This article summarises the major topics discussed at a joint International Conference held between the Drug-Induced Liver Injury consortium and the International Autoimmune Hepatitis Group. DI-ALH is a liver injury with laboratory and/or histological features that may be indistinguishable from those of autoimmune hepatitis (AIH). Previous studies have revealed that patients with DI-ALH and those with idiopathic AIH have very similar clinical, biochemical, immunological and histological features. Differentiating DI-ALH from AIH is important as patients with DI-ALH rarely require long-term immunosuppression and the condition often resolves spontaneously after withdrawal of the implicated drug, whereas patients with AIH mostly require long-term immunosuppression. Therefore, revision of the diagnosis on long-term follow-up may be necessary in some cases. More than 40 different drugs including nitrofurantoin, methyldopa, hydralazine, minocycline, infliximab, herbal and dietary supplements (such as Khat and Tinospora cordifolia) have been implicated in DI-ALH. Understanding of DI-ALH is limited by the lack of specific markers of the disease that could allow for a precise diagnosis, while there is similarly no single feature which is diagnostic of AIH. We propose a management algorithm for patients with liver injury and an autoimmune phenotype. There is an urgent need to prospectively evaluate patients with DI-ALH systematically to enable definitive characterisation of this condition.
Collapse
Affiliation(s)
- Raúl J Andrade
- Servicio Aparato Digestivo and Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA_Plataforma Bionand, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Ynto S de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | - Rodrigo Liberal
- Gastroenterology Department, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Arie Regev
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf. Hamburg Center for Translational Immunology. Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Eleonora De Martin
- APHP, Hôpital Paul Brousse, Centre Hépato-Biliaire, INSERM Unit 1193, FHU Hepatinov, Villejuif, France
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Guido Stirnimann
- Department of Visceral Surgery and Medicine, Inselspital University Hospital and University of Bern, Bern, Switzerland
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - John M Vierling
- Departments of Medicine and Surgery, Section of Gastroenterology and Hepatology and Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas, United States
| | - Michael P Manns
- Hannover Medical School, Centre of ERN RARE-LIVER, Hannover, Germany
| | - Marcial Sebode
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Maria Carlota Londoño
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Liver Unit, Hospital Clínic de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Institut d' Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mark Avigan
- Center for Drug Evaluation and Research, Office of Surveillance and Epidemiology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mercedes Robles-Diaz
- Servicio Aparato Digestivo and Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA_Plataforma Bionand, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Miren García-Cortes
- Servicio Aparato Digestivo and Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA_Plataforma Bionand, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Edmond Atallah
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | | | - Naga Chalasani
- University School of Medicine & Indiana University Health, Indianapolis, Indiana, USA
| | - Palak J Trivedi
- NIHR Birmingham BRC, Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, Liver Unit, University Hospitals Birmingham National Health Service Foundation Trust Queen Elizabeth, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Paul H Hayashi
- Division of Hepatology and Nutrition, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hannover, Germany
| | - Robert J Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sabine Weber
- Department of Medicine II, LMU Klinikum Munich, Munich, Germany
| | - Ye Htun Oo
- Center for Liver and Gastro Research & National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham, Centre for Rare Disease and ERN Rare Liver Centre, Liver Transplant and Hepatobiliary Unit, University Hospital Birmingham NHS Foundation Trust, UK
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London SE5 9RS, UK
| | - Anna Licata
- Medicina Interna ed Epatologia, Università degli Studi di Palermo, Palermo, Italy
| | - M Isabel Lucena
- Servicio Aparato Digestivo and Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA_Plataforma Bionand, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Platform ISCiii for Clinical Research and Clinical Trials SCReN UICEC- IBIMA, Málaga, Spain.
| | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, United Kingdom
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, United Kingdom
| | - Einar S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
42
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
43
|
Dibos M, Dumoulin J, Mogler C, Wunderlich S, Reichert M, Rasch S, Schmid RM, Ringelhan M, Ehmer U, Lahmer T. Fulminant Liver Failure after Treatment with a Checkpoint Inhibitor for Gastric Cancer: A Case Report and Review of the Literature. J Clin Med 2023; 12:4641. [PMID: 37510756 PMCID: PMC10381004 DOI: 10.3390/jcm12144641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Nivolumab is a promising monoclonal antibody inhibitor of programmed death-1, a protein on the surface of T-cells. As such, it is approved for use in patients with multiple advanced malignancies and can significantly elongate progression-free survival. However, monoclonal antibody inhibitors can lead to adverse hepatic reactions, which in rare cases result in further hepatic damage. Herein, we present a case of a patient with locally advanced gastric carcinoma treated with fluorouracil, oxaliplatin, docetaxel and the checkpoint inhibitor nivolumab. Five months after her first dosage of nivolumab and without a preexisting liver disease, she presented with transaminitis. During the course of her stay, the patient developed status epilepticus, which required mechanical ventilation followed by fulminant hepatic failure. A subsequent liver biopsy revealed severe liver damage with extensive confluent parenchymal necrosis corresponding to checkpoint-inhibitor-induced hepatitis. Alternative reasons for this hepatic failure were ruled out. Despite aggressive therapeutic interventions including corticosteroids and plasma exchange, the patient died due to liver failure. Although hepatic failure is rarely seen in patients with checkpoint inhibitor therapy, it requires early awareness and rapid intervention.
