1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025; 62:113-134. [PMID: 39743506 PMCID: PMC11854058 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M. Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Rao H, Weiss MC, Moon JY, Perreira KM, Daviglus ML, Kaplan R, North KE, Argos M, Fernández-Rhodes L, Sofer T. Advancements in genetic research by the Hispanic Community Health Study/Study of Latinos: A 10-year retrospective review. HGG ADVANCES 2025; 6:100376. [PMID: 39473183 PMCID: PMC11754138 DOI: 10.1016/j.xhgg.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/14/2024] Open
Abstract
The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a multicenter, longitudinal cohort study designed to evaluate environmental, lifestyle, and genetic risk factors as they relate to cardiometabolic and other chronic diseases among Hispanic/Latino populations in the United States. Since the study's inception in 2008, as a result of the study's robust genetic measures, HCHS/SOL has facilitated major contributions to the field of genetic research. This 10-year retrospective review highlights the major findings for genotype-phenotype relationships and advancements in statistical methods owing to the HCHS/SOL. Furthermore, we discuss the ethical and societal challenges of genetic research, especially among Hispanic/Latino adults in the United States. Continued genetic research, ancillary study expansion, and consortia collaboration through HCHS/SOL will further drive knowledge and advancements in human genetics research.
Collapse
Affiliation(s)
- Hridya Rao
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Margaret C Weiss
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Jee Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Maria Argos
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA; Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | | | - Tamar Sofer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation via Hexosamine Biosynthetic Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309211. [PMID: 39119859 PMCID: PMC11481188 DOI: 10.1002/advs.202309211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Age is a prominent risk factor for cardiometabolic disease, often leading to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction exclusively resulting from physiological aging remain elusive. Previous research demonstrated age-related functional alterations in baboons, analogous to humans. The goal of this study is to identify early cardiac molecular alterations preceding functional adaptations, shedding light on the regulation of age-associated changes. Unbiased transcriptomics of left ventricle samples are performed from female baboons aged 7.5-22.1 years (human equivalent ≈30-88 years). Weighted-gene correlation network and pathway enrichment analyses are performed, with histological validation. Modules of transcripts negatively correlated with age implicated declined metabolism-oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggested a metabolic shift toward glucose-dependent anabolic pathways, including hexosamine biosynthetic pathway (HBP). This shift is associated with increased glycosaminoglycan synthesis, modification, precursor synthesis via HBP, and extracellular matrix accumulation, verified histologically. Upregulated extracellular matrix-induced signaling coincided with glycosaminoglycan accumulation, followed by cardiac hypertrophy-related pathways. Overall, these findings revealed a transcriptional shift in metabolism favoring glycosaminoglycan accumulation through HBP before cardiac hypertrophy. Unveiling this metabolic shift provides potential targets for age-related cardiac diseases, offering novel insights into early age-related mechanisms.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Institute for Interdisciplinary ResearchPDBEB – Doctoral Programme in Experimental Biology and BiomedicineUniversity of CoimbraCoimbra3060Portugal
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Kip D. Zimmerman
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Sobha Puppala
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Jeannie Chan
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Hillary F. Huber
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
| | - Ge Li
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Avinash Y. L. Jadhav
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Benlian Wang
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Cun Li
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Geoffrey D. Clarke
- Department of RadiologyUniversity of Texas Health Science CenterSan AntonioTX78229USA
| | - Thomas C. Register
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Paulo J. Oliveira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Michael Olivier
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Susana P. Pereira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Laboratory of Metabolism and Exercise (LaMetEx)Research Centre in Physical ActivityHealth and Leisure (CIAFEL)Laboratory for Integrative and Translational Research in Population Health (ITR)Faculty of SportsUniversity of PortoPorto4050Portugal
| | - Laura A. Cox
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| |
Collapse
|
4
|
Sidenkova A, Litvinenko V, Bazarny V, Rezaikin A, Zakharov A, Baranskaya L, Babushkina E. Mechanisms and Functions of the Cerebral-Cognitive Reserve in Patients with Alzheimer's Disease: A Narrative Review. CONSORTIUM PSYCHIATRICUM 2024; 5:17-29. [PMID: 39526013 PMCID: PMC11542915 DOI: 10.17816/cp15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The need for scientific knowledge about aging is predicated on the demand of modern society to extend the active life of a person. To maintain intellectual longevity, it is necessary to take into account not only the pathological, but also compensatory mechanisms that arise during aging. The cerebral-cognitive reserve (CCR) influences the rate of transition from pre-phenomenological stages to the clinical stage of the disease, thereby changing the prognosis of Alzheimer's disease (AD). AIM The aim of this work was to review meta-analyses from studies that have examined the principles and functions of the CCR in people with AD. METHODS The work included 83 scientific publications devoted to the issues of the CCR in neurodegenerative diseases such as AD. The Results and Discussion sections of this article provide reviews of the results of 12 meta-analyses published from 2012 to 2024 and selected from the PubMed and eLibrary databases using the following keywords in English and Russian: "cerebral reserve", "cognitive "reserve", and "Alzheimer's disease". The scope of the definition was not limited, since the goal here was to determine the terminological boundaries of the concepts of "cognitive reserve" and "single brain reserve". RESULTS The modern understanding of AD as a biological continuum covering the preclinical, prodromal, and clinical phases of the disease makes it possible to infer that insufficiency of protective factors underlies the progression of AD. The cognitive reserve is involved in the sanogenetic protective mechanism during neurodegeneration. The cognitive reserve is a theoretical concept that reflects modern research's understanding of how the integrative functioning of the brain (cerebral) and cognitive reserves extend the period of active intellectual longevity through energy-saving mechanisms. It considers these mechanisms as central to healthy mental activity and in slowing the progression of neurodegenerative diseases. At some point, an increase in excess interneuronal activity that reflects the hypercompensatory function of the reserve would accelerate the depletion of brain structures and contribute to clinical and psychopathological manifestations of AD. CONCLUSION The concept of the CCR puts the spotlight on the need to determine the compensatory indicators of cognitive deficit in AD, assess the architecture and volume of the reserve, and develop and follow protocols for its maintenance. It appears just as crucial to adopt measures to prevent the Reserve's depletion as early as at the preclinical stages of the disease. Elaborating protective and compensatory mechanisms that help to maintain the functional activity of the brain in conditions of neurodegeneration, that is, CCR, require further research and can form a conceptual basis for the prevention of AD, starting from the preclinical stages of the disease.
