1
|
Bigio B, Lima-Filho RAS, Barnhill O, Sudo FK, Drummond C, Assunção N, Vanderborght B, Beasley J, Young S, Korman A, Jones DR, Sultzer DL, Ferreira ST, Mattos P, Head E, Tovar-Moll F, De Felice FG, Lourenco MV, Nasca C. Sex differences in mitochondrial free-carnitine levels in subjects at-risk and with Alzheimer's disease in two independent study cohorts. Mol Psychiatry 2025; 30:2573-2583. [PMID: 39774493 DOI: 10.1038/s41380-024-02862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
A major challenge in the development of more effective therapeutic strategies for Alzheimer's disease (AD) is the identification of molecular mechanisms linked to specific pathophysiological features of the disease. Importantly AD has a two-fold higher incidence in women than men and a protracted prodromal phase characterized by amnestic mild-cognitive impairment (aMCI) suggesting that biological processes occurring early can initiate vulnerability to AD. Here, we used a sample of 125 subjects from two independent study cohorts to determine the levels in plasma (the most accessible specimen) of two essential mitochondrial markers acetyl-L-carnitine (LAC) and its derivative free-carnitine motivated by a mechanistic model in rodents in which targeting mitochondrial metabolism of LAC leads to the amelioration of cognitive function and boosts epigenetic mechanisms of gene expression. We report a sex-specific deficiency in free-carnitine levels in women with aMCI and early-AD compared to cognitively healthy controls; no change was observed in men. We also replicated the prior finding of decreased LAC levels in both women and men with AD, supporting the robustness of the study samples assayed in our new study. The magnitude of the sex-specific free-carnitine deficiency reflected the severity of cognitive dysfunction and held in two study cohorts. Furthermore, patients with the lower free-carnitine levels showed higher β-amyloid(Aβ) accumulation and t-Tau levels assayed in cerebrospinal fluid (CSF). Computational analyses showed that the mitochondrial markers assayed in plasma are at least as accurate as CSF measures to classify disease status. Together with the mechanistic platform in rodents, these translational findings lay the groundwork to create preventive individualized treatments targeting sex-specific changes in mitochondrial metabolism that may be subtle to early cognitive dysfunction of AD risk.
Collapse
Affiliation(s)
- Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, USA
| | | | - Olivia Barnhill
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Felipe K Sudo
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Claudia Drummond
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naima Assunção
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bart Vanderborght
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - James Beasley
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
| | - Sarah Young
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Aryeh Korman
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY, USA
| | - David L Sultzer
- Department of Psychiatry and Human Behavior, School of Medicine, and Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, USA
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paulo Mattos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences & Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, RJ, Brazil.
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, USA.
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Yu Q, Ye S, Chen M, Sun P, Weng N. A novel function for exosomes in depression. Life Sci 2025; 369:123558. [PMID: 40089099 DOI: 10.1016/j.lfs.2025.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Exosomes are a class of extracellular vesicles that encompass a diverse array of bioactive molecules, including proteins, lipids, mRNA, and microRNA(miRNA). Virtually all cell types release exosomes under both physiological and pathological conditions. In addition to electrical and chemical signals, exosomes are an alternative route of signaling between cells in the brain. In the brain, they are involved in processes such as synaptic plasticity, neuronal stress response, intercellular communication, and neurogenesis. A number of studies have shown that exosomes regulate the occurrence and development of depression by participating in the regulation of hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, immune inflammatory response and other mechanisms, showing that they may become potential biological agents for the diagnosis and treatment of depression. In addition, exosomes have the ability to easily cross the blood-brain barrier, making them ideal drug or molecular delivery tools for the central nervous system. Engineered exosomes have good brain targeting ability, and their research in central nervous system diseases has begun to emerge. However, the molecular pathways involved in the pathogenesis of depression remain unknown, and further studies are needed to fully understand the role of exosomes in the development or improvement of depression. Therefore, in this review, we mainly focus on the diagnostic performance and therapeutic effect of exosomes in depression, and explore the advantages of exosomes as biomarkers and gene delivery vectors for depression.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Chinese Medicine, Jinan 250000, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Shuyi Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Mengxue Chen
- Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Ning Weng
- Department of Chinese Medicine, Shandong Mental Health Center, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Llach CD, Le GH, Badulescu S, Anmella G, Hasan HA, Giménez-Palomo A, Pacchiarotti I, Vieta E, McIntyre RS, Rosenblat JD, Mansur RB. Extracellular vesicles in mood disorders: A systematic review of human studies. Eur Neuropsychopharmacol 2025; 94:59-75. [PMID: 40057988 DOI: 10.1016/j.euroneuro.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 05/02/2025]
Abstract
Extracellular vesicles (EVs) are small, membrane-bound particles that are naturally released by nearly all cell types in the body. They serve as molecular biosignatures, reflecting the state of their cells of origin and providing a non-invasive peripheral marker of central nervous system (CNS) activity under physiological and pathological conditions. We conducted a systematic review (ID: CRD42024528824) of studies investigating the use of EVs in mood disorders within clinical populations. We screened articles indexed in PubMed, EMBASE, Scopus, ISI Web of Science, and APA PsycInfo from January 2010 to October 2024. Available research has focused on four key areas: (1) EV cargo as mechanistic and diagnostic biomarkers; (2) EV cargo as predictive or tracking biomarkers for antidepressant response; (3) EV cargo and neuroimaging correlates; and (4) EV physical properties. Most studies examined major depressive disorder (MDD), with others addressing bipolar disorder (BD), adolescent depression, postpartum depression, and late-life depression. Notably, only 35,55 % of the studies utilized brain-derived EVs. Through analyses of EV-derived miRNA, proteins, mtDNA, and metabolites, these studies have explored neural mitochondrial function, brain insulin resistance, neurogenesis, neuroinflammation, and blood-brain barrier permeability in the context of mood disorders. Some EV-derived markers demonstrated diagnostic and predictive potential. This review discusses key findings, limitations of current research, and future directions for leveraging EVs in the study of mood disorders.