Collapse
Affiliation(s)
- Miriam Dibos
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Johanna Dumoulin
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Carolin Mogler
- Department of Pathology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Maximilian Reichert
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sebastian Rasch
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Marc Ringelhan
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Ursula Ehmer
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Tobias Lahmer
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
44
|
Zarrabi M, Hamilton C, French SW, Federman N, Nowicki TS. Successful treatment of severe immune checkpoint inhibitor associated autoimmune hepatitis with basiliximab: a case report. Front Immunol 2023; 14:1156746. [PMID: 37325672 PMCID: PMC10262312 DOI: 10.3389/fimmu.2023.1156746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death-1 (PD-1) and its corresponding ligand PD-L1 are being increasingly used for a wide variety of cancers, including refractory sarcomas. Autoimmune hepatitis is a known side effect of ICIs, and is typically managed with broad, non-specific immunosuppression. Here, we report a case of severe autoimmune hepatitis occurring after anti-PD-1 therapy with nivolumab in a patient with osteosarcoma. Following prolonged unsuccessful treatment with intravenous immunoglobulin, steroids, everolimus, tacrolimus, mycophenolate, and anti-thymoglobulin, the patient was eventually treated with the anti-CD25 monoclonal antibody basiliximab. This resulted in prompt, sustained resolution of her hepatitis without significant side effects. Our case demonstrates that basiliximab may be an effective therapy for steroid-refractory severe ICI-associated hepatitis.
Collapse
Affiliation(s)
- Maiah Zarrabi
- Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
| | - Camille Hamilton
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
| | - Samuel W. French
- Department of Pathology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Noah Federman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
| | - Theodore S. Nowicki
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
45
|
Duan G, Huang P, Zheng C, Zheng J, Yu J, Zhang P, Wan M, Li F, Guo Q, Yin Y, Duan Y. Development and Recovery of Liver Injury in Piglets by Incremental Injection of LPS. Antioxidants (Basel) 2023; 12:1143. [PMID: 37371873 DOI: 10.3390/antiox12061143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to explore the effects of the incremental injection of lipopolysaccharide (LPS) on liver histopathology, inflammation, oxidative status, and mitochondrial function in piglets. Forty healthy Duroc × Landrace × Yorkshire castrated boars (21 ± 2 days old, weight 6.84 ± 0.11 kg) were randomly assigned to five groups (n = 8) and then slaughtered on days 0 (group 0, without LPS injection), 1 (group 1), 5 (group 5), 9 (group 9), and 15 (group 15) of LPS injection, respectively. The results showed that, compared to the piglets without LPS injection, LPS injection caused liver injury in the early phase, as manifested by the increased activities of serum liver injury-related parameters (aspartate amino transferase, alanine aminotransferase, alkaline phosphatase, cholinesterase, and total bile acid) on day 1, and impaired liver morphology (disordered hepatic cell cord arrangement, dissolved and vacuolized hepatocytes, karyopycnosis, and inflammatory cell infiltration and congestion) on days 1 and 5. Meanwhile, LPS injection caused liver inflammation, oxidative stress, and mitochondrial dysfunction on days 1 and 5, as reflected by the upregulated mRNA expression of TNF-α, IL-6, IL-1β, TLR4, MyD88, and NF-κB; increased MPO and MDA content; and impaired mitochondrial morphology. However, these parameters were ameliorated in the later phase (days 9~15). Taken together, our data indicate that the incremental injection of the LPS-induced liver injury of piglets could be self-repaired.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Huang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Alruwaii ZI, Montgomery EA. Gastrointestinal and Hepatobiliary Immune-related Adverse Events: A Histopathologic Review. Adv Anat Pathol 2023; 30:230-240. [PMID: 37037419 DOI: 10.1097/pap.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Immune checkpoint inhibitors have been increasingly used to treat various malignant neoplasms. Despite their superior efficacy in treating certain ones, their global immune-activation effect leads to systemic side effects, referred to as immune-related adverse events. Immune-related adverse events affect a variety of organs, including the skin, gastrointestinal, hepatobiliary, and endocrine organs. Gastrointestinal tract immune-related adverse events present with a wide range of symptoms with variable severity, which may lead to treatment interruption and administration of immunosuppression therapy in many cases. Histopathologic changes are diverse, overlapping with many other conditions. Therefore, recognizing these changes is crucial in diagnosing immune-related adverse events. This review discusses the pathologic manifestations of gastrointestinal immune-related adverse events and discusses the primary differential diagnoses.