Collapse
|
5
|
Keaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, Young WJ, Traylor M, Giri A, Zheng Z, Zeng J, Chasman DI, Morris AP, Caulfield MJ, Hwang SJ, Kooner JS, Conen D, Attia JR, Morrison AC, Loos RJF, Kristiansson K, Schmidt R, Hicks AA, Pramstaller PP, Nelson CP, Samani NJ, Risch L, Gyllensten U, Melander O, Riese H, Wilson JF, Campbell H, Rich SS, Psaty BM, Lu Y, Rotter JI, Guo X, Rice KM, Vollenweider P, Sundström J, Langenberg C, Tobin MD, Giedraitis V, Luan J, Tuomilehto J, Kutalik Z, Ripatti S, Salomaa V, Girotto G, Trompet S, Jukema JW, van der Harst P, Ridker PM, Giulianini F, Vitart V, Goel A, Watkins H, Harris SE, Deary IJ, van der Most PJ, Oldehinkel AJ, Keavney BD, Hayward C, Campbell A, Boehnke M, Scott LJ, Boutin T, Mamasoula C, Järvelin MR, Peters A, Gieger C, Lakatta EG, Cucca F, Hui J, Knekt P, Enroth S, De Borst MH, Polašek O, Concas MP, Catamo E, Cocca M, Li-Gao R, Hofer E, Schmidt H, Spedicati B, Waldenberger M, Strachan DP, Laan M, Teumer A, Dörr M, Gudnason V, Cook JP, Ruggiero D, Kolcic I, Boerwinkle E, Traglia M, et alKeaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, Young WJ, Traylor M, Giri A, Zheng Z, Zeng J, Chasman DI, Morris AP, Caulfield MJ, Hwang SJ, Kooner JS, Conen D, Attia JR, Morrison AC, Loos RJF, Kristiansson K, Schmidt R, Hicks AA, Pramstaller PP, Nelson CP, Samani NJ, Risch L, Gyllensten U, Melander O, Riese H, Wilson JF, Campbell H, Rich SS, Psaty BM, Lu Y, Rotter JI, Guo X, Rice KM, Vollenweider P, Sundström J, Langenberg C, Tobin MD, Giedraitis V, Luan J, Tuomilehto J, Kutalik Z, Ripatti S, Salomaa V, Girotto G, Trompet S, Jukema JW, van der Harst P, Ridker PM, Giulianini F, Vitart V, Goel A, Watkins H, Harris SE, Deary IJ, van der Most PJ, Oldehinkel AJ, Keavney BD, Hayward C, Campbell A, Boehnke M, Scott LJ, Boutin T, Mamasoula C, Järvelin MR, Peters A, Gieger C, Lakatta EG, Cucca F, Hui J, Knekt P, Enroth S, De Borst MH, Polašek O, Concas MP, Catamo E, Cocca M, Li-Gao R, Hofer E, Schmidt H, Spedicati B, Waldenberger M, Strachan DP, Laan M, Teumer A, Dörr M, Gudnason V, Cook JP, Ruggiero D, Kolcic I, Boerwinkle E, Traglia M, Lehtimäki T, Raitakari OT, Johnson AD, Newton-Cheh C, Brown MJ, Dominiczak AF, Sever PJ, Poulter N, Chambers JC, Elosua R, Siscovick D, Esko T, Metspalu A, Strawbridge RJ, Laakso M, Hamsten A, Hottenga JJ, de Geus E, Morris AD, Palmer CNA, Nolte IM, Milaneschi Y, Marten J, Wright A, Zeggini E, Howson JMM, O'Donnell CJ, Spector T, Nalls MA, Simonsick EM, Liu Y, van Duijn CM, Butterworth AS, Danesh JN, Menni C, Wareham NJ, Khaw KT, Sun YV, Wilson PWF, Cho K, Visscher PM, Denny JC, Levy D, Edwards TL, Munroe PB, Snieder H, Warren HR. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat Genet 2024; 56:778-791. [PMID: 38689001 PMCID: PMC11096100 DOI: 10.1038/s41588-024-01714-w] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.
Collapse
Affiliation(s)
- Jacob M Keaton
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ariel Williams
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Slavina B Goleva
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - William J Young
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Jaspal S Kooner
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - John R Attia
- Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, Newcastle, New South Wales, Australia
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kati Kristiansson
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- University of Lübeck, Lübeck, Germany
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- University of Lübeck, Lübeck, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Lorenz Risch
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Department of Laboratory Medicine, Dr. Risch Anstalt, Vaduz, Liechtenstein
| | - Ulf Gyllensten
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Harriette Riese
- Interdisciplinary Center Psychopathology and Emotional Regulation (ICPE), Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Yingchang Lu
- Vanderbilt Genetic Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- Leicester NIHR Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoltan Kutalik
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Stella Trompet
- Department Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul M Ridker
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Franco Giulianini
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah E Harris
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Scott
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Epidemiologie, Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Ludwig-Maximilians-Universität München, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Francesco Cucca
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Monserrato, Italy
| | - Jennie Hui
- Busselton Population Medical Research Institute, Perth, Western Australia, Australia
- School of Population and Global Health, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Paul Knekt
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Uppsala, Sweden
| | - Martin H De Borst
- Department of Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - David P Strachan
- Population Health Sciences Institute St George's, University of London, London, UK
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Kopavogur, Iceland
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Daniela Ruggiero
- IRCCS Neuromed, Pozzilli, Italy
- Institute of Genetics and Biophysics - 'A. Buzzati-Traverso', National Research Council of Italy, Naples, Italy
| | - Ivana Kolcic
- Algebra University College, Zagreb, Croatia
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Andrew D Johnson
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Christopher Newton-Cheh
- Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Peter J Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, London, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Roberto Elosua
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | | | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Health Data Research UK, Glasgow, UK
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Anders Hamsten
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Andrew D Morris
- Data Science, University of Edinburgh, Edinburgh, UK
- Health Data Research UK, London, UK
| | - Colin N A Palmer
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jonathan Marten
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Alan Wright
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Joanna M M Howson
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tim Spector
- Department of Twin Research, King's College London, London, UK
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, NIA/NINDS, NIH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yongmei Liu
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - John N Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, London, UK
| | | | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- VA Atlanta Healthcare System, Decatur, GA, USA
| | - Peter W F Wilson
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Kelly Cho
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Joshua C Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Levy
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation Via Hexosamine Biosynthetic Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567640. [PMID: 38014295 PMCID: PMC10680868 DOI: 10.1101/2023.11.17.567640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans. The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes. We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ~30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width. Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sobha Puppala
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Avinash Y. L. Jadhav
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Benlian Wang
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffrey D. Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas C. Register
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susana P. Pereira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
de las Fuentes L, Schwander KL, Brown MR, Bentley AR, Winkler TW, Sung YJ, Munroe PB, Miller CL, Aschard H, Aslibekyan S, Bartz TM, Bielak LF, Chai JF, Cheng CY, Dorajoo R, Feitosa MF, Guo X, Hartwig FP, Horimoto A, Kolčić I, Lim E, Liu Y, Manning AK, Marten J, Musani SK, Noordam R, Padmanabhan S, Rankinen T, Richard MA, Ridker PM, Smith AV, Vojinovic D, Zonderman AB, Alver M, Boissel M, Christensen K, Freedman BI, Gao C, Giulianini F, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Robino A, Sofer T, Takeuchi F, Tayo BO, van der Most PJ, Verweij N, Ware EB, Weiss S, Wen W, Yanek LR, Zhan Y, Amin N, Arking DE, Ballantyne C, Boerwinkle E, Brody JA, Broeckel U, Campbell A, Canouil M, Chai X, Chen YDI, Chen X, Chitrala KN, Concas MP, de Faire U, de Mutsert R, de Silva HJ, de Vries PS, Do A, Faul JD, Fisher V, Floyd JS, Forrester T, Friedlander Y, Girotto G, Gu CC, Hallmans G, Heikkinen S, Heng CK, Homuth G, Hunt S, Ikram MA, Jacobs DR, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Langefeld CD, Liang J, et alde las Fuentes L, Schwander KL, Brown MR, Bentley AR, Winkler TW, Sung YJ, Munroe PB, Miller CL, Aschard H, Aslibekyan S, Bartz TM, Bielak LF, Chai JF, Cheng CY, Dorajoo R, Feitosa MF, Guo X, Hartwig FP, Horimoto A, Kolčić I, Lim E, Liu Y, Manning AK, Marten J, Musani SK, Noordam R, Padmanabhan S, Rankinen T, Richard MA, Ridker PM, Smith AV, Vojinovic D, Zonderman AB, Alver M, Boissel M, Christensen K, Freedman BI, Gao C, Giulianini F, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Robino A, Sofer T, Takeuchi F, Tayo BO, van der Most PJ, Verweij N, Ware EB, Weiss S, Wen W, Yanek LR, Zhan Y, Amin N, Arking DE, Ballantyne C, Boerwinkle E, Brody JA, Broeckel U, Campbell A, Canouil M, Chai X, Chen YDI, Chen X, Chitrala KN, Concas MP, de Faire U, de Mutsert R, de Silva HJ, de Vries PS, Do A, Faul JD, Fisher V, Floyd JS, Forrester T, Friedlander Y, Girotto G, Gu CC, Hallmans G, Heikkinen S, Heng CK, Homuth G, Hunt S, Ikram MA, Jacobs DR, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Langefeld CD, Liang J, Liu K, Liu J, Lohman K, Mägi R, Manichaikul AW, McKenzie CA, Meitinger T, Milaneschi Y, Nauck M, Nelson CP, O’Connell JR, Palmer ND, Pereira AC, Perls T, Peters A, Polašek O, Raitakari OT, Rice K, Rice TK, Rich SS, Sabanayagam C, Schreiner PJ, Shu XO, Sidney S, Sims M, Smith JA, Starr JM, Strauch K, Tai ES, Taylor KD, Tsai MY, Uitterlinden AG, van Heemst D, Waldenberger M, Wang YX, Wei WB, Wilson G, Xuan D, Yao J, Yu C, Yuan JM, Zhao W, Becker DM, Bonnefond A, Bowden DW, Cooper RS, Deary IJ, Divers J, Esko T, Franks PW, Froguel P, Gieger C, Jonas JB, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, North KE, Ntalla I, Penninx B, Samani NJ, Snieder H, Spedicati B, van der Harst P, Völzke H, Wagenknecht LE, Weir DR, Wojczynski MK, Wu T, Zheng W, Zhu X, Bouchard C, Chasman DI, Evans MK, Fox ER, Gudnason V, Hayward C, Horta BL, Kardia SLR, Krieger JE, Mook-Kanamori DO, Peyser PA, Province MM, Psaty BM, Rudan I, Sim X, Smith BH, van Dam RM, van Duijn CM, Wong TY, Arnett DK, Rao DC, Gauderman J, Liu CT, Morrison AC, Rotter JI, Fornage M. Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci. Front Genet 2023; 14:1235337. [PMID: 38028628 PMCID: PMC10651736 DOI: 10.3389/fgene.2023.1235337] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Karen L. Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia B. Munroe