Collapse
Affiliation(s)
- Cristian-Daniel Llach
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.
| | - Gia Han Le
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Sebastian Badulescu
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Gerard Anmella
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII);; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Hayder Ali Hasan
- Department of Neurosciences, Psychiatry and Pediatric Psychiatry, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj, Napoca, Romania
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII);; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII);; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Liao J, Liu J, Zhou Y, Shi L, Chen YJ, Guo S, Zhang CY, Liu XY, Tao WQ, Xiang JJ, Yang-Lei, Liu G, Wang W, Kuang L, Ran LY. L1CAM + extracellular vesicles derived from the serum of adolescents with major depressive disorder induce depression-like phenotypes in adolescent mice. J Affect Disord 2025; 375:180-191. [PMID: 39842672 DOI: 10.1016/j.jad.2025.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND It has been reported that L1 cell adhesion molecule (L1CAM) antibody can capture neuron-derived extracellular vesicles (NDEVs) derived from peripheral blood. This antibody is significantly associated with occurrence of adult psychiatric disorders. However, the role and mechanism of L1CAM+ EVs (L1+ EVs) in adolescent with major depressive disorder (AMDD) is not well understood. This research aimed to explore the function and potential mechanism of L1+ EVs and miRNAs genes in AMDD. METHODS L1+ EVs derived from the serum of AMDD and healthy controls (HC) were transplanted into adolescent mice via tail vein. Their effects were explored using behavioral tests, hippocampal Nissl staining, and whole genome mRNA sequencing. MiRNAs expression in L1+ EVs was evaluated by whole-genome sequencing and qRT-PCR. Bioinformatics analysis was employed to explore the possible pathogenic molecular mechanisms of these miRNAs in AMDD. RESULTS Transplantation of L1+ EVs from AMDD induced depression-like behavior and hippocampal neuronal damage in adolescent mice and aberrant expression of 298 mRNA genes. The molecular signals related to MDD were enriched in the top pathways of the differentially expressed genes. Compared with HC, miR-375-3p and miR-200a-3p were upregulated in L1+ EVs from AMDD, miR-375-3p was also increased in the hippocampus of AMDD serum L1+ EVs-recipient mice. Bioinformatics analysis revealed that miR-375-3p might modulate the network of molecules associated with the MAPK pathway via protein interaction involving hippocampal differential genes Cadm2, Cacna2d1, and Casz1. CONCLUSION MiR-375-3p might contribute to L1+ EVs-induced AMDD. L1+ EVs miR-375-3p and miR-200a-3p could potentially serve as potential biomarkers for AMDD.
Collapse
Affiliation(s)
- Jing Liao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jie Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Yang Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yu-Jia Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Shan Guo
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Chen-Yu Zhang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jiao-Jiao Xiang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yang-Lei
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China.
| | - Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China.
| |
Collapse
|
5
|
Wu C, Mu Q, Gao W, Lu S. The characteristics of anhedonia in depression: a review from a clinically oriented perspective. Transl Psychiatry 2025; 15:90. [PMID: 40118858 PMCID: PMC11928558 DOI: 10.1038/s41398-025-03310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
Anhedonia, as one of the core symptoms of major depressive disorder (MDD), has been regarded as a potential endophenotype of the disease. Multiple studies have evaluated the potential mechanisms of anhedonia in MDD, and found that MDD patients with anhedonia showed different functions in clinical features. In this review, we focus on the clinical research to explore the differences between MDD patients with and without anhedonia in the clinical manifestations and biological alterations, and elaborate the treatments and prognosis of anhedonia. It is demonstrated that anhedonia is associated with adverse outcomes including more severe depressive episode and suicidality, and poor prognosis in patients with MDD. At the biological level, MDD patients with anhedonia seem to present higher levels of inflammatory factors, abnormal metabolic function and hypermetabolism of BDNF. In brain imaging studies, there are some structural and/ or functional changes in multiple brain regions of subcortical and cortical areas, as well as the limbic system in MDD patients with anhedonia. Meanwhile, preliminary research findings have also indicated that there are associations between intestinal flora imbalance and anhedonia. Moreover, evidence indicated the benefit of some selective serotonin reuptake inhibitors seemed limited on anhedonia, and other treatments including psychotherapy, physical therapy and probiotic interventions has remained to be explored but has interesting potential. Therefore, increased awareness of the anhedonic symptoms and the unique clinical features would benefit improved early diagnosis and therapeutic effects in MDD.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Wu J, Lu J, Pan MZ, Gu XC, Dai L, Wang Y, Shen B, Zhang XB. Update on the roles and applications of extracellular vesicles in depression. World J Psychiatry 2025; 15:102643. [PMID: 40110012 PMCID: PMC11886331 DOI: 10.5498/wjp.v15.i3.