1
|
Gibbard E, Cochrane DR, Sowamber R, Huvila J, Nitschke AS, Greening K, Chow C, Qin Y, Mohammad N, Farnell D, Lee WS, Gilks CB, Hoang L, Hanley GE, Huntsman DG. Oral contraceptive use is associated with a reduction in the physical size of fallopian tube p53 signatures. Int J Gynecol Cancer 2025; 35:101635. [PMID: 39921960 DOI: 10.1016/j.ijgc.2025.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVE Oral contraceptives reduce ovarian cancer risk, but the mechanism of risk reduction is not understood. We examined whether oral contraceptive pill (OCP) use influences p53 signatures, which are putative early fallopian tube precursors for high-grade serous ovarian carcinomas. METHODS For this retrospective cohort (n = 250) of subjects aged over 50 years who had fallopian tubes removed at the time of a benign gynecologic procedure, we used health records to identify 72 patients who used OCPs for at least 5 years and 178 subjects with no history of OCP use. Immunohistochemistry for p53 was performed on all fallopian tube sections, with 8 individuals removed for lack of identifiable tissue. p53 Signatures were identified and stratified based on size. Logistic regressions were run to estimate the association between OCP use and p53 lesion and lesion size. RESULTS There was no difference in the occurrence of p53 lesions with 20 of 70 of OCP users (28.6%) and 57 of 172 of those with no history of OCP use (33.1%). Subjects who used OCPs were more likely to have a small lesion (OR 1.98, 95% CI 1.03 to 3.83) and had decreased risk of having a medium/large lesion (OR 0.38, 95% CI 0.18 to 0.79). A total of 2 serous tubal intraepithelial lesions and 2 serous tubal intraepithelial carcinomas were identified in OCP-naive patients, whereas none were found in those with a history of OCP use. CONCLUSIONS OCP exposure was associated with a shift toward smaller p53 lesion size but was not found to be associated with a difference in the number of p53 lesions between OCP-exposed and unexposed patients. Future research should examine whether OCP use reduces proliferation and clonal expansion of p53 signature lesions toward higher risk precursors and, eventually, cancer. There were no serous tubal intraepithelial lesions and serous tubal intraepithelial carcinomas in patients with OCP exposure.
Collapse
Affiliation(s)
- Evan Gibbard
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Ramlogan Sowamber
- Molecular Oncology, BC Cancer, Vancouver, BC, Canada; Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Jutta Huvila
- Department of Biomedicine, University of Turku, Turku, Finland
| | - Amanda S Nitschke
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Kendall Greening
- Molecular Oncology, BC Cancer, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christine Chow
- MAPcore, University of British Columbia, Vancouver, BC, Canada
| | - Yimei Qin
- MAPcore, University of British Columbia, Vancouver, BC, Canada
| | - Nissreen Mohammad
- Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - David Farnell
- Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Wren S Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - C Blake Gilks
- Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Lien Hoang
- Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Gillian E Hanley
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Molecular Oncology, BC Cancer, Vancouver, BC, Canada; Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Subramani K, Huang HS, Chen PC, Ding DC, Chu TY. Ovulation sources ROS to confer mutagenic activities on the TP53 gene in the fallopian tube epithelium. Neoplasia 2025; 59:101085. [PMID: 39637685 DOI: 10.1016/j.neo.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Epidemiological studies have implicated ovulation as a risk factor for ovarian high-grade serous carcinoma (HGSC) at the initiation stage. Precancerous lesions of HGSC commonly exhibit TP53 mutations attributed to DNA deamination and are frequently localized in the fallopian tube epithelium (FTE), a site regularly exposed to ovulatory follicular fluid (FF). This study aimed to assess the mutagenic potential of FF and investigate the expression levels and functional role of activation-induced cytidine deaminase (AID) following ovulation, along with the resulting TP53 DNA deamination. METHODS The mutagenic activity of FF toward premalignant and malignant FTE cells was determined using the hypoxanthine phosphoribosyl transferase (HPRT) mutation assay with or without AID knockdown. The sequential activation of AID, including expressional induction, nuclear localization, DNA binding, and deamination, was determined. AID inducers in FF were identified, and the times of action and signaling pathways were determined. RESULTS FF induced AID activation and de novo FTE cell mutagenesis in two waves of activity in accordance with post-ovulation FF exposure. The ERK-mediated early activity started at 2 min and peaked at 45 min, and the NF-κB-mediated late activity started at 6 h and peaked at 8.5 h after exposure. ROS, TNF-α, and estradiol, which are abundant in FF, all induced the two activities, while all activities were abolished by antioxidant cotreatment. AID physically bound to and biochemically deaminated the TP53 gene, regardless of known mutational hotspots. It did not act on other prevalent tumor-suppressor genes of HGSC. CONCLUSION This study revealed the ROS-dependent AID-mediated mutagenic activity of the ovulatory FF. The results filled up the missing link between ovulation and the initial TP53 mutation and invited a strategy of antioxidation in prevention of HGSC.
Collapse
Affiliation(s)
- Kanchana Subramani
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Dah-Ching Ding
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC.
| |
Collapse
|
3
|
Khine AA, Chen PC, Chen YH, Chu SC, Huang HS, Chu TY. Epidermal growth factor receptor ligands enriched in follicular fluid exosomes promote oncogenesis of fallopian tube epithelial cells. Cancer Cell Int 2024; 24:424. [PMID: 39709453 PMCID: PMC11662553 DOI: 10.1186/s12935-024-03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Incessant ovulation is the main etiologic factor of ovarian high-grade serous carcinomas (HGSC), which mostly originate from the fallopian tube epithelium (FTE). Receptor tyrosine kinase (RTK) ligands essential for follicle development and ovulation wound repair were abundant in the follicular fluid (FF) and promoted the transformation of FTE cells. This study determined whether RTK ligands are present in FF exosomes and whether epidermal growth factor receptor (EGFR) signaling is essential for oncogenic activity. METHODS The FF of women undergoing in vitro fertilization was fractionated based on the richness of exosomes and tested for transformation toward FTE cells under different RTK inhibitors. EGFR ligands in FF exosomes were identified, and downstream signaling proteins in FTE cells were characterized. RESULTS The transforming activity of FF was almost exclusively enriched in exosomes, which possess a high capacity to induce anchorage-independent growth, clonogenicity, migration, invasion, and proliferation of FTE cells. EGFR inhibition abolished most of these activities. FF and FF exosome exposure markedly increased EGFR phosphorylation and the downstream signal proteins, including AKT, MAPK, and FAK. Multiple EGF family growth factors, such as amphiregulin, epiregulin, betacellulin, and transforming growth factor-alpha, were identified in FF exosomes. CONCLUSIONS Our results demonstrate that FF exosomes serve as carriers of EGFR ligands as well as ligands of other RTKs that mediate the transformation of FTE cells and underscore the need to further explore the content and roles of FF exosomes in HGSC development.
Collapse
Affiliation(s)
- Aye Aye Khine
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Ying-Hsi Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien, 970, Taiwan, ROC
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan, ROC.
- School of Medicine, College of Medicine, Hualien, 970, Taiwan, ROC.