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Biochemistry and Molecular Genetics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Hugo Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
- Département de Génomes et Génétique, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Stella Aslibekyan
- School of Public Health, Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Fernando P. Hartwig
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Andrea Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Solomon K. Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Melissa A. Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Albert V. Smith
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Icelandic Heart Association, Kopavogur, Iceland
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institutes of Health, Baltimore, MD, United States
| | - Maris Alver
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Mathilde Boissel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Barry I. Freedman
- Nephrology Division, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah E. Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Federica Laguzzi
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
- Department of Mathematics and Statistics, St. Cloud State University, St. Cloud, MN, United States
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Ilja M. Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alaitz Poveda
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Muhammad Riaz
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Tamar Sofer
- Biostatistics, Department of Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bamidele O. Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Peter J. van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yiqiang Zhan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, United States
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, United States
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Ulrich Broeckel
- Section on Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Mickaël Canouil
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Xiaoran Chai
- Data Science Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - H. Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ahn Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Virginia Fisher
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - James S. Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Terrence Forrester
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Yechiel Friedlander
- Braun School of Public Health, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - C. Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Göran Hallmans
- Section for Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
| | - Steven Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Kiang Liu
- Epidemiology, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Reedik Mägi
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Ani W. Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Colin A. McKenzie
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | | | - Matthias Nauck
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, United States
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Thomas Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Neuherberg, Germany
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Treva K. Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, United States
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Konstantin Strauch
- German Research Center for Environmental Health, Helmholtz Zentrum München, Institute of Genetic Epidemiology, Neuherberg, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ya-Xing Wang
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Wen-Bin Wei
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study Graduate Training Center, School of Public, Jackson State University, Jackson, MS, United States
| | - Deng Xuan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yuan
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Cancer Control and Population Sciences, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Diane M. Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amélie Bonnefond
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Richard S. Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Ian J. Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jasmin Divers
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tõnu Esko
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard Chan School of Public Health, Boston, MA, United States
| | - Philippe Froguel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Jost B. Jonas
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Timo A. Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Karin Leander
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ioanna Ntalla
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- Celgene, Bristol Myers Squibb, Mississauga, ON, Canada
| | | | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Harold Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Pim van der Harst
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Henry Völzke
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lynne E. Wagenknecht
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Ervin R. Fox
- Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernardo L. Horta
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Michael M. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, United States
| | - Igor Rudan
- Centre for Global Health, The Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rob M. van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Tien Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Donna K. Arnett
- College of Public Health, Dean’s Office, University of Kentucky, Lexington, KY, United States
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - James Gauderman
- Division of Biostatistics, Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
8
|
Doumatey AP, Bentley AR, Akinyemi R, Olanrewaju TO, Adeyemo A, Rotimi C. Genes, environment, and African ancestry in cardiometabolic disorders. Trends Endocrinol Metab 2023; 34:601-621. [PMID: 37598069 PMCID: PMC10548552 DOI: 10.1016/j.tem.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
The past two decades have been characterized by a substantial global increase in cardiometabolic diseases, but the prevalence and incidence of these diseases and related traits differ across populations. African ancestry populations are among the most affected yet least included in research. Populations of African descent manifest significant genetic and environmental diversity and this under-representation is a missed opportunity for discovery and could exacerbate existing health disparities and curtail equitable implementation of precision medicine. Here, we discuss cardiometabolic diseases and traits in the context of African descent populations, including both genetic and environmental contributors and emphasizing novel discoveries. We also review new initiatives to include more individuals of African descent in genomics to address current gaps in the field.
Collapse
Affiliation(s)
- Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training and Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Neurology, University College Hospital, Ibadan, Nigeria
| | - Timothy O Olanrewaju
- Division of Nephrology, Department of Medicine, University of Ilorin & University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Nguyen MTH, Imanishi M, Li S, Chau K, Banerjee P, Velatooru LR, Ko KA, Samanthapudi VSK, Gi YJ, Lee LL, Abe RJ, McBeath E, Deswal A, Lin SH, Palaskas NL, Dantzer R, Fujiwara K, Borchrdt MK, Turcios EB, Olmsted-Davis EA, Kotla S, Cooke JP, Wang G, Abe JI, Le NT. Endothelial activation and fibrotic changes are impeded by laminar flow-induced CHK1-SENP2 activity through mechanisms distinct from endothelial-to-mesenchymal cell transition. Front Cardiovasc Med 2023; 10:1187490. [PMID: 37711550 PMCID: PMC10499395 DOI: 10.3389/fcvm.2023.1187490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023] Open
Abstract
Background The deSUMOylase sentrin-specific isopeptidase 2 (SENP2) plays a crucial role in atheroprotection. However, the phosphorylation of SENP2 at T368 under disturbed flow (D-flow) conditions hinders its nuclear function and promotes endothelial cell (EC) activation. SUMOylation has been implicated in D-flow-induced endothelial-to-mesenchymal transition (endoMT), but the precise role of SENP2 in counteracting this process remains unclear. Method We developed a phospho-specific SENP2 S344 antibody and generated knock-in (KI) mice with a phospho-site mutation of SENP2 S344A using CRISPR/Cas9 technology. We then investigated the effects of SENP2 S344 phosphorylation under two distinct flow patterns and during hypercholesteremia (HC)-mediated EC activation. Result Our findings demonstrate that laminar flow (L-flow) induces phosphorylation of SENP2 at S344 through the activation of checkpoint kinase 1 (CHK1), leading to the inhibition of ERK5 and p53 SUMOylation and subsequent suppression of EC activation. We observed a significant increase in lipid-laden lesions in both the aortic arch (under D-flow) and descending aorta (under L-flow) of female hypercholesterolemic SENP2 S344A KI mice. In male hypercholesterolemic SENP2 S344A KI mice, larger lipid-laden lesions were only observed in the aortic arch area, suggesting a weaker HC-mediated atherogenesis in male mice compared to females. Ionizing radiation (IR) reduced CHK1 expression and SENP2 S344 phosphorylation, attenuating the pro-atherosclerotic effects observed in female SENP2 S344A KI mice after bone marrow transplantation (BMT), particularly in L-flow areas. The phospho-site mutation SENP2 S344A upregulates processes associated with EC activation, including inflammation, migration, and proliferation. Additionally, fibrotic changes and up-regulated expression of EC marker genes were observed. Apoptosis was augmented in ECs derived from the lungs of SENP2 S344A KI mice, primarily through the inhibition of ERK5-mediated expression of DNA damage-induced apoptosis suppressor (DDIAS). Summary In this study, we have revealed a novel mechanism underlying the suppressive effects of L-flow on EC inflammation, migration, proliferation, apoptosis, and fibrotic changes through promoting CHK1-induced SENP2 S344 phosphorylation. The phospho-site mutation SENP2 S344A responds to L-flow through a distinct mechanism, which involves the upregulation of both mesenchymal and EC marker genes.
Collapse
Affiliation(s)
- Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shengyu Li
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Loka reddy Velatooru
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Young J. Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ling-Ling Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rei J. Abe
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elena McBeath
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mae K. Borchrdt
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Estefani Berrios Turcios
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
10
|
Li C, Pan Y, Zhang R, Huang Z, Li D, Han Y, Larkin C, Rao V, Sun X, Kelly TN. Genomic Innovation in Early Life Cardiovascular Disease Prevention and Treatment. Circ Res 2023; 132:1628-1647. [PMID: 37289909 PMCID: PMC10328558 DOI: 10.1161/circresaha.123.321999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality globally. Although CVD events do not typically manifest until older adulthood, CVD develops gradually across the life-course, beginning with the elevation of risk factors observed as early as childhood or adolescence and the emergence of subclinical disease that can occur in young adulthood or midlife. Genomic background, which is determined at zygote formation, is among the earliest risk factors for CVD. With major advances in molecular technology, including the emergence of gene-editing techniques, along with deep whole-genome sequencing and high-throughput array-based genotyping, scientists now have the opportunity to not only discover genomic mechanisms underlying CVD but use this knowledge for the life-course prevention and treatment of these conditions. The current review focuses on innovations in the field of genomics and their applications to monogenic and polygenic CVD prevention and treatment. With respect to monogenic CVD, we discuss how the emergence of whole-genome sequencing technology has accelerated the discovery of disease-causing variants, allowing comprehensive screening and early, aggressive CVD mitigation strategies in patients and their families. We further describe advances in gene editing technology, which might soon make possible cures for CVD conditions once thought untreatable. In relation to polygenic CVD, we focus on recent innovations that leverage findings of genome-wide association studies to identify druggable gene targets and develop predictive genomic models of disease, which are already facilitating breakthroughs in the life-course treatment and prevention of CVD. Gaps in current research and future directions of genomics studies are also discussed. In aggregate, we hope to underline the value of leveraging genomics and broader multiomics information for characterizing CVD conditions, work which promises to expand precision approaches for the life-course prevention and treatment of CVD.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Davey Li
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Yunan Han
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Claire Larkin
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Varun Rao
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (C. Li, R.Z., Z.H., X.S.)
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago (Y.P., D.L., Y.H., C.L., V.R., T.N.K.)
| |
Collapse
|
11
|
Allen TD, Regina J, Wiernik BM, Waiwood AM. Toward a better understanding of the causal effects of role demands on work-family conflict: A genetic modeling approach. JOURNAL OF APPLIED PSYCHOLOGY 2023; 108:520-539. [PMID: 36037489 PMCID: PMC9957789 DOI: 10.1037/apl0001032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Over the past several decades, there has been considerable interest in the theoretical causes of work-family conflict (WFC). Most studies have focused on situational determinants, often ignoring the role of personal factors such as disposition and heritable elements. We increase understanding of person versus situation influences on WFC through estimation of the relationship between role demands and WFC after controlling for genetic confounding, measured personality traits, family confounds, and other stable dispositions. Based on twin data from the National Survey of Midlife Development in the United States (MIDUS), we examine the role of genetic factors in explaining variation in WFC (both work interference with family [WIF] and family interference with work [FIW]). Results support WFC has an additive genetic component, accounting for 31% [95% CI 18%, 45%] and 16% [95% CI 2%, 30%] of the variance in WIF and FIW, respectively. In addition, we test two competing hypotheses with regard to the relationship between role demands and WFC. Results support the phenotypic causal relationship for WIF, consistent with the notion the relationship between work demands and WIF reflect situational processes. However, results support the genetic confounding hypothesis for FIW, indicating observed relationships between family demands and FIW are primarily due to genetic factors. Our results provide new insights into the nature of WFC relationships and underscore that ignoring the influence of heritability can bias estimates of role demand effects in WFC research. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Tammy D Allen
- Department of Psychology, University of South Florida
| | - Joseph Regina
- Department of Psychology, University of South Florida
| | | | | |
Collapse
|
12
|
Wuni R, Ventura EF, Curi-Quinto K, Murray C, Nunes R, Lovegrove JA, Penny M, Favara M, Sanchez A, Vimaleswaran KS. Interactions between genetic and lifestyle factors on cardiometabolic disease-related outcomes in Latin American and Caribbean populations: A systematic review. Front Nutr 2023; 10:1067033. [PMID: 36776603 PMCID: PMC9909204 DOI: 10.3389/fnut.2023.1067033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The prevalence of cardiometabolic diseases has increased in Latin American and the Caribbean populations (LACP). To identify gene-lifestyle interactions that modify the risk of cardiometabolic diseases in LACP, a systematic search using 11 search engines was conducted up to May 2022. Methods Eligible studies were observational and interventional studies in either English, Spanish, or Portuguese. A total of 26,171 publications were screened for title and abstract; of these, 101 potential studies were evaluated for eligibility, and 74 articles were included in this study following full-text screening and risk of bias assessment. The Appraisal tool for Cross-Sectional Studies (AXIS) and the Risk Of Bias In Non-Randomized Studies-of Interventions (ROBINS-I) assessment tool were used to assess the methodological quality and risk of bias of the included studies. Results We identified 122 significant interactions between genetic and lifestyle factors on cardiometabolic traits and the vast majority of studies come from Brazil (29), Mexico (15) and Costa Rica (12) with FTO, APOE, and TCF7L2 being the most studied genes. The results of the gene-lifestyle interactions suggest effects which are population-, gender-, and ethnic-specific. Most of the gene-lifestyle interactions were conducted once, necessitating replication to reinforce these results. Discussion The findings of this review indicate that 27 out of 33 LACP have not conducted gene-lifestyle interaction studies and only five studies have been undertaken in low-socioeconomic settings. Most of the studies were cross-sectional, indicating a need for longitudinal/prospective studies. Future gene-lifestyle interaction studies will need to replicate primary research of already studied genetic variants to enable comparison, and to explore the interactions between genetic and other lifestyle factors such as those conditioned by socioeconomic factors and the built environment. The protocol has been registered on PROSPERO, number CRD42022308488. Systematic review registration https://clinicaltrials.gov, identifier CRD420223 08488.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Eduard F. Ventura
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | | | - Claudia Murray
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Richard Nunes
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Mary Penny
- Instituto de Investigación Nutricional, Lima, Peru
| | - Marta Favara
- Oxford Department of International Development, University of Oxford, Oxford, United Kingdom
| | - Alan Sanchez
- Grupo de Análisis para el Desarrollo (GRADE), Lima, Peru
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading, United Kingdom
| |
Collapse
|
13
|
Hsiao CJ, Dumeny L, Bress AP, Johnson DA, Shimbo D, Cavallari LH, Mulligan CJ. Identification of a SGCD × Discrimination Interaction Effect on Systolic Blood Pressure in African American Adults in the Jackson Heart Study. Am J Hypertens 2022; 35:938-947. [PMID: 35999027 PMCID: PMC9629434 DOI: 10.1093/ajh/hpac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND In the United States, hypertension disproportionately afflicts over half of African American adults, many of whom also experience racial discrimination. Understanding gene × discrimination effects may help explain racial disparities in hypertension. METHODS We tested for the main effects and interactive effects of 5 candidate single nucleotide polymorphisms (SNPs: rs2116737, rs11190458, rs2445762, rs2597955, and rs2416545) and experiences of discrimination on blood pressure (BP) in African Americans not taking antihypertensive medications in the Jackson Heart Study from Mississippi (n = 2,933). Multiple linear regression models assumed an additive genetic model and adjusted for ancestry, age, sex, body mass index, education, and relatedness. We additionally tested recessive and dominant genetic models. RESULTS Discrimination was significantly associated with higher diastolic BP (P = 0.003). In contrast, there were no main effects of any SNP on BP. When analyzing SNPs and discrimination together, SGCD (Sarcoglycan Delta; rs2116737) demonstrated a gene × environment interaction. Specifically, an SGCD × Discrimination interaction was associated with systolic BP (β =1.95, P = 0.00028) in a recessive model. Participants carrying a T allele, regardless of discrimination experiences, and participants with a GG genotype and high experiences of discrimination had higher systolic BP than participants with a GG genotype and low experiences of discrimination. This finding suggests the SGCD GG genotype may have a protective effect on systolic BP, but only in a setting of low discrimination. CONCLUSIONS The inclusion of culturally relevant stressors, like discrimination, may be important to understand the gene-environment interplay likely underlying complex diseases with racial health inequities.
Collapse
Affiliation(s)
- Chu J Hsiao
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Leanne Dumeny
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Adam P Bress
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dayna A Johnson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Daichi Shimbo
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Carter AR, Harrison S, Gill D, Davey Smith G, Taylor AE, Howe LD, Davies NM. Educational attainment as a modifier for the effect of polygenic scores for cardiovascular risk factors: cross-sectional and prospective analysis of UK Biobank. Int J Epidemiol 2022; 51:885-897. [PMID: 35134953 PMCID: PMC9189971 DOI: 10.1093/ije/dyac002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/06/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Understanding the interplay between educational attainment and genetic predictors of cardiovascular risk may improve our understanding of the aetiology of educational inequalities in cardiovascular disease. METHODS In up to 320 120 UK Biobank participants of White British ancestry (mean age = 57 years, female 54%), we created polygenic scores for nine cardiovascular risk factors or diseases: alcohol consumption, body mass index, low-density lipoprotein cholesterol, lifetime smoking behaviour, systolic blood pressure, atrial fibrillation, coronary heart disease, type 2 diabetes and stroke. We estimated whether educational attainment modified genetic susceptibility to these risk factors and diseases. RESULTS On the additive scale, higher educational attainment reduced genetic susceptibility to higher body mass index, smoking, atrial fibrillation and type 2 diabetes, but increased genetic susceptibility to higher LDL-C and higher systolic blood pressure. On the multiplicative scale, there was evidence that higher educational attainment increased genetic susceptibility to atrial fibrillation and coronary heart disease, but little evidence of effect modification was found for all other traits considered. CONCLUSIONS Educational attainment modifies the genetic susceptibility to some cardiovascular risk factors and diseases. The direction of this effect was mixed across traits considered and differences in associations between the effect of the polygenic score across strata of educational attainment was uniformly small. Therefore, any effect modification by education of genetic susceptibility to cardiovascular risk factors or diseases is unlikely to substantially explain the development of inequalities in cardiovascular risk.
Collapse
Affiliation(s)
- Alice R Carter
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sean Harrison
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dipender Gill
- Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical Education and Institute for Infection and Immunity, St George’s, University of London, London, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George’s University Hospitals NHS Foundation Trust, London, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Amy E Taylor
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Neil M Davies
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
15
|
SARZYNSKI MARKA, RICE TREVAK, DESPRÉS JEANPIERRE, PÉRUSSE LOUIS, TREMBLAY ANGELO, STANFORTH PHILIPR, TCHERNOF ANDRÉ, BARBER JACOBL, FALCIANI FRANCESCO, CLISH CLARY, ROBBINS JEREMYM, GHOSH SUJOY, GERSZTEN ROBERTE, LEON ARTHURS, SKINNER JAMESS, RAO DC, BOUCHARD CLAUDE. The HERITAGE Family Study: A Review of the Effects of Exercise Training on Cardiometabolic Health, with Insights into Molecular Transducers. Med Sci Sports Exerc 2022; 54:S1-S43. [PMID: 35611651 PMCID: PMC9012529 DOI: 10.1249/mss.0000000000002859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the HERITAGE Family Study was to investigate individual differences in response to a standardized endurance exercise program, the role of familial aggregation, and the genetics of response levels of cardiorespiratory fitness and cardiovascular disease and diabetes risk factors. Here we summarize the findings and their potential implications for cardiometabolic health and cardiorespiratory fitness. It begins with overviews of background and planning, recruitment, testing and exercise program protocol, quality control measures, and other relevant organizational issues. A summary of findings is then provided on cardiorespiratory fitness, exercise hemodynamics, insulin and glucose metabolism, lipid and lipoprotein profiles, adiposity and abdominal visceral fat, blood levels of steroids and other hormones, markers of oxidative stress, skeletal muscle morphology and metabolic indicators, and resting metabolic rate. These summaries document the extent of the individual differences in response to a standardized and fully monitored endurance exercise program and document the importance of familial aggregation and heritability level for exercise response traits. Findings from genomic markers, muscle gene expression studies, and proteomic and metabolomics explorations are reviewed, along with lessons learned from a bioinformatics-driven analysis pipeline. The new opportunities being pursued in integrative -omics and physiology have extended considerably the expected life of HERITAGE and are being discussed in relation to the original conceptual model of the study.
Collapse
Affiliation(s)
- MARK A. SARZYNSKI
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - TREVA K. RICE
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - JEAN-PIERRE DESPRÉS
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Quebec Heart and Lung Institute Research Center, Laval University, Québec, QC, CANADA
| | - LOUIS PÉRUSSE
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC, CANADA
| | - ANGELO TREMBLAY
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC, CANADA
| | - PHILIP R. STANFORTH
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX
| | - ANDRÉ TCHERNOF
- Quebec Heart and Lung Institute Research Center, Laval University, Québec, QC, CANADA
- School of Nutrition, Laval University, Quebec, QC, CANADA
| | - JACOB L. BARBER
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - FRANCESCO FALCIANI
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UNITED KINGDOM
| | - CLARY CLISH
- Metabolomics Platform, Broad Institute and Harvard Medical School, Boston, MA
| | - JEREMY M. ROBBINS
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - SUJOY GHOSH
- Cardiovascular and Metabolic Disorders Program and Centre for Computational Biology, Duke-National University of Singapore Medical School, SINGAPORE
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - ROBERT E. GERSZTEN
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - ARTHUR S. LEON
- School of Kinesiology, University of Minnesota, Minneapolis, MN
| | | | - D. C. RAO
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - CLAUDE BOUCHARD
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
16
|
Meeks KAC, Bentley AR, Gouveia MH, Chen G, Zhou J, Lei L, Adeyemo AA, Doumatey AP, Rotimi CN. Genome-wide analyses of multiple obesity-related cytokines and hormones informs biology of cardiometabolic traits. Genome Med 2021; 13:156. [PMID: 34620218 PMCID: PMC8499470 DOI: 10.1186/s13073-021-00971-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A complex set of perturbations occur in cytokines and hormones in the etiopathogenesis of obesity and related cardiometabolic conditions such as type 2 diabetes (T2D). Evidence for the genetic regulation of these cytokines and hormones is limited, particularly in African-ancestry populations. In order to improve our understanding of the biology of cardiometabolic traits, we investigated the genetic architecture of a large panel of obesity- related cytokines and hormones among Africans with replication analyses in African Americans. METHODS We performed genome-wide association studies (GWAS) in 4432 continental Africans, enrolled from Ghana, Kenya, and Nigeria as part of the Africa America Diabetes Mellitus (AADM) study, for 13 obesity-related cytokines and hormones, including adipsin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), interleukin-1 receptor antagonist (IL1-RA), interleukin-6 (IL-6), interleukin-10 (IL-10), leptin, plasminogen activator inhibitor-1 (PAI-1), resistin, visfatin, insulin, glucagon, and ghrelin. Exact and local replication analyses were conducted in African Americans (n = 7990). The effects of sex, body mass index (BMI), and T2D on results were investigated through stratified analyses. RESULTS GWAS identified 39 significant (P value < 5 × 10-8) loci across all 13 traits. Notably, 14 loci were African-ancestry specific. In this first GWAS for adipsin and ghrelin, we detected 13 and 4 genome-wide significant loci respectively. Stratified analyses by sex, BMI, and T2D showed a strong effect of these variables on detected loci. Eight novel loci were successfully replicated: adipsin (3), GIP (1), GLP-1 (1), and insulin (3). Annotation of these loci revealed promising links between these adipocytokines and cardiometabolic outcomes as illustrated by rs201751833 for adipsin and blood pressure and locus rs759790 for insulin level and T2D in lean individuals. CONCLUSIONS Our study identified genetic variants underlying variation in multiple adipocytokines, including the first loci for adipsin and ghrelin. We identified population differences in variants associated with adipocytokines and highlight the importance of stratification for discovery of loci. The high number of African-specific loci detected emphasizes the need for GWAS in African-ancestry populations, as these loci could not have been detected in other populations. Overall, our work contributes to the understanding of the biology linking adipocytokines to cardiometabolic traits.
Collapse
Affiliation(s)
- Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA.
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive Bldg 12A rm 4047, Bethesda, MD, 20814, USA.
| |
Collapse
|
17
|
Cooke Bailey JN, Bush WS, Crawford DC. Editorial: The Importance of Diversity in Precision Medicine Research. Front Genet 2020; 11:875. [PMID: 33005167 PMCID: PMC7479241 DOI: 10.3389/fgene.2020.00875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica N. Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Dana C. Crawford
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|