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Depression is a prevalent mental disorder that affects numerous individuals, manifesting as persistent anhedonia, sadness, and hopelessness. Despite extensive research, the exact causes and optimal treatment approaches for depression remain unclear. Extracellular vesicles (EVs), which carry biological molecules such as proteins, lipids, nucleic acids, and metabolites, have emerged as crucial players in both pathological and physiological processes. EVs derived from various sources exert distinct effects on depression. Specifically, EVs released by neurons, astrocytes, microglia, oligodendrocytes, immune cells, stem cells, and even bacteria contribute to the pathogenesis of depression. Moreover, there is growing interest in potential of EVs as diagnostic and therapeutic tools for depression. This review provides a comprehensive overview of recent research on EVs from different sources, their roles in depression, and their potential clinical applications.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jian Lu
- Laboratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Ming-Zhi Pan
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Chu Gu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Lu Dai
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Yun Wang
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Bin Shen
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
7
|
Waheed I, Sikandri T, Zaheen S, Khakwani MMAK, An Z, Liu T, Zhu C, Wei J. Evaluating the Molecular Interactions between Type 2 Diabetes Mellitus and Parkinson's Disease: Role of Antidiabetic Drugs as Promising Therapeutics. ACS Chem Neurosci 2025; 16:988-999. [PMID: 40042145 DOI: 10.1021/acschemneuro.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Evidence from previous research demonstrates a relationship between diabetes mellitus (DM) and Parkinson's disease (PD). T2DM is associated with chronic glucose dysregulation, as an etiological factor. It inhibits neuronal function through disrupted insulin signaling and oxidative stress, which ultimately lead to the loss of dopaminergic neurons in the substantia nigra (SN). Interactions between T2DM and PD were analyzed by gene expression, coexpression, and gene set enrichment via NCBI and STRING databases following pathways like KEGG and Reactome. The study identified nine key gene interactions through published literature on different databases and search engines that are involved in the progression of these chronic diseases. Furthermore, some genetic and nongenetic risk factors, gene mutations and environmental factors, are also involved in the progression of T2DM and PD. This review highlights the limitations of currently available drug treatments for these diseases and examines modern therapeutic approaches to address neurodegenerative and metabolic abnormalities. We critically assess the current experimental methodologies aimed at unraveling the pathophysiological mechanisms linking PD and T2DM while addressing the key challenges impeding a comprehensive understanding of the concurrent emergence of these debilitating age-related conditions.
Collapse
Affiliation(s)
- Irum Waheed
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Talal Sikandri
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Sumbal Zaheen
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | | | - Zhaowu An
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Gill H, Badulescu S, Di Vincenzo JD, Tabassum A, McKenzie A, Shah H, Amin M, Llach CD, Rosenblat JD, McIntyre RS, Mansur RB. Metabolic factors modulate effort-based decision-making in major depressive disorder. J Affect Disord 2025; 373:88-93. [PMID: 39732399 DOI: 10.1016/j.jad.2024.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Abnormalities in effort-based decision-making have been consistently reported in major depressive disorder (MDD). Evidence indicates that metabolic factors, such as insulin resistance and dyslipidemia, which are highly prevalent in MDD, are independently associated with reward disturbances. Herein, we investigate the moderating effect of metabolic factors on effort-based decision-making in individuals with MDD. METHODS Forty-nine adults with MDD completed the Effort Expenditure for Rewards Task (EEfRT). Anthropometric and laboratorial parameters were assessed in all participants. We conducted a factor analysis to identify combinations of correlated metabolic variables, and reduce the number of comparisons. RESULTS Proxy markers of elevated insulin resistance (OR: 0.816, p < 0.001) and hyperglycemia (OR: 0.898, p = 0.021) were associated with a lower willingness to exert physical effort for rewards in the EEfRT. In contrast, elevated HDL (OR: 1.165, p = 0.004), and elevated non-HDL cholesterol and triglycerides (OR: 1.184, p < 0.001) were associated with increased frequency of hard task choices. These associations were independent of age, sex, depressive symptoms severity and medication use. Computational modeling revealed that the insulin resistance (β = 0.275, p = 0.035) and cholesterol factors (β = 0.565, p < 0.001) were independently associated with increased effort discounting. LIMITATIONS Post-hoc analysis using a relatively small sample of convenience. CONCLUSIONS Metabolic factors significantly and independently modulated effort-based decision-making in patients with MDD. These results have implications for our understanding of reward disturbances in MDD, and offer insights for further mechanistic investigations.