Collapse
|
47
|
Nogami A, Wada N, Muraoka E, Iwaki M, Kobayashi T, Matsumura M, Kato I, Fujii S, Nakajima A, Yoneda M. Mortality associated with the development of acute liver failure after a single dose of nivolumab. Clin J Gastroenterol 2023; 16:464-469. [PMID: 37076635 DOI: 10.1007/s12328-023-01789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
AIM Immune-related adverse events (irAEs) caused by immune checkpoint inhibitors are reported in all organs; however, the frequency of liver injury is low compared to irAEs in other organs. We describe a case of fulminant hepatitis after administration of the first dose of nivolumab for the management of esophageal cancer. METHODS A man in his 80s was treated with nivolumab as a second-line therapy after his overall health worsened during preoperative chemotherapy for esophageal cancer. He was admitted to the hospital as an emergency case 30 days later with complaints of vomiting, following which acute liver failure was diagnosed. RESULTS The patient developed hepatic encephalopathy on the third day after admission and died on the seventh day. The pathological results showed sub-extensive spread hepatocellular necrosis throughout the liver, and immunostaining confirmed the presence of CD8-positive cells, which is consistent with irAEs. CONCLUSIONS Immune checkpoint inhibitors have proven to be effective for the treatment of malignant tumors, and although fatalities due to acute liver failure are extremely rare, such cases have been reported previously. Among the immune checkpoint inhibitors, anti-programmed death-1 receptor is associated with less hepatotoxicity. However, even a single dose of this treatment can cause acute liver failure, which could be fatal.
Collapse
Affiliation(s)
- Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Naohiro Wada
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Erika Muraoka
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Mai Matsumura
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
48
|
Xia W, Chen J, Hou W, Chen J, Xiong Y, Li H, Qi X, Xu H, Xie Z, Li M, Zhang X, Li J. Engineering a HER2-CAR-NK Cell Secreting Soluble Programmed Cell Death Protein with Superior Antitumor Efficacy. Int J Mol Sci 2023; 24:ijms24076843. [PMID: 37047817 PMCID: PMC10094803 DOI: 10.3390/ijms24076843] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
A new therapy strategy for relapsing patients who have received trastuzumab treatment urgently needs to be explored. HER2-specific chimeric antigen receptor (CAR)-expressing NK cells are being rapidly developed for solid tumor therapy, as they have many advantages over HER2-CAR-T cells. Endogenous soluble PD-1 (sPD-1) from the PD-1 extracellular domain blocks PD-1/PD-L1 interaction to promote cancer immunology. Herein, we engineered a new HER2-CAR-NK cell that co-expresses sPD-1 (designed as sPD-1-CAR-NK cells) and assessed its cytotoxic activities toward various cancer cells, activation of immunity and sPD-1 release in vitro and in mouse models bearing breast cancer cells with high HER2 expression, with or without trastuzumab resistance. We demonstrated that sPD-1-CAR-NK cells were able to release bioactive sPD-1, thereby enhancing the cytolytic activities of HER2-CAR-NK cells against HER2 and PD-L1 highly expressing target cells accompanied by increases in the secretion of perforin, granzyme B and IFN-γ. In vivo, sPD-1-CAR-NK cells had superior immunological anticancer efficacy compared to HER2-CAR-NK cells, and they had advantages over HER2-CAR-NK cells in the intraperitoneal injection of sPD-1. Moreover, the infiltration and activation of NK and T cells into tumor tissue were increased in mice with sPD-1-CAR-NK cells. There was no significant change in the body temperature, organ tissue and body weight in all groups except for the group with the PD-1 injection. Together, these data indicate that HER2-specific sPD-1-CAR-NK cells can transport sPD-1 into cancer tissues with high HER2 expression, further improving the efficacy of HER-CAR-NK cells without obvious side effects. sPD-1-CAR-NK is a promising cytotherapeutic agent for patients bearing HER2-positive breast cancer, including those with trastuzumab resistance.
Collapse
Affiliation(s)
- Wenjiao Xia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jiaxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Wenqing Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Junsheng Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongyan Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 200126, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 200126, China
| | - Mingfeng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
49
|
Lee SK, Choi JY, Jung ES, Kwon JH, Jang JW, Bae SH, Yoon SK. An Immunological Perspective on the Mechanism of Drug Induced Liver Injury: Focused on Drugs for Treatment of Hepatocellular Carcinoma and Liver Transplantation. Int J Mol Sci 2023; 24:5002. [PMID: 36902432 PMCID: PMC10003078 DOI: 10.3390/ijms24055002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The liver is frequently exposed to potentially toxic materials, and it is the primary site of clearance of foreign agents, along with many innate and adaptive immune cells. Subsequently, drug induced liver injury (DILI), which is caused by medications, herbs, and dietary supplements, often occurs and has become an important issue in liver diseases. Reactive metabolites or drug-protein complexes induce DILI via the activation of various innate and adaptive immune cells. There has been a revolutionary development of treatment drugs for hepatocellular carcinoma (HCC) and liver transplantation (LT), including immune checkpoint inhibitors (ICIs), that show high efficacy in patients with advanced HCC. Along with the high efficacy of novel drugs, DILI has become a pivotal issue in the use of new drugs, including ICIs. This review demonstrates the immunological mechanism of DILI, including the innate and adaptive immune systems. Moreover, it aims to provide drug treatment targets, describe the mechanisms of DILI, and detail the management of DILI caused by drugs for HCC and LT.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
50
|
Kadokawa Y, Inoue S, Tatsumi A, Uchida M, Fujita K, Takagi M, Inoue T, Ohe S, Nakai Y, Otsuka T, Abe Y, Nakabori T, Isei T, Kumagai T, Nishimura K, Ohkawa K. Efficacy and safety of mycophenolate mofetil in treating immune-related hepatitis induced by immune checkpoint inhibitor use: A retrospective study. JGH Open 2023; 7:87-97. [PMID: 36852148 PMCID: PMC9958334 DOI: 10.1002/jgh3.12868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Background and Aim To investigate the outcomes in eight Japanese patients with cancer treated with mycophenolate mofetil (MMF) and corticosteroids for immune checkpoint inhibitor treatment-induced severe immune-related hepatitis (ir-hepatitis) and the efficacy and safety of MMF. Methods We retrospectively examined patient background, treatment course, as well as examination and imaging data using electronic medical records. Results The ratio of male to female patients was 7:1, and the median age was 60 years (27-72 years). There were five and two cases of kidney cancer and malignant melanoma, respectively, and one case of lung cancer. The median number of days until MMF administration in addition to systemic corticosteroid therapy after the onset of ir-hepatitis was 14.5 (2-42). The patients were categorized as four "good responders" who showed an improvement in the liver function tests following MMF treatment and four "poor responders" who did not. Furthermore, the time from the onset of ir-hepatitis to initial MMF administration was significantly shorter in good responders (median 3 days, range 2-15 days) than in poor responders (median 25.5 days, range 14-42 days) (P = 0.042). No significant intergroup difference was observed in other clinical factors. No serious adverse events caused by MMF were observed in any case. Conclusions According to these findings, early recognition of corticosteroid refractoriness and the use of MMF may be beneficial in patients with ir-hepatitis.
Collapse
Affiliation(s)
- Yukio Kadokawa
- Department of PharmacyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Satoko Inoue
- Department of PharmacyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Akitoshi Tatsumi
- Faculty of Pharmaceutical SciencesKobe Gakuin UniversityKobeJapan
| | - Mayako Uchida
- Faculty of Pharmaceutical SciencesDoshisha Women's College of Liberal ArtsKyotoJapan
| | - Keiko Fujita
- Department of PharmacyOsaka General Medical Center, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Mari Takagi
- Department of PharmacyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Takako Inoue
- Department of Respiratory MedicineOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Shuichi Ohe
- Department of Dermatologic OncologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Yasutomo Nakai
- Department of UrologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Tomoyuki Otsuka
- Department of Medical OncologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Yutaro Abe
- Department of Hepatobiliary and Pancreatic OncologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Tasuku Nakabori
- Department of Hepatobiliary and Pancreatic OncologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Taiki Isei
- Department of Dermatologic OncologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Toru Kumagai
- Department of Respiratory MedicineOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Kazuo Nishimura
- Department of UrologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic OncologyOsaka International Cancer Institute, Osaka Prefectural Hospital OrganizationOsakaJapan
| |
Collapse
|