- Institute of Medical Science, Tzu Chi University, Hualien, 970, Taiwan, ROC.
| |
Collapse
|
4
|
Gjorgoska M, Rižner TL. From fallopian tube epithelium to high-grade serous ovarian cancer: A single-cell resolution review of sex steroid hormone signaling. Prog Lipid Res 2024; 96:101302. [PMID: 39396711 DOI: 10.1016/j.plipres.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) represents the most lethal subtype of ovarian cancer, largely due to being commonly diagnosed at advanced stages. The early molecular mechanisms underlying ovarian carcinogenesis remain poorly defined, posing challenges to the development of prevention and early detection strategies. Here we dissect the molecular mechanisms of sex steroid hormone signaling throughout the decades-long evolution of HGSOC precursor lesions, which predominantly originate from secretory epithelial cells of fallopian tubes (FT). We also discuss the prognostic significance of sex steroid receptor isoforms and steroid metabolizing enzymes in HGSOCs. Finally, we provide a comprehensive gene expression atlases of sex steroid receptors, steroidogenic, and steroid-metabolizing enzymes across different cell populations in pre- and postmenopausal FTs, and HGSOCs, using published single-cell RNA sequencing datasets. These atlases reveal that secretory epithelial cells and stromal populations in FTs express sex steroid receptors and enzymes responsible for the formation and inactivation of genotoxic estrogen metabolites. In HGSOC, epithelial cells express various HSD17B isoforms and steroid conjugating enzymes, suggesting an enhanced ability to finely regulate the levels of bioactive sex steroids.
Collapse
Affiliation(s)
- Marija Gjorgoska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Hsu CF, Seenan V, Wang LY, Chen PC, Ding DC, Chu TY. Human peritoneal fluid exerts ovulation- and nonovulation-sourced oncogenic activities on transforming fallopian tube epithelial cells. Cancer Cell Int 2024; 24:231. [PMID: 38956560 PMCID: PMC11218150 DOI: 10.1186/s12935-024-03406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Secretory cells in the fallopian tube fimbria epithelium (FTE) are regarded as the main cells of origin of ovarian high-grade serous carcinoma (HGSC). Ovulation is the main cause of FTE oncogenesis, which proceeds through a sequence of TP53 mutations, chromosomal instability due to Rb/cyclin E aberration, in situ carcinoma (STIC), and metastasis to the ovary and peritoneum (metastatic HGSC). Previously, we have identified multiple oncogenic activities of the ovulatory follicular fluid (FF), which exerts the full spectrum of transforming activity on FTE cells at different stages of transformation. After ovulation, the FF is transfused into the peritoneal fluid (PF), in which the FTE constantly bathes. We wondered whether PF exerts the same spectrum of oncogenic activities as done by FF and whether these activities are derived from FF. By using a panel of FTE cell lines with p53 mutation (FT282-V), p53/CCNE1 aberrations (FT282-CCNE1), and p53/Rb aberrations plus spontaneous transformation, and peritoneal metastasis (FEXT2), we analyzed the changes of different transformation phenotypes after treating with FF and PF collected before or after ovulation. Similar to effects exhibited by FF, we found that, to a lesser extent, PF promoted anchorage-independent growth (AIG), migration, anoikis resistance, and peritoneal attachment in transforming FTE cells. The more transformed cells were typically more affected. Among the transforming activities exhibited by PF treatment, AIG, Matrigel invasion, and peritoneal attachment growth were higher with luteal-phase PF treatment than with the proliferative-phase PF treatment, suggesting an ovulation source. In contrast, changes in anoikis resistance and migration activities were similar in response to treatment with PF collected before and after ovulation, suggesting an ovulation-independent source. The overall transforming activity of luteal-phase PF was verified in an i.p. co-injection xenograft mouse model. Co-injection of Luc-FEXT2 cells with either FF or luteal-phase PF supported early peritoneal implantation, whereas co-injection with follicular-phase PF did not. This study, for the first time, demonstrates that PF from ovulating women can promote different oncogenic phenotypes in FTE cells at different stages of malignant transformation. Most of these activities, other than anoikis resistance and cell migration, are sourced from ovulation.
Collapse
Affiliation(s)
- Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Vaishnavi Seenan
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
| | - Liang-Yuan Wang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970, Taiwan
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, 970, Taiwan
| | - Dah-Ching Ding
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, 970, Taiwan
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan.
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970, Taiwan.
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, 970, Taiwan.
| |
Collapse
|
7
|
Wu N, Zhang X, Fang C, Zhu M, Wang Z, Jian L, Tan W, Wang Y, Li H, Xu X, Zhou Y, Chu TY, Wang J, Liao Q. Progesterone Enhances Niraparib Efficacy in Ovarian Cancer by Promoting Palmitoleic-Acid-Mediated Ferroptosis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0371. [PMID: 38798714 PMCID: PMC11116976 DOI: 10.34133/research.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Poly (adenosine 5'-diphosphate-ribose) polymerase inhibitors (PARPi) are increasingly important in the treatment of ovarian cancer. However, more than 40% of BRCA1/2-deficient patients do not respond to PARPi, and BRCA wild-type cases do not show obvious benefit. In this study, we demonstrated that progesterone acted synergistically with niraparib in ovarian cancer cells by enhancing niraparib-mediated DNA damage and death regardless of BRCA status. This synergy was validated in an ovarian cancer organoid model and in vivo experiments. Furthermore, we found that progesterone enhances the activity of niraparib in ovarian cancer through inducing ferroptosis by up-regulating palmitoleic acid and causing mitochondrial damage. In clinical cohort, it was observed that progesterone prolonged the survival of patients with ovarian cancer receiving PARPi as second-line maintenance therapy, and high progesterone receptor expression combined with low glutathione peroxidase 4 (GPX4) expression predicted better efficacy of PARPi in patients with ovarian cancer. These findings not only offer new therapeutic strategies for PARPi poor response ovarian cancer but also provide potential molecular markers for predicting the PARPi efficacy.
Collapse
Affiliation(s)
- Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Xiu Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Chao Fang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations,
Changsha Medical University, Changsha 410219, Hunan, China
| | - Miaochen Zhu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Zhibin Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Lian Jian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
| | - Weili Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - He Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Tang-Yuan Chu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Department of Obstetrics & Gynecology,
Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, China
| | - Jing Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Changsha 410078, Hunan, China
- Public Service Platform of Tumor Organoids Technology,
Hunan Gynecological Tumor Clinical Research Center, Changsha 410013, Hunan, China
| |
Collapse
|
8
|
MacARTHUR EC, Radolec M, Rinda Soong T, Elishaev E, Buckanovich R, Taylor SE, Lesnock J. Clinical outcomes following identification of an incidental p53 signature in the fallopian tube. Gynecol Oncol Rep 2024; 52:101359. [PMID: 38495800 PMCID: PMC10943111 DOI: 10.1016/j.gore.2024.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024] Open
Abstract
Fallopian tube pathology in patients with BRCA1 and BRCA2 mutations suggests a possible pathway to high grade serous ovarian carcinoma originates with a p53 signature, which is thought to represent a potential precursor to serous tubal intraepithelial carcinoma (STIC). The clinical implications of an isolated p53 signature in the average-risk population has not been well-established. This study aims to describe clinical outcomes in patients with incidentally noted p53 signature lesions. All patients diagnosed with a p53 signature lesion on final pathology from 2014 to 2022 were identified at a large academic institution. P53 signature is defined by our lab as morphologically normal to mildly atypical tubal epithelium with focal p53 over-expression on immunohistochemistry. Incidental p53 signature was defined as identification of a fallopian tube lesion excised for benign or unrelated indications in patients without a known hereditary disposition. Demographic, clinicopathologic, and genetic data were collected. A total of 127 patients with p53 signatures were identified. Thirty-six patients were excluded for established ovarian cancer or high-risk history leaving 91 total patients. Five patients (5.5%) developed a malignancy, none of which were ovarian or primary peritoneal, at the end of the eight and a half year follow up period. Twenty-four (26.4%) patients had salpingectomy without any form of oophorectomy at the time of initial surgery, while 67 (73.6%) patients had at least a unilateral oophorectomy at the time of their salpingectomy. Seven patients (7.7%) had additional surgery after p53 signature diagnosis; however, the final pathology yielded no evidence of malignancy in all these patients. After subsequent surgeries, 19 (20.9%) patients maintained their ovaries. The diagnosis of an incidental p53 signature was not associated with any primary peritoneal or ovarian cancer diagnoses during our follow up, and the majority of patients were managed conservatively by their providers with no further intervention after diagnosis.
Collapse
Affiliation(s)
- Emily C MacARTHUR
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Hospital of UPMC, Pittsburgh, PA, United States
| | - Mackenzy Radolec
- Division of Gynecologic Oncology, Magee-Womens Hospital of UPMC, Pittsburgh, PA, United States
| | - T Rinda Soong
- Department of Pathology, Magee-Womens Hospital of UPMC, Pittsburgh, PA, United States
| | - Esther Elishaev
- Department of Pathology, Magee-Womens Hospital of UPMC, Pittsburgh, PA, United States
| | - Ronald Buckanovich
- Division of Gynecologic Oncology, Magee-Womens Hospital of UPMC, Pittsburgh, PA, United States
| | - Sarah E Taylor
- Division of Gynecologic Oncology, Magee-Womens Hospital of UPMC, Pittsburgh, PA, United States
| | - Jamie Lesnock
- Division of Gynecologic Oncology, Magee-Womens Hospital of UPMC, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Wang Y, Douville C, Chien YW, Wang BG, Chen CL, Pinto A, Smith SA, Drapkin R, Chui MH, Numan T, Vang R, Papadopoulos N, Wang TL, Shih IM. Aneuploidy Landscape in Precursors of Ovarian Cancer. Clin Cancer Res 2024; 30:600-615. [PMID: 38048050 DOI: 10.1158/1078-0432.ccr-23-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Serous tubal intraepithelial carcinoma (STIC) is now recognized as the main precursor of ovarian high-grade serous carcinoma (HGSC). Other potential tubal lesions include p53 signatures and tubal intraepithelial lesions. We aimed to investigate the extent and pattern of aneuploidy in these epithelial lesions and HGSC to define the features that characterize stages of tumor initiation and progression. EXPERIMENTAL DESIGN We applied RealSeqS to compare genome-wide aneuploidy patterns among the precursors, HGSC (cases, n = 85), and histologically unremarkable fallopian tube epithelium (HU-FTE; control, n = 65). On the basis of a discovery set (n = 67), we developed an aneuploidy-based algorithm, REAL-FAST (Repetitive Element AneupLoidy Sequencing Fallopian Tube Aneuploidy in STIC), to correlate the molecular data with pathology diagnoses. We validated the result in an independent validation set (n = 83) to determine its performance. We correlated the molecularly defined precursor subgroups with proliferative activity and histology. RESULTS We found that nearly all p53 signatures lost the entire Chr17, offering a "two-hit" mechanism involving both TP53 and BRCA1 in BRCA1 germline mutation carriers. Proliferatively active STICs harbor gains of 19q12 (CCNE1), 19q13.2, 8q24 (MYC), or 8q arm, whereas proliferatively dormant STICs show 22q loss. REAL-FAST classified HU-FTE and STICs into 5 clusters and identified a STIC subgroup harboring unique aneuploidy that is associated with increased proliferation and discohesive growth. On the basis of a validation set, REAL-FAST showed 95.8% sensitivity and 97.1% specificity in detecting STIC/HGSC. CONCLUSIONS Morphologically similar STICs are molecularly distinct. The REAL-FAST assay identifies a potentially "aggressive" STIC subgroup harboring unique DNA aneuploidy that is associated with increased cellular proliferation and discohesive growth. REAL-FAST offers a highly reproducible adjunct technique to assist the diagnosis of STIC lesions.
Collapse
Affiliation(s)
- Yeh Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher Douville
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yen-Wei Chien
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brant G Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia
- School of Medicine Inova Campus, University of Virginia, Falls Church, Virginia
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Andre Pinto
- University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Saron Ann Smith
- Cascade Pathology Services, Legacy Health System, Portland, Oregon
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology and Basser Center for BRCA, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Herman Chui
- Department of Pathology and Laboratory Medicine, Sloan-Kettering Cancer Center, New York, New York
| | - Tricia Numan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, Sibley Memorial Hospital, Washington, DC
| | - Russell Vang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
10
|
Nag JK, Grisaru-Granovsky S, Armon S, Rudina T, Appasamy P, Bar-Shavit R. Involvement of Protease-Activated Receptor2 Pleckstrin Homology Binding Domain in Ovarian Cancer: Expression in Fallopian Tubes and Drug Design. Biomedicines 2024; 12:246. [PMID: 38275417 PMCID: PMC10813316 DOI: 10.3390/biomedicines12010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Studying primordial events in cancer is pivotal for identifying predictive molecular indicators and for targeted intervention. While the involvement of G-protein-coupled receptors (GPCRs) in cancer is growing, GPCR-based therapies are yet rare. Here, we demonstrate the overexpression of protease-activated receptor 2 (PAR2), a GPCR member in the fallopian tubes (FTs) of high-risk BRCA carriers as compared to null in healthy tissues of FT. FTs, the origin of ovarian cancer, are known to express genes of serous tubal intraepithelial carcinoma (STICs), a precursor lesion of high-grade serous carcinoma (HGSC). PAR2 expression in FTs may serve as an early prediction sensor for ovarian cancer. We show now that knocking down Par2 inhibits ovarian cancer peritoneal dissemination in vivo, pointing to the central role of PAR2. Previously we identified pleckstrin homology (PH) binding domains within PAR1,2&4 as critical sites for cancer-growth. These motifs associate with PH-signal proteins via launching a discrete signaling network in cancer. Subsequently, we selected a compound from a library of backbone cyclic peptides generated toward the PAR PH binding motif, namely the lead compound, Pc(4-4). Pc(4-4) binds to the PAR PH binding domain and blocks the association of PH-signal proteins, such as Akt or Etk/Bmx with PAR2. It attenuates PAR2 oncogenic activity. The potent inhibitory function of Pc(4-4) is demonstrated via inhibition of ovarian cancer peritoneal spread in mice. While the detection of PAR2 may serve as a predictor for ovarian cancer, the novel Pc(4-4) compound may serve as a powerful medicament in STICs and ovarian cancer. This is the first demonstration of the involvement of PAR PH binding motif signaling in ovarian cancer and Pc(4-4) as a potential therapy treatment.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| | - Sorina Grisaru-Granovsky
- Department of Obstetrics and Gynecology, Shaare-Zedek Medical Center (SZMC), Hebrew-University, Jerusalem 9103102, Israel; (S.G.-G.); (S.A.)
| | - Shunit Armon
- Department of Obstetrics and Gynecology, Shaare-Zedek Medical Center (SZMC), Hebrew-University, Jerusalem 9103102, Israel; (S.G.-G.); (S.A.)
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| | - Priyanga Appasamy
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (J.K.N.); (T.R.); (P.A.)
| |
Collapse
|
11
|
Chang YH, Wu KC, Wang KH, Ding DC. Ovarian Cancer Patient-Derived Organoids Used as a Model for Replicating Genetic Characteristics and Testing Drug Responsiveness: A Preliminary Study. Cell Transplant 2024; 33:9636897241281869. [PMID: 39323050 PMCID: PMC11425734 DOI: 10.1177/09636897241281869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/29/2023] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
This study aimed to explore the role of ovarian cancer patient-derived organoids (PDOs) in their replicating genetic characteristics and testing drug responsiveness. Ovarian cancer PDOs were cultured in Matrigel with a specialized medium. The successful rate and proliferation rate were calculated. Morphology, histology, and immunohistochemistry (IHC) (PAX8, P53, and WT1) were used to identify the tumor characteristics. Gene sequencing, variant allele frequency (VAF), and copy number variation were used to explore the mutation profile. The sensitivity to chemodrugs (carboplatin, paclitaxel, gemcitabine, doxorubicin, and olaparib) was conducted. Successful generation of organoids occurred in 54% (7/13) of attempts, encompassing 4 high-grade serous carcinomas (HGSC), 1 mucinous carcinoma (MC), 1 clear cell carcinoma (CCC), and 1 carcinosarcoma. The experiments used six organoids (3 HGSC, 1 CCC, 1 MC, and 1 carcinosarcoma). The derived organoids exhibited spherical-like morphology, and the diameter ranged from 100 to 500 μm. The histology and IHC exhibited the same between organoids and primary tumors. After cryopreservation, the organoid's growth rate was slower than the primary culture (14 days vs 10 days, P < 0.01). Targeted sequencing revealed shared DNA variants, including mutations in key genes, such as BRCA1, PIK3CA, ARID1A, and TP53. VAF was similar between primary tumors and organoids. The organoids maintained inherited most copy number alterations. Drug sensitivity testing revealed varying responses, with carcinosarcoma organoids showing higher sensitivity to paclitaxel and gemcitabine than HGSC organoids. Our preliminary results showed that ovarian cancer PDOs could be successfully derived and histology, mutations, and diverse copy numbers of genotypes could be faithfully captured. Drug testing could reveal the individual PDO's responsiveness to drugs. PDOs might be as valuable resources for investigating genomic biomarkers for personalized treatment.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien
| |
Collapse
|
12
|
Paracchini L, Mannarino L, Romualdi C, Zadro R, Beltrame L, Fuso Nerini I, Zola P, Laudani ME, Pagano E, Giordano L, Fruscio R, Landoni F, Franceschi S, Dalessandro ML, Canzonieri V, Bocciolone L, Lorusso D, Bosetti C, Raspagliesi F, Garassino IMG, D'Incalci M, Marchini S. Genomic instability analysis in DNA from Papanicolaou test provides proof-of-principle early diagnosis of high-grade serous ovarian cancer. Sci Transl Med 2023; 15:eadi2556. [PMID: 38055801 DOI: 10.1126/scitranslmed.adi2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Late diagnosis and the lack of screening methods for early detection define high-grade serous ovarian cancer (HGSOC) as the gynecological malignancy with the highest mortality rate. In the work presented here, we investigated a retrospective and multicentric cohort of 250 archival Papanicolaou (Pap) test smears collected during routine gynecological screening. Samples were taken at different time points (from 1 month to 13.5 years before diagnosis) from 113 presymptomatic women who were subsequently diagnosed with HGSOC (pre-HGSOC) and from 77 healthy women. Genome instability was detected through low-pass whole-genome sequencing of DNA derived from Pap test samples in terms of copy number profile abnormality (CPA). CPA values of DNA extracted from Pap test samples from pre-HGSOC women were substantially higher than those in samples from healthy women. Consistently with the longitudinal analysis of clonal pathogenic TP53 mutations, this assay could detect HGSOC presence up to 9 years before diagnosis. This finding confirms the continual shedding of tumor cells from fimbriae toward the endocervical canal, suggesting a new path for the early diagnosis of HGSOC. We integrated the CPA score into the EVA (early ovarian cancer) test, the sensitivity of which was 75% (95% CI, 64.97 to 85.79), the specificity 96% (95% CI, 88.35 to 100.00), and the accuracy 81%. This proof-of-principle study indicates that the early diagnosis of HGSOC is feasible through the analysis of genomic alterations in DNA from endocervical smears.
Collapse
Affiliation(s)
- Lara Paracchini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Riccardo Zadro
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Luca Beltrame
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Ilaria Fuso Nerini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Paolo Zola
- Department of Surgical Science, University of Turin, Turin 10126, Italy
| | - Maria E Laudani
- Department of Surgical Science, University of Turin, Turin 10126, Italy
| | - Eva Pagano
- Unit of Clinical Epidemiology, Città della Salute e della Scienza Hospital, University of Turin and CPO Piemonte, Turin 10126, Italy
| | - Livia Giordano
- Unit of Clinical Epidemiology, Città della Salute e della Scienza Hospital, University of Turin and CPO Piemonte, Turin 10126, Italy
| | - Robert Fruscio
- Department of Obstetrics and Gynaecology, Università degli Studi Milano-Bicocca, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Fabio Landoni
- Department of Obstetrics and Gynaecology, Università degli Studi Milano-Bicocca, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Silvia Franceschi
- Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Pordenone 33081, Italy
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Hospital, Milan 20132, Italy
| | - Maria L Dalessandro
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Vincenzo Canzonieri
- Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Pordenone 33081, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Luca Bocciolone
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Hospital, Milan 20132, Italy
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Cristina Bosetti
- Unit of Cancer Epidemiology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Francesco Raspagliesi
- Gynecological Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan 20133, Italy
| | - Isabella M G Garassino
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| |
Collapse
|
13
|
Mauro LJ, Spartz A, Austin JR, Lange CA. Reevaluating the Role of Progesterone in Ovarian Cancer: Is Progesterone Always Protective? Endocr Rev 2023; 44:1029-1046. [PMID: 37261958 PMCID: PMC11048595 DOI: 10.1210/endrev/bnad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Ovarian cancer (OC) represents a collection of rare but lethal gynecologic cancers where the difficulty of early detection due to an often-subtle range of abdominal symptoms contributes to high fatality rates. With the exception of BRCA1/2 mutation carriers, OC most often manifests as a post-menopausal disease, a time in which the ovaries regress and circulating reproductive hormones diminish. Progesterone is thought to be a "protective" hormone that counters the proliferative actions of estrogen, as can be observed in the uterus or breast. Like other steroid hormone receptor family members, the transcriptional activity of the nuclear progesterone receptor (nPR) may be ligand dependent or independent and is fully integrated with other ubiquitous cell signaling pathways often altered in cancers. Emerging evidence in OC models challenges the singular protective role of progesterone/nPR. Herein, we integrate the historical perspective of progesterone on OC development and progression with exciting new research findings and critical interpretations to help paint a broader picture of the role of progesterone and nPR signaling in OC. We hope to alleviate some of the controversy around the role of progesterone and give insight into the importance of nPR actions in disease progression. A new perspective on the role of progesterone and nPR signaling integration will raise awareness to the complexity of nPRs and nPR-driven gene regulation in OC, help to reveal novel biomarkers, and lend critical knowledge for the development of better therapeutic strategies.
Collapse
Affiliation(s)
- Laura J Mauro
- Department of Animal Science-Physiology, University of Minnesota, Saint Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia R Austin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Departments of Medicine (Division of Hematology, Oncology & Transplantation) and Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Chang YH, Wu KC, Wang KH, Ding DC. Effects of the Overexpression of Progesterone Receptors on a Precancer p53 and Rb-Defective Human Fallopian Tube Epithelial Cell Line. Int J Mol Sci 2023; 24:11823. [PMID: 37511582 PMCID: PMC10380282 DOI: 10.3390/ijms241411823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of progesterone receptors A (PRA) and B (PRB) on proliferation, migration, invasion, anchorage-independent growth (AIG), and apoptosis of FE25 cells, a precancer p53- and retinoblastoma-defective human fallopian tube epithelial cell line. We observed that the transfection of PRA (FE25-PRA) or PRB (FE25-PRB) into FE25 cells significantly increased the expression of PRA or PRB at both RNA and protein levels without affecting cell morphology. The FE25-PRA cells exhibited slower proliferation, whereas FE25-PRB showed faster cell proliferation than the control cells. In contrast, the FE25-PRA cells showed the highest migration and invasion abilities, whereas the FE25-PRB cells showed the lowest migration and invasion abilities. After treatment with progesterone, all cell types showed decreased AIG levels, increased apoptotic rates in Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling assay (TUNEL) staining, and increased levels of apoptotic proteins ascertained based on cleaved caspase-3 levels. The half-maximal inhibitory concentration of carboplatin increased in FE25-PRB cells, but that of paclitaxel remained unchanged. Overall, this study suggests that PRA and PRB have distinct roles in regulating the behavior of FE25 cells, and targeting these receptors could be a potential therapeutic strategy for ovarian cancer treatment. If PRA or PRB overexpression is observed in high-grade serous carcinoma, progesterone could be considered as an adjuvant therapy for these specific cancer patients. However, further research is needed to confirm these findings and investigate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
15
|
Crawford AJ, Forjaz A, Bhorkar I, Roy T, Schell D, Queiroga V, Ren K, Kramer D, Bons J, Huang W, Russo GC, Lee MH, Schilling B, Wu PH, Shih IM, Wang TL, Kiemen A, Wirtz D. Precision-engineered biomimetics: the human fallopian tube. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543923. [PMID: 37333379 PMCID: PMC10274705 DOI: 10.1101/2023.06.06.543923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The fallopian tube has an essential role in several physiological and pathological processes from pregnancy to ovarian cancer. However, there are no biologically relevant models to study its pathophysiology. The state-of-the-art organoid model has been compared to two-dimensional tissue sections and molecularly assessed providing only cursory analyses of the model's accuracy. We developed a novel multi-compartment organoid model of the human fallopian tube that was meticulously tuned to reflect the compartmentalization and heterogeneity of the tissue's composition. We validated this organoid's molecular expression patterns, cilia-driven transport function, and structural accuracy through a highly iterative platform wherein organoids are compared to a three-dimensional, single-cell resolution reference map of a healthy, transplantation-quality human fallopian tube. This organoid model was precision-engineered to match the human microanatomy. One sentence summary Tunable organoid modeling and CODA architectural quantification in tandem help design a tissue-validated organoid model.
Collapse
|
16
|
Chang YH, Wu KC, Harnod T, Ding DC. Comparison of the Cost and Effect of Combined Conditioned Medium and Conventional Medium for Fallopian Tube Organoid Cultures. Cell Transplant 2023; 32:9636897231160216. [PMID: 36919683 PMCID: PMC10021093 DOI: 10.1177/09636897231160216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Fallopian tube epithelial cells (FTEC) are thought to be the cell of origin of high-grade serous ovarian carcinoma. FTEC organoids can be used as research models for the disease. Nevertheless, culturing organoids requires a medium supplemented with several expensive growth factors. We proposed that a combined conditioned medium based on the composition of the fallopian tubes, including epithelial, stromal, and endothelial cells could enhance FTEC organoid formation. We derived two primary culture cell lines from the fimbria portion of the fallopian tubes. The organoids were split into conventional or combined medium groups based on what medium they were grown in and compared. The number and size of the organoids were evaluated. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were used to evaluate gene and protein expression (PAX8, FOXJ1, beta-catenin, and stemness genes). Enzyme-linked immunosorbent assay was used to measure Wnt3a and RSPO1 in both mediums. DKK1 and LiCl were added to the mediums to evaluate their influence on beta-catenin signaling. The growth factor in the combined medium was evaluated by the growth factor array. We found that the conventional medium was better for organoids regarding proliferation (number and size). In addition, WNT3A and RSPO1 concentrations were too low in the combined medium and needed to be added making the cost equivalent to the conventional medium. However, the organoid formation rate was 100% in both groups. Furthermore, the combined medium group had higher PAX8 and stemness gene expression (OLFM4, SSEA4, LGR5, B3GALT5) when compared with the conventional medium group. Wnt signaling was evident in the organoids grown in the conventional medium but not in the combined medium. PLGF, IGFBP6, VEGF, bFGF, and SCFR were found to be enriched in the combined medium. In conclusion, the combined medium could successfully culture organoids and enhance PAX8 and stemness gene expression. However, the conventional medium was a better medium for organoid proliferation. The expense of both mediums was comparable. The benefit of using a combined medium requires further exploration.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Tzu Chi University, Hualien.,Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Tomor Harnod
- Tzu Chi University, Hualien.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Dah-Ching Ding
- Tzu Chi University, Hualien.,Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien
| |
Collapse
|
17
|
Mei J, Tian H, Huang HS, Wu N, Liou YL, Chu TY, Wang J, Zhang W. CCNE1 is a potential target of Metformin for tumor suppression of ovarian high-grade serous carcinoma. Cell Cycle 2023; 22:85-99. [PMID: 36004387 PMCID: PMC9769452 DOI: 10.1080/15384101.2022.2109362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and malignant type of ovarian cancer, accounting for 70%-80% of mortality. However, the treatment of HGSOC has improved little in the past few decades. Metformin is the first-line medication for the treatment of type 2 diabetes and has now gained more attention in cancer treatment. In this study, we sought to identify potential hub genes that metformin could target in the treatment of HGSOC. We downloaded GSE69428 and GSE69429 in the Gene Expression Omnibus database and performed the bioinformatics analysis. Subsequently, we analyzed the effect of Metformin in HGSOC through biological experiments. Molecular simulation docking was used to predict the interaction of Metformin and CCNE1. We chose CCNE1 for the study based on bioinformatics analysis, literature studies, and preliminary data. We evaluated that CCNE1 is overexpressed in HGSOC tissues and found that HGSOC cells with high CCNE1 expression increase sensitivity to Metformin treatment in the analysis of cell proliferation and anchorage-independent growth. Metformin could inhibit the expression of CCNE1, which is associated with the anti-proliferative effect of tumor cells. Moreover, Metformin could ameliorate the tumor growth in syngeneic orthotopic transplantation mouse models and xenograft tumorigenesis models. Furthermore, molecular simulation docking showed that Metformin may bind to CCNE1 protein, suggesting that CCNE1 could be a potential target for Metformin. Our data revealed that Metformin has antitumor effects on ovarian cancer and CCNE1 could be a potential target for Metformin.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Huixiang Tian
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Yu-Ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Jing Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| |
Collapse
|
18
|
Wang Y, Huang P, Wang BG, Murdock T, Cope L, Hsu FC, Wang TL, Shih IM. Spatial Transcriptomic Analysis of Ovarian Cancer Precursors Reveals Reactivation of IGFBP2 during Pathogenesis. Cancer Res 2022; 82:4528-4541. [PMID: 36206311 PMCID: PMC9808976 DOI: 10.1158/0008-5472.can-22-1620] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023]
Abstract
Elucidating the earliest pathogenic steps in cancer development is fundamental to improving its early detection and prevention. Ovarian high-grade serous carcinoma (HGSC), a highly aggressive cancer, mostly originates from the fallopian tube epithelium through a precursor stage, serous tubal intraepithelial carcinoma (STIC). In this study, we performed spatial transcriptomic analysis to compare STICs, carcinoma, and their matched normal fallopian tube epithelium. Several differentially expressed genes in STICs and carcinomas were involved in cancer metabolism and detected in a larger independent transcriptomic dataset of ovarian HGSCs. Among these, insulin-like growth factor binding protein-2 (IGFBP2) was found to undergo DNA hypomethylation and to be increased at the protein level in STICs. Pyrosequencing revealed an association of IGFBP2 expression with the methylation state of its proximal enhancer, and 5-azacytidine treatment increased IGFBP2 expression. In postmenopausal fallopian tubes, where most STICs are detected, IGFBP2 immunoreactivity was detected in all 38 proliferatively active STICs but was undetectable in morphologically normal tubal epithelia, including those with TP53 mutations. In premenopausal fallopian tubes, IGFBP2 expression was limited to the secretory epithelium at the proliferative phase, and estradiol treatment increased IGFBP2 expression levels. IGFBP2 knockdown suppressed the growth of IGFBP2-expressing tubal epithelial cells via inactivation of the AKT pathway. Taken together, demethylation of the proximal enhancer of IGFBP2 drives tumor development by maintaining the increased IGFBP2 required for proliferation in an otherwise estrogen-deprived, proliferation-quiescent, and postmenopausal tubal microenvironment. SIGNIFICANCE Molecular studies of the earliest precursor lesions of ovarian cancer reveal a role of IGFBP2 in propelling tumor initiation, providing new insights into ovarian cancer development.
Collapse
Affiliation(s)
- Yeh Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peng Huang
- Biostatistics Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brant G. Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia
| | - Tricia Murdock
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leslie Cope
- Biostatistics Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fang-Chi Hsu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Gynecology and Obstetrics and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Gynecology and Obstetrics and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Russo A, Yang Z, Heyrman GM, Cain BP, Lopez Carrero A, Isenberg BC, Dean MJ, Coppeta J, Burdette JE. Versican secreted by the ovary links ovulation and migration in fallopian tube derived serous cancer. Cancer Lett 2022; 543:215779. [PMID: 35697329 PMCID: PMC10134877 DOI: 10.1016/j.canlet.2022.215779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
High grade serous ovarian cancers (HGSOC) predominantly arise in the fallopian tube epithelium (FTE) and colonize the ovary first, before further metastasis to the peritoneum. Ovarian cancer risk is directly related to the number of ovulations, suggesting that the ovary may secrete specific factors that act as chemoattractants for fallopian tube derived tumor cells during ovulation. We found that 3D ovarian organ culture produced a secreted factor that enhanced the migration of FTE non-tumorigenic cells as well as cells harboring specific pathway modifications commonly found in high grade serous cancers. Through size fractionation and a small molecule inhibitors screen, the secreted protein was determined to be 50-100kDa in size and acted through the Epidermal Growth Factor Receptor (EGFR). To correlate the candidates with ovulation, the PREDICT organ-on-chip system was optimized to support ovulation in a perfused microfluidic platform. Versican was found in the correct molecular weight range, contained EGF-like domains, and correlated with ovulation in the PREDICT system. Exogenous versican increased migration, invasion, and enhanced adhesion of both murine and human FTE cells to the ovary in an EGFR-dependent manner. The identification of a protein secreted during ovulation that impacts the ability of FTE cells to colonize the ovary provides new insights into the development of strategies for limiting primary ovarian metastasis.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Zizhao Yang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Brian P Cain
- Charles Stark Draper Laboratory, Cambridge, MA, 02139, USA
| | - Alfredo Lopez Carrero
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Matthew J Dean
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
20
|
Sánchez-Prieto M, Sánchez-Borrego R, Lubián-López DM, Pérez-López FR. Etiopathogenesis of ovarian cancer. An inflamm-aging entity? Gynecol Oncol Rep 2022; 42:101018. [PMID: 35719320 PMCID: PMC9198811 DOI: 10.1016/j.gore.2022.101018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OvCa) is a multifactorial disease. Several factors are involved in age-related increases in carcinogenesis. Exposure to inflammatory mediators contributes to increased cell division and genetic and epigenetic changes. We discuss the current carcinogenic hypotheses, sites of origin, and etiological factors of OvCa.
Ovarian cancer is one of the most common gynecologic cancers and has the highest mortality rate. The risk/protective factors of ovarian cancer suggest that its etiology is multifactorial. Several factors are involved in age-related increases in carcinogenesis, including the accumulation of senescent cells, inflammaging (a chronic inflammatory state that persists in the elderly), and immunosenescence (aging of the immune system) changes associated with poor immune surveillance. At sites of inflammation, exposure to high levels of inflammatory mediators, such as reactive oxygen species, cytokines, prostaglandins, and growth factors, contributes to increased cell division and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the proinflammatory tumor microenvironment contributes to ovarian cancer metastasis and chemoresistance. This narrative review of the literature was carried out to delineate the possible role of inflammaging in the etiopathogenesis of ovarian cancer development. We discuss the current carcinogenic hypotheses, sites of origin, and etiological factors of ovarian cancer. Treatment of inflammation may represent an attractive strategy for both the prevention and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Manuel Sánchez-Prieto
- Department of Obstetrics and Gynecology, Instituto Universitario Dexeus, Barcelona, Spain
- Corresponding author at: Instituto Universitario Dexeus, Sabino de Arana 5-19, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
21
|
The Double Engines and Single Checkpoint Theory of Endometriosis. Biomedicines 2022; 10:biomedicines10061403. [PMID: 35740424 PMCID: PMC9219825 DOI: 10.3390/biomedicines10061403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a chronic disease characterized by the ectopic localization of the endometrial tissue in the peritoneal cavity. Consequently, it causes local pathological changes and systemic symptoms, affecting at least one in every ten women. This disease is difficult to diagnose early, it is prone to dissemination, is difficult to eradicate, tends to recur, and is regarded as “a cancer of no kill”. Indeed, the development of endometriosis closely resembles that of cancer in the way of mutagenesis, pelvic spreading, and immunological adaptation. While retrograde menstruation has been regarded as the primary cause of endometriosis, the role of ovulation and menstrual stimuli in the development of endometriosis has long been overlooked. The development of ovarian and peritoneal endometrioses, similar to the development of high-grade serous carcinoma in the fallopian tube fimbriae with intraperitoneal metastasis, depends highly on the carcinogens released during ovulation. Moreover, endometriosis carries an extremely hypermutated genome, which is non-inferior to the ultra-mutated endometrial cancer. The hypermutation would lead to an overproduction of new proteins or neoantigens. Because of this, the developing endometriosis may have to turn on the PD-1/PDL-1 “self-tolerance” checkpoint to evade immune surveillance, leaving an Achilles tendon for an immune checkpoint blockade. In this review, we present the double engines and single checkpoint theory of the genesis of endometriosis, provide the current pieces of evidence supporting the hypothesis, and discuss the new directions of prevention and treatment.
Collapse
|
22
|
Aging accelerates while multiparity delays tumorigenesis in mouse models of high-grade serous carcinoma. Gynecol Oncol 2022; 165:552-559. [DOI: 10.1016/j.ygyno.2022.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
|
23
|
Sina F, Cassani C, Comerio C, De Ponti E, Zanellini F, Delle Marchette M, Roversi G, Jaconi M, Arbustini E, Urtis M, Dell'Oro C, Zambetti B, Paniga C, Acampora E, Negri S, Lazzarin S, Cesari S, Spinillo A, Kotsopoulos J, Fruscio R. Tubal histopathological abnormalities in BRCA1/2 mutation carriers undergoing prophylactic salpingo-oophorectomy: a case-control study. Int J Gynecol Cancer 2022; 32:41-47. [PMID: 34845040 DOI: 10.1136/ijgc-2021-003153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To describe tubal histopathological abnormalities in women with germline BRCA1/2 mutations and in controls. METHODS Consecutive women with BRCA1/2 mutations undergoing bilateral salpingo-oophorectomy between 2010 and 2020 in two centers (San Gerardo Hospital, Monza and San Matteo Hospital, Pavia) were considered in this analysis and compared with controls who had the same surgical procedure for benign conditions. Frequency of p53 signature, serous tubal intraepithelial carcinoma, and high-grade serous ovarian cancer were compared between the two groups. RESULTS A total of 194 women with pathogenic BRCA1/2 mutations underwent prophylactic salpingo-oophorectomy. Of these, 138 women (71%) had a completely negative histological examination, while in 56 (29%) patients an ovarian or tubal alteration was reported. Among controls, 84% of patients had a p53wt signature, while 16% had a p53 signature. There was no difference in the frequency of a p53 signature between cases and controls; however, women with BRCA1/2 mutations were more likely to have pre-malignant or invasive alterations of tubal or ovarian epithelium (p=0.015). Among mutation carriers, older age both at genetic testing and at surgery was associated with an increased risk of having malignancies (OR=1.07, p=0.006 and OR=1.08, p=0.004, respectively). The risk of malignancy seems to be increased in patients with a familial history of high-grade serous ovarian cancer. Previous therapy with tamoxifen was significantly more frequent in patients with malignant lesions (40.0% vs 21.3%, p=0.006). CONCLUSION We found that a p53 signature is a frequent finding both in BRCA1/2 mutation carriers and in controls, while pre-invasive and invasive lesions are more frequent in BRCA1/2 mutation carriers. Genetic and clinical characteristics are likely to affect the progression to malignancy.
Collapse
Affiliation(s)
- Federica Sina
- Department of Surgery, Gynecological Surgery Unit, San Gerardo Hospital, Monza, Lombardia, Italy
| | - Chiara Cassani
- Gynecology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Chiara Comerio
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| | - Elena De Ponti
- Department of Physical Medicine, San Gerardo Hospital, Monza, Italy
| | - Francesca Zanellini
- Gynecology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | | | - Gaia Roversi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
- Department of Pathology, Unit of Genetics, San Gerardo Hospital, Monza, Italy
| | - Marta Jaconi
- Department of Pathology, San Gerardo Hospital, Monza, Lombardia, Italy
| | - Eloisa Arbustini
- Center for Inherited Cardiovascular Disease, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Mario Urtis
- Center for Inherited Cardiovascular Disease, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Cristina Dell'Oro
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| | - Benedetta Zambetti
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| | - Cristiana Paniga
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| | - Eleonora Acampora
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| | - Serena Negri
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| | - Sara Lazzarin
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| | - Stefania Cesari
- Pathology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Arsenio Spinillo
- Gynecology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Robert Fruscio
- Department of Surgery, Gynecological Surgery Unit, San Gerardo Hospital, Monza, Lombardia, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Lombardia, Italy
| |
Collapse
|
24
|
Ovulation sources coagulation protease cascade and hepatocyte growth factor to support physiological growth and malignant transformation. Neoplasia 2021; 23:1123-1136. [PMID: 34688971 PMCID: PMC8550993 DOI: 10.1016/j.neo.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Ovulatory follicular fluid exerts a long-lasting transformation activity covering throughout the ovulation cycle. The ovulation injury-coagulation proteases-hepatocyte growth factor (HGF) cascade is responsible for the sustained activity. Ovulation sources HGF into the peritoneal cavity, then into the blood circulation. This coagulation-HGF cascade promotes the transformation of fallopian tube epithelial cells and ovarian cancer cells. Physiologically, it promotes the growth of the corpus luteum and injured epithelium after ovulation.
The fallopian tube fimbrial epithelium, which is exposed to the follicular fluid (FF) contents of ovulation, is regarded as the main origin of ovarian high-grade serous carcinoma. Previously, we found that growth factors in FF, such as IGF2, are responsible for the malignant transformation of fallopian tube epithelium. However, ovulation is a monthly transient event, whereas carcinogenesis requires continuous, long-term exposure. Here, we found the transformation activity of FF sustained for more than 30 days after drainage into the peritoneal fluid (PF). Hepatocyte growth factor (HGF), activated through the ovulation injury-tissue factor–thrombin–HGF activator (HGFA)–HGF cleavage cascade confers a sustained transformation activity to fallopian tube epithelium, high-grade serous carcinoma. Physiologically, the high reserve of the coagulation-HGF cascade sources a sustained level of HGF in PF, then to the blood circulation. This HGF axis promotes the growth of the corpus luteum and repair of tissue injury after ovulation.
Collapse
|
25
|
Carvalho JP, Carvalho FM, Chami AM, Filho ALDS, Primo WQSP. Hereditary determinants of gynecological cancer and recommendations. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:638-643. [PMID: 34547799 PMCID: PMC10183871 DOI: 10.1055/s-0041-1736211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
27
|
Expression of hormone receptors predicts survival and platinum sensitivity of high-grade serous ovarian cancer. Biosci Rep 2021; 41:228453. [PMID: 33891016 PMCID: PMC8112847 DOI: 10.1042/bsr20210478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) has abundant expression of hormone receptors, including androgen receptor (AR), estrogen receptor α (ER), and progesterone receptor (PR). The effects of hormone receptors on prognosis of HGSOC were first evaluated in online databases. Their prognostic values were then explored and validated in our inhouse TJ-cohort (92 HGSOC patients) and in a validation cohort (33 HGSOC patients), wherein hormone receptors were detected immunohistochemically. High expression of hormone receptors denoted longer progression-free survival (PFS), overall survival (OS), and platinum-free interval (PFI). Platinum-sensitive patients had higher expression of hormone receptors than their counterparts. Correlation analysis revealed significant positive correlations between hormone receptors expression and survival. AR, ER, and PR had predictive and prognostic values, alone and in combination. By receiver operating characteristic curve (ROC) analysis, co-expression of AR, ER, and PR had an improved predictive performance with an area under the curve (AUC) value of 0.945. Expression of hormone receptors predicts survival and platinum sensitivity of HGSOC. AR, ER, and PR might be feasible prognostic biomarkers for HGSOC by immunohistochemical analysis.
Collapse
|
28
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
29
|
Ovulatory Follicular Fluid Facilitates the Full Transformation Process for the Development of High-Grade Serous Carcinoma. Cancers (Basel) 2021; 13:cancers13030468. [PMID: 33530497 PMCID: PMC7865564 DOI: 10.3390/cancers13030468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background: High-grade serous carcinoma (HGSC) is mainly derived from the stepwise accumulation of driver mutations in the fallopian tube epithelium (FTE), and it subsequently metastasizes to the ovary and peritoneum that develops into a clinically evident ovarian carcinoma. The developmental process involves cell proliferation/clonal expansion, cell migration, anoikis resistance, anchorage-independent growth (AIG), peritoneum attachment, and cell invasion. Previously, we discovered FTE could be transformed by follicular fluid (FF) released from ovulation, the most crucial risk factor of ovarian cancer, and IGF axis proteins in FF confers stemness activation and clonal expansion via IGF-1R/AKT pathway. However, whether other phenotypes in advanced cancer development are involved is unknown. Methods: A panel of FTE and ovarian HGSC cell lines with different severity of transformation were treated with FF with or without IGF-1R and AKT inhibitors and analyzed for the transformation phenotypes in vitro, ex vivo, and in vivo. Results: FF largely promotes (by order of magnitude) cell migration, AIG, cell invasion, peritoneum attachment, anoikis resistance, and cell proliferation. Most of these activities worked in the full panel of cell lines. The AIG activity largely depends on IGF-1R/AKT phosphorylation, and the proliferation activity depends on an AKT phosphorylation not mediated by IGF-1R. In contrast, both AKT- and non-AKT-mediated signals are responsible for the other transformation activities. Conclusions: Our data demonstrate an extensive transformation activity of FF in the full journey of carcinogenesis, and endorsed ovulation-inhibition for the prevention and AKT-inhibition for the treatment of ovarian HGSC.
Collapse
|
30
|
Ding DC, Chang YH, Wu KC, Harnod T. The organoid: A research model for ovarian cancer. Tzu Chi Med J 2021; 34:255-260. [PMID: 35912056 PMCID: PMC9333109 DOI: 10.4103/tcmj.tcmj_63_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease with a variety of distinct clinical and molecular characteristics. The currently available and common research models for EOC include tumor cell lines and patient-derived xenografts. However, these models have certain shortcomings: establishing a cell line is time-consuming, loss of genetic traits after long-term culture is a possibility, and investment is required in terms of animal care facilities. Therefore, better research models are required. Organoid technology was originally developed from colorectal cancer. Tumor organoid is a three-dimensional culture system and can help accurately recapture the tumor phenotype from the original tumor. Tumor organoid systems can overcome the above-mentioned shortcomings of the currently available research models. The organoid model can be used for culturing ovarian cancer subtypes, screening drugs, assessing genomes, and establishing biobanks. However, the currently available organoid models can only culture one type of cells, epithelial cells. Therefore, an organoid-on-a-chip device can be developed in the future to provide a microenvironment for cell–cell, cell–matrix, and cell–media interactions. Thus, organoid models can be used in ovarian cancer research and can generate a simulated in vivo system, enabling studies on the heterogeneity of ovarian cancer.
Collapse
|
31
|
Shih IM, Wang Y, Wang TL. The Origin of Ovarian Cancer Species and Precancerous Landscape. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:26-39. [PMID: 33011111 DOI: 10.1016/j.ajpath.2020.09.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Unlike other human cancers, in which all primary tumors arise de novo, ovarian epithelial cancers are primarily imported from either endometrial or fallopian tube epithelium. The prevailing paradigm in the genesis of high-grade serous carcinoma (HGSC), the most common ovarian cancer, posits to its development in fallopian tubes through stepwise tumor progression. Recent progress has been made not only in gathering terabytes of omics data but also in detailing the histologic-molecular correlations required for looking into, and making sense of, the tissue origin of HGSC. This emerging paradigm is changing many facets of ovarian cancer research and routine gynecology practice. The precancerous landscape in fallopian tubes contains multiple concurrent precursor lesions, including serous tubal intraepithelial carcinoma (STIC), with genetic heterogeneity providing a platform for HGSC evolution. Mathematical models imply that a prolonged time (decades) elapses from the development of a TP53 mutation, the earliest known molecular alteration, to an STIC, followed by a shorter span (6 years) for progression to an HGSC. Genetic predisposition accelerates the trajectory. This timeline may allow for the early diagnosis of HGSC and STIC, followed by intent-to-cure surgery. This review discusses the recent advances in this tubal paradigm and its biological and clinical implications, alongside the promise and challenge of studying STIC and other precancerous lesions of HGSC.
Collapse
Affiliation(s)
- Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Yeh Wang
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Zhong Y, Cao L, Ma H, Wang Q, Wei P, Yang J, Mo Y, Cao L, Shuai C, Peng S. Lin28A Regulates Stem-like Properties of Ovarian Cancer Cells by Enriching RAN and HSBP1 mRNA and Up-regulating its Protein Expression. Int J Biol Sci 2020; 16:1941-1953. [PMID: 32398961 PMCID: PMC7211169 DOI: 10.7150/ijbs.43504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is one of the malignant tumors that seriously threaten women's health, with the highest mortality rate in gynecological malignancies. The prognosis of patients with advanced OC is still poor, and the 5-year survival rate is only 20-30%. Therefore, how to improve the early diagnosis rate and therapeutic effect are urgent for patients with OC. In this research, we found that Lin28A can promote the expression of stem cell marker molecules CD133, CD44, OCT4 and Nanog. We later confirmed that Lin28A can enrich the mRNA of ras-related nuclear protein (RAN) and heat shock factor binding protein 1 (HSBP1) through RIP assay, and that Lin28A can regulate their protein expression. We also identified that RAN and HSBP1 are highly expressed in OC tissues, and that they are significantly positively correlated with the expression of Lin28A and negatively correlated with the survival prognosis of OC patients. After stable knockdown of RAN or HSBP1 in OC cells with high expression of Lin28A, the expression of the stem cell marker molecules such as OCT4, CD44 and Nanog are reduced. And after knocking down of RAN or HSBP1 in Lin28A highly expressed OC cells, the survival and invasion of OC cells and tumor size of OC xenograft in nude mice were markedly inhibited and apoptosis was increased. Our data also showed that knock down of RAN or HSBP1 can inhibit the invasion ability of OC cells by decreasing the expression of N-cadherin, Vimentin and promoting the expression of E-cadherin. Meanwhile, knockdown of RAN or HSBP1 induced cell apoptosis by inhibiting the expression of PARP. Our results indicated that Lin28A could regulate the biological behaviors in OC cells through RAN/HSBP1. These findings suggest that Lin28A/RAN/HSBP1 can be used as a marker for diagnosis and prognosis of OC patients, and RAN/HSBP1 may be a potential new target for gene therapy of OC.
Collapse
Affiliation(s)
- Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lanqin Cao
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haotian Ma
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Qian Wang
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingpin Wei
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Juan Yang
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
33
|
Chang YH, Chu TY, Ding DC. Human fallopian tube epithelial cells exhibit stemness features, self-renewal capacity, and Wnt-related organoid formation. J Biomed Sci 2020; 27:32. [PMID: 32035490 PMCID: PMC7007656 DOI: 10.1186/s12929-019-0602-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fallopian tube epithelial cells (FTEC) were thought to be the origin of high-grade serous ovarian carcinoma (HGSOC). Knowledge of the stemness or initiating characteristics of FTEC is insufficient. Previously, we have characterized the stemness cell marker of FTEC, this study aims to further characterize the clonogenicity and spheroid features of FTEC. METHODS We successfully derived FTECs from the epithelial layer of the human fallopian tubes. We examined the morphology, proliferation rate, doubling time, and clonal growth of them. At passage 3, the sphere formations on gelatin-coated culture, suspension culture, and matrigel culture were observed, and the expression of LGR5, SSEA3, SSEA4, and other stemness markers was examined. Furthermore, tissue-reconstituted organoids from coculture of FTEC, fallopian stromal cells (FTMSC) and endothelial cells (HUVEC) were examined. RESULTS FTEC exhibited cuboidal cell morphology and maintained at a constant proliferation rate for up to nine passages (P9). FTEC could proliferate from a single cell with a clonogenic efficiency of 4%. Flow cytometry revealed expressions of normal stem cell markers (SSEA3, SSEA4, and LGR5) and cancer stem cell markers (CD24, CD44, CD117, ROR1, and CD133). FTEC formed spheres and colonies when cultured on low attach dish. In the presence of Matrigel, the stemness and colony formation activity were much enhanced. In co-culturing with FTMSC and HUVEC, FTEC could form organoids that could be blocked by Wnt inhibitor DKK1. Expressions of LGR5 and FOXJ1 expression were also decreased by adding DKK1. CONCLUSION We demonstrated abundantly presence of stem cells in human FTECs which are efficient in forming colonies, spheres and organoids, relying on Wnt signaling. We also reported for the first time the generation of organoid from reconstitutied cell lineages in the tissue. This may provide a new model for studying the regneration and malignant transformation of the tubal epithelium.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; Tzu Chi University, Hualien, Taiwan
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Hualien Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Sec. 3, Chung-Yang Rd., Hualien, 970, Taiwan. .,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan.
| | - Dah-Ching Ding
- Stem Cell Laboratory, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Department of Obstetrics and Gynecology, Hualien Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707, Sec. 3, Chung-Yang Rd., Hualien, 970, Taiwan. .,Department of Gyecology and Obstetrics, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|