Collapse
Affiliation(s)
- Hartej Gill
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sebastian Badulescu
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Aniqa Tabassum
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Andrea McKenzie
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Hiya Shah
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Mahrus Amin
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Cleary JA, Kumar A, Craft S, Deep G. Neuron-derived extracellular vesicles as a liquid biopsy for brain insulin dysregulation in Alzheimer's disease and related disorders. Alzheimers Dement 2025; 21:e14497. [PMID: 39822132 PMCID: PMC11848159 DOI: 10.1002/alz.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature. Among these AD-specific molecular changes is brain insulin-signaling dysregulation, which cannot be assessed clinically in a living patient and remains an unexplained co-occurrence during AD pathogenesis. This review is focused on delineating how NDEs in the blood may begin to close the gap between identifying molecular changes associated with brain insulin dysregulation reliably in living patients and its connection to AD. This approach could lead to the identification of novel early and less-invasive diagnostic molecular biomarkers for AD. HIGHLIGHTS: Neuron-derived extracellular vesicles (NDEs) could be isolated from peripheral blood. NDEs in blood reflect the molecular signature of Alzheimer's disease (AD). Brain insulin-signaling dysregulation plays a critical role in AD. NDEs in blood could predict brain insulin-signaling dysregulation. NDEs offer novel early and less-invasive diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- Jacob Alexander Cleary
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
10
|
Vásquez-Pérez JM, González-Guevara E, Gutiérrez-Buenabad D, Martínez-Gopar PE, Martinez-Lazcano JC, Cárdenas G. Is Nasal Dysbiosis a Required Component for Neuroinflammation in Major Depressive Disorder? Mol Neurobiol 2025; 62:2459-2469. [PMID: 39120823 DOI: 10.1007/s12035-024-04375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Human microbiota is known to influence immune and cerebral responses by direct and/or indirect mechanisms, including hypothalamic-pituitary-adrenal axis signaling, activation of neural afferent circuits to the brain, and by altering the peripheral immune responses (cellular and humoral immune function, circulatory inflammatory cells, and the production of several inflammatory mediators, such as cytokines, chemokines, and reactive oxygen species). The inflammatory responses in the nasal mucosa (rhinitis) or paranasal sinuses (chronic rhinosinusitis) are dual conditions related with a greater risk for developing depression. In the nasal cavity, anatomic components of the olfactive function are in direct contact with the CNS through the olfactory receptors, neurons, and axons that end in the olfactory bulb and the entorhinal cortex. Local microbiome alterations (dysbiosis) are linked to transepithelial translocation of microorganisms and their metabolites, which disrupts the epithelial barrier and favors vascular permeability, increasing the levels of several inflammatory molecules (both cytokines and non-cytokine mediators: extracellular vesicles (exosomes) and neuropeptides), triggering local inflammation (rhinitis) and the spread of these components into the central nervous system (neuroinflammation). In this review, we discuss the role of microbiota-related immunity in conditions affecting the nasal mucosa (chronic rhinosinusitis and allergic rhinitis) and their relevance in major depressive disorders, focusing on the few mechanisms known to be involved and providing some hypothetical proposals on the pathophysiology of depression.
Collapse
Affiliation(s)
- Jorge Manuel Vásquez-Pérez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Diana Gutiérrez-Buenabad
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Pablo Eliasib Martínez-Gopar
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, 14330, Ciudad de México, Mexico
| | - Juan Carlos Martinez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, 14269, Ciudad de Mexico, Mexico.
| |
Collapse
|
11
|
Kronman H, Singh A, Azam S, Guzman AS, Zelli D, Lau T, Dobbin J, Bigio B, Nasca C. Multidimensional Effects of Stress on Neuronal Exosome Levels and Simultaneous Transcriptomic Profiles. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100401. [PMID: 39720402 PMCID: PMC11667124 DOI: 10.1016/j.bpsgos.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 12/26/2024] Open
Abstract
Background An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response. Methods We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels. Next, we used RNA sequencing and bioinformatic analyses to identify molecular drivers of exosome levels. Results We found that CRS leads to an increase in the levels of neuronal exosomes but not total (i.e., not neuronally enriched) exosome levels assayed in plasma and the ventral dentate gyrus, whereas CRS leads to a decrease in neuronal exosome levels but not total exosome levels in the basolateral amygdala. There was a further specificity of effects as shown by a lack of changes in the levels of neuronal exosomes assayed in the olfactory bulbs. In pursuit of advancing translational applications, we showed that acetyl-L-carnitine administration restores the CRS-induced increase in neuronal exosome levels assayed in plasma (the most accessible specimen). Furthermore, the CRS-induced changes in neuronal exosome levels in the ventral dentate gyrus and basolateral amygdala mirrored the opposite pattern of CRS-induced transcriptional changes in these key brain areas, with β-estradiol signaling as a potential upstream driver of neuronal exosome levels. Conclusions This study provides a foundation for future studies of new forms of local and distant communication in stress neurobiology by demonstrating specific relationships between neuronal exosome levels assayed in plasma and the brain and providing new candidate targets for the normalization of exosome levels.
Collapse
Affiliation(s)
- Hope Kronman
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Amarjyot Singh
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Shofiul Azam
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Andrea S. Guzman
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Danielle Zelli
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York
| | - Timothy Lau
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York
| | - Josh Dobbin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
12
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
13
|
Ricon-Becker I, Cole SW. Transcriptomics and psychotherapy: An integrative review. Brain Behav Immun Health 2024; 42:100867. [PMID: 39881816 PMCID: PMC11776085 DOI: 10.1016/j.bbih.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 01/31/2025] Open
Abstract
Gold-standard psychotherapies like cognitive-behavioral therapy (CBT) show beneficial effects, but patient responses vary, indicating a need to predict and optimize treatment efficacy. Gene expression analysis may offer insights into the interplay between psychosocial processes and biological factors that impact psychopathology and therapeutic response. This integrative review examines 17 studies that assess gene expression in the context of psychotherapy, highlighting innovative frameworks for incorporating gene expression analysis in diagnosis, predicting treatment response, and monitoring treatment progress. Current evidence points to transcriptional control pathways downstream of the hypothalamic-pituitary-adrenal (HPA)-axis and sympathetic nervous system (SNS) signaling pathways, particularly their effects on immune cells (e.g., pro-inflammatory processes and wound healing), as key areas for future research. Higher-level pathway analyses, whether theory-based or empirically driven, appear to offer the most robust framework for future studies. This review also discusses significant limitations of current literature and proposes directions for future research.
Collapse
Affiliation(s)
- Itay Ricon-Becker
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Steve W. Cole
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| |
Collapse
|
14
|
Verhoeven JE, Wolkowitz OM, Satz IB, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Veibäck GS, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LK, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 PMCID: PMC11811959 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E. Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M. Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
- Center for Health and Community, University of California, San Francisco, San Francisco, CA 94107 USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, United States
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Philippe A. Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, CA 95403, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI 02885, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony S. Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Kristoffer N. T. Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Liu D, Wei D. Relationship between the triglyceride-glucose index and depression in individuals with chronic kidney disease: A cross-sectional study from National Health and Nutrition Examination Survey 2005-2020. Medicine (Baltimore) 2024; 103:e39834. [PMID: 39331934 PMCID: PMC11441902 DOI: 10.1097/md.0000000000039834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Accumulating evidence indicates that individuals with chronic kidney disease (CKD) are at an increased risk of experiencing depressive disorders, which may accelerate its progression. However, the relationship between the triglyceride-glucose (TyG) index and depression in CKD individuals remains unclear. Therefore, this cross-sectional study aimed to assess whether such a relationship exists. To this end, the CKD cohort of the National Health and Nutrition Examination Survey from 2005 to 2020 was analyzed using multivariable logistic regression analyses and a generalized additive approach. A recursive algorithm was employed to pinpoint the turning point, constructing a dual-segment linear regression model. The study included 10,563 participants. After controlling for all variables, the odds ratios and 95% confidence intervals indicated a 1.24 (range, 1.09-1.42) relationship between the TyG index and depression in the CKD cohort. The findings underscored an asymmetrical association, with a pivotal value at a TyG index 9.29. Above this threshold, the adjusted odds ratio (95% confidence interval) was 1.10 (range, 0.93-1.31). This relationship was significant among the obese subgroups. The study results highlight the complex relationship between the TyG index and depression among American adults with CKD.
Collapse
Affiliation(s)
- Demin Liu
- The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Danxia Wei
- The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
16
|
Kajitani GS, Xavier G, Villena-Rueda BE, Karia BTR, Santoro ML. Extracellular vesicles in neurodegenerative, mental, and other neurological disorders: Perspectives into mechanisms, biomarker potential, and therapeutic implications. CURRENT TOPICS IN MEMBRANES 2024; 94:299-336. [PMID: 39370211 DOI: 10.1016/bs.ctm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracellular vesicles (EVs) are produced, secreted, and targeted by most human cells, including cells that compose nervous system tissues. EVs carry several types of biomolecules, such as lipids, proteins and microRNA, and can function as signaling agents in physiological and pathological processes. In this chapter, we will focus on EVs and their cargo secreted by brain cells, especially neurons and glia, and how these aspects are affected in pathological conditions. The chapter covers neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, as well as several psychiatric disorders, namely schizophrenia, autism spectrum disorder and major depressive disorder. This chapter also addresses other types of neurological dysfunctions, epilepsy and traumatic brain injury. EVs can cross the blood brain barrier, and thus brain EVs may be detected in more accessible peripheral tissue, such as circulating blood. Alterations in EV composition and contents can therefore impart valuable clues into the molecular etiology of these disorders, and serve biomarkers regarding disease prevalence, progression and treatment. EVs can also be used to carry drugs and biomolecules into brain tissue, considered as a promising drug delivery agent for neurological diseases. Therefore, although this area of research is still in its early development, it offers great potential in further elucidating and in treating neurological disorders.
Collapse
Affiliation(s)
- Gustavo Satoru Kajitani
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Gabriela Xavier
- Center for Genomic Medicine, Massachusetts General Hospital, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, United States
| | - Beatriz Enguidanos Villena-Rueda
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Bruno Takao Real Karia
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
17
|
Nogueras‐Ortiz CJ, Eren E, Yao P, Calzada E, Dunn C, Volpert O, Delgado‐Peraza F, Mustapic M, Lyashkov A, Rubio FJ, Vreones M, Cheng L, You Y, Hill AF, Ikezu T, Eitan E, Goetzl EJ, Kapogiannis D. Single-extracellular vesicle (EV) analyses validate the use of L1 Cell Adhesion Molecule (L1CAM) as a reliable biomarker of neuron-derived EVs. J Extracell Vesicles 2024; 13:e12459. [PMID: 38868956 PMCID: PMC11170079 DOI: 10.1002/jev2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins β-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and β-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.
Collapse
Affiliation(s)
- Carlos J Nogueras‐Ortiz
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Erden Eren
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Pamela Yao
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Elizabeth Calzada
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | | | - Francheska Delgado‐Peraza
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Maja Mustapic
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Alexey Lyashkov
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research BranchIntramural Research Program/National Institute on Drug Abuse/National Institutes of HealthBaltimoreMarylandUSA
| | - Michael Vreones
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Lesley Cheng
- La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Yang You
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew F Hill
- La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | | | - Edward J Goetzl
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco Campus for Jewish LivingSan FranciscoCaliforniaUSA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
18
|
Sethi S, Wakeham D, Ketter T, Hooshmand F, Bjornstad J, Richards B, Westman E, Krauss RM, Saslow L. Ketogenic Diet Intervention on Metabolic and Psychiatric Health in Bipolar and Schizophrenia: A Pilot Trial. Psychiatry Res 2024; 335:115866. [PMID: 38547601 DOI: 10.1016/j.psychres.2024.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024]
Abstract
The ketogenic diet (KD, also known as metabolic therapy) has been successful in the treatment of obesity, type 2 diabetes, and epilepsy. More recently, this treatment has shown promise in the treatment of psychiatric illness. We conducted a 4-month pilot study to investigate the effects of a KD on individuals with schizophrenia or bipolar disorder with existing metabolic abnormalities. Twenty-three participants were enrolled in a single-arm trial. Results showcased improvements in metabolic health, with no participants meeting metabolic syndrome criteria by study conclusion. Adherent individuals experienced significant reduction in weight (12 %), BMI (12 %), waist circumference (13 %), and visceral adipose tissue (36 %). Observed biomarker enhancements in this population include a 27 % decrease in HOMA-IR, and a 25 % drop in triglyceride levels. In psychiatric measurements, participants with schizophrenia showed a 32 % reduction in Brief Psychiatric Rating Scale scores. Overall Clinical Global Impression (CGI) severity improved by an average of 31 %, and the proportion of participants that started with elevated symptomatology improved at least 1-point on CGI (79 %). Psychiatric outcomes across the cohort encompassed increased life satisfaction (17 %) and enhanced sleep quality (19 %). This pilot trial underscores the potential advantages of adjunctive ketogenic dietary treatment in individuals grappling with serious mental illness.
Collapse
Affiliation(s)
- Shebani Sethi
- Metabolic Psychiatry, Dept. of Psychiatry and Behavioral Sciences, Stanford Medicine, Stanford, CA, USA.
| | - Diane Wakeham
- Metabolic Psychiatry, Dept. of Psychiatry and Behavioral Sciences, Stanford Medicine, Stanford, CA, USA
| | - Terence Ketter
- Metabolic Psychiatry, Dept. of Psychiatry and Behavioral Sciences, Stanford Medicine, Stanford, CA, USA
| | - Farnaz Hooshmand
- Metabolic Psychiatry, Dept. of Psychiatry and Behavioral Sciences, Stanford Medicine, Stanford, CA, USA
| | - Julia Bjornstad
- Metabolic Psychiatry, Dept. of Psychiatry and Behavioral Sciences, Stanford Medicine, Stanford, CA, USA
| | - Blair Richards
- Department of Health Behavior and Biological Sciences, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Eric Westman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Laura Saslow
- Department of Health Behavior and Biological Sciences, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Xu SX, Liu Z. Author's reply to commentary on 'altered in vivo early neurogenesis traits in patients with depression: Evidence from neuron-derived extracellular vesicles and electroconvulsive therapy' by Dr. Yakovlev. Brain Stimul 2024; 17:619. [PMID: 38735626 DOI: 10.1016/j.brs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Affiliation(s)
- Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, PR China.
| |
Collapse
|
20
|
Yakovlev A. Commentary on the Article titled "Altered in vivo early neurogenesis traits in patients with depression: Evidence from neuron-derived extracellular vesicles and electroconvulsive therapy" by Xie et al. Brain Stimul 2024; 17:419-420. [PMID: 38554857 DOI: 10.1016/j.brs.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- A Yakovlev
- Laboratory of Functional Biochemistry of the Nervous System, Russia; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Division of Epidemiology, Prevention and Organization of Care for Borderline Mental Disorders, Russia; Scientific and Practical Psychoneurological Center Named After Z.P. Solovy'ov DZM, Russia.
| |
Collapse
|
21
|
Zhang G, Li L, Kong Y, Xu D, Bao Y, Zhang Z, Liao Z, Jiao J, Fan D, Long X, Dai J, Xie C, Meng Z, Zhang Z. Vitamin D-binding protein in plasma microglia-derived extracellular vesicles as a potential biomarker for major depressive disorder. Genes Dis 2024; 11:1009-1021. [PMID: 37692510 PMCID: PMC10491883 DOI: 10.1016/j.gendis.2023.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
No well-established biomarkers are available for the clinical diagnosis of major depressive disorder (MDD). Vitamin D-binding protein (VDBP) is altered in plasma and postmortem dorsolateral prefrontal cortex (DLPFC) tissues of MDD patients. Thereby, the role of VDBP as a potential biomarker of MDD diagnosis was further assessed. Total extracellular vesicles (EVs) and brain cell-derived EVs (BCDEVs) were isolated from the plasma of first-episode drug-naïve or drug-free MDD patients and well-matched healthy controls (HCs) in discovery (20 MDD patients and 20 HCs) and validation cohorts (88 MDD patients and 38 HCs). VDBP level in the cerebrospinal fluid (CSF) from chronic glucocorticoid-induced depressed rhesus macaques or prelimbic cortex from lipopolysaccharide (LPS)-induced depressed mice and wild control groups was measured to evaluate its relationship with VDBP in plasma microglia-derived extracellular vesicles (MDEVs). VDBP was significantly decreased in MDD plasma MDEVs compared to HCs, and negatively correlated with HAMD-24 score with the highest diagnostic accuracy among BCDEVs. VDBP in plasma MDEVs was decreased both in depressed rhesus macaques and mice. A positive correlation of VDBP in MDEVs with that in CSF was detected in depressed rhesus macaques. VDBP levels in prelimbic cortex microglia were negatively correlated with those in plasma MDEVs in depressed mice. The main results suggested that VDBP in plasma MDEVs might serve as a prospective candidate biomarker for MDD diagnosis.
Collapse
Affiliation(s)
- Gaojia Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ling Li
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Xu
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yu Bao
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
| | - Zhiting Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhixiang Liao
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Jiao
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiaojing Long
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Brain Cognition and Brain Disease Institute, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
22
|
Zolfaghary F, Adib-Rad H, Nasiri-Amiri F, Faramarzi M, Pasha H, Gholinia-Ahangar H. Effectiveness of computer-based stress inoculation training (SIT) counseling approach on anxiety, depression, and stress of students with premenstrual syndrome. BMC Public Health 2024; 24:555. [PMID: 38388370 PMCID: PMC10882748 DOI: 10.1186/s12889-024-18003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Premenstrual Syndrome (PMS) is a common public health issue affecting many women of reproductive age worldwide. This study has been designed to investigate of computer-based stress inoculation training (SIT) counseling approach on anxiety, depression, and stress of university students with PMS. METHODS A randomized trial study with two parallel arms was done from 30 October 2022 to 21 June 2023 on 100 university students aged 18 to 38 at Babol University of Medical Sciences. The participants were randomly divided into two groups intervention and control. The data collection tools included questionnaires on demographic-fertility characteristics, the Premenstrual Symptoms Screening Tool (PSST), the Hospital Anxiety and Depression Scale (HADS), the Perceived Stress Scale (PSS-14), the Sheehan Disability Scale (SDS) and Riff's Psychological Well-being Scale (RPWS). The data were assessed using chi-square, t-student, ANOVA repeated measure, and linear regression tests. A significance level of P < 0.05 was considered for the analysis. RESULTS The results of the study showed that the SIT interventions decreased the PMS severity and most psychological factors so in the intervention group, SIT was able to significantly reduce anxiety, depression, perceived stress, and Sheehan's disability after intervention (P < 0.001). Based on multiple linear regression analysis, the most predictors of HADS were the PSS and SDS (β = 0.285, p = 0.009 and β = 0.236, p = 0.024, respectively). CONCLUSION The computer-based SIT counseling approach could reduce the severity of symptoms and psychological factors in students. Therefore, SIT intervention is recommended to manage their PMS. TRIAL REGISTRATION IRCT20230130057274N2.
Collapse
Affiliation(s)
- Fatemeh Zolfaghary
- Student Research Committee, Master's student in midwifery counseling, School of Nursing and Midwifery, Babol University of Medical Sciences, Babol, Iran
| | - Hajar Adib-Rad
- Social Determinants of Health Research Center, Health Research Institute, Department of Nursing and Midwifery, Babol University of Medical Sciences, Babol, Iran.
- Population, Family and Spiritual Health Research Center, Health Research Institute, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Fatemeh Nasiri-Amiri
- Social Determinants of Health Research Center, Health Research Institute, Department of Nursing and Midwifery, Babol University of Medical Sciences, Babol, Iran
| | - Mahbobeh Faramarzi
- Social Determinants of Health Research Center, Health Research Institute, Department of Nursing and Midwifery, Babol University of Medical Sciences, Babol, Iran
- Population, Family and Spiritual Health Research Center, Health Research Institute, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hajar Pasha
- Social Determinants of Health Research Center, Health Research Institute, Department of Nursing and Midwifery, Babol University of Medical Sciences, Babol, Iran
- Population, Family and Spiritual Health Research Center, Health Research Institute, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hemmat Gholinia-Ahangar
- Clinical Research Development Unite of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
23
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
24
|
Zhang X, Zhao D, Guo S, Yang J, Liu Y. Association between triglyceride glucose index and depression in hypertensive population. J Clin Hypertens (Greenwich) 2024; 26:177-186. [PMID: 38240354 PMCID: PMC10857486 DOI: 10.1111/jch.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
Growing evidence suggests that hypertensive individuals have a greater risk of developing depression, and depression can also increase the incidence of hypertension. In the hypertensive population, the association between triglyceride glucose (TyG) index and depression remains unclear. This study aimed to assess the association between TyG index and depression in hypertensive people through the cross-sectional study of the National Health and Nutrition Examination Survey (2007-2018). To assess the relationship between TyG index and depression in hypertensive population, we conducted weighted multiple logistic regression models and used a generalized additive model to probe for nonlinear correlations. In addition, we employed a recursive algorithm to determine the inflection point and established a two-piece linear regression model. This study enrolled 5897 individuals. In the model adjusted for all covariates, the ORs (95% CI) for the relationship between TyG index and depression in hypertensive population were 1.32 (1.12-1.54). A nonlinear association was found between TyG index and depression, with an inflection point at 8.7. After the inflection point, the ORs (95% CI) were 1.44 (1.15-1.79). Only the interaction with the obese population was statistically significant. Our study highlighted a nonlinear association between TyG index and depression in American hypertensive adults.
Collapse
Affiliation(s)
- Xin Zhang
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Dan Zhao
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Shanshan Guo
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Jie Yang
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Yang Liu
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
25
|
Zhang XM, Huang J, Ni XY, Zhu HR, Huang ZX, Ding S, Yang XY, Tan YD, Chen JF, Cai JH. Current progression in application of extracellular vesicles in central nervous system diseases. Eur J Med Res 2024; 29:15. [PMID: 38173021 PMCID: PMC10763486 DOI: 10.1186/s40001-023-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Early diagnosis and pharmacological treatment of central nervous system (CNS) diseases has been a long-standing challenge for clinical research due to the presence of the blood-brain barrier. Specific proteins and RNAs in brain-derived extracellular vesicles (EVs) usually reflect the corresponding state of brain disease, and therefore, EVs can be used as diagnostic biomarkers for CNS diseases. In addition, EVs can be engineered and fused to target cells for delivery of cargo, demonstrating the great potential of EVs as a nanocarrier platform. We review the progress of EVs as markers and drug carriers in the diagnosis and treatment of neurological diseases. The main areas include visual imaging, biomarker diagnosis and drug loading therapy for different types of CNS diseases. It is hoped that increased knowledge of EVs will facilitate their clinical translation in CNS diseases.
Collapse
Affiliation(s)
- Xiang-Min Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Jie Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xiao-Ying Ni
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Hui-Ru Zhu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Zhong-Xin Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Shuang Ding
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xin-Yi Yang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Yan-Di Tan
- Department of Ultrasound the Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Huixing Street, Chongqing, 401120, China
| | - Jian-Fu Chen
- Department of Ultrasound, The Second People's Hospital of Yunnan Province, No. 176, Qingnian Road, Kunming, 650021, China
| | - Jin-Hua Cai
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China.
| |
Collapse
|
26
|
Bigio B, Azam S, Mathé AA, Nasca C. The neuropsychopharmacology of acetyl-L-carnitine (LAC): basic, translational and therapeutic implications. DISCOVER MENTAL HEALTH 2024; 4:2. [PMID: 38169018 PMCID: PMC10761640 DOI: 10.1007/s44192-023-00056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Mitochondrial metabolism can contribute to nuclear histone acetylation among other epigenetic mechanisms. A central aspect of this signaling pathway is acetyl-L-carnitine (LAC), a pivotal mitochondrial metabolite best known for its role in fatty acid oxidation. Work from our and other groups suggested LAC as a novel epigenetic modulator of brain plasticity and a therapeutic target for clinical phenotypes of depression linked to childhood trauma. Aberrant mitochondrial metabolism of LAC has also been implicated in the pathophysiology of Alzheimer's disease. Furthermore, mitochondrial dysfunction is linked to other processes implicated in the pathophysiology of both major depressive disorders and Alzheimer's disease, such as oxidative stress, inflammation, and insulin resistance. In addition to the rapid epigenetic modulation of glutamatergic function, preclinical studies showed that boosting mitochondrial metabolism of LAC protects against oxidative stress, rapidly ameliorates insulin resistance, and reduces neuroinflammation by decreasing proinflammatory pathways such as NFkB in hippocampal and cortical neurons. These basic and translational neuroscience findings point to this mitochondrial signaling pathway as a potential target to identify novel mechanisms of brain plasticity and potential unique targets for therapeutic intervention targeted to specific clinical phenotypes.
Collapse
Affiliation(s)
- Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Shofiul Azam
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Lee YJ, Lee S, Hwang IC, Ahn HY. Association between the triglyceride-glucose index and suicidal ideation: A nationwide cross-sectional survey. J Affect Disord 2024; 344:100-103. [PMID: 37838259 DOI: 10.1016/j.jad.2023.10.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE This study investigated the relationship between insulin resistance and suicidal ideation. METHODS We analyzed the data of 21,350 participants from 4 years of the Korea National Health and Nutrition Examination Survey. The triglyceride-glucose (TyG) index was used to assess insulin resistance, and suicidal ideation was recorded through self-reported questionnaires. We used multivariable logistic regression analysis to ensure the independent association between the TyG index and suicidal ideation. RESULTS Approximately 4.3 % of participants had suicidal ideation. The TyG index was significantly associated with suicidal ideation, but only among women. Subgroup analysis in women revealed that the association between the TyG index and suicidal ideation was more remarkable in the low-risk group for suicide. LIMITATIONS Causality and the impact of unmeasured confounders were not addressed. CONCLUSION The TyG index may help prevent suicide in women via earlier detection of suicidal ideation.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Department of Family Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Sooyeon Lee
- Department of Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - In Cheol Hwang
- Department of Family Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea.
| | - Hong Yup Ahn
- Department of Statistics, Dongguk University, Seoul, South Korea
| |
Collapse
|
28
|
Musazzi L, Mingardi J, Ieraci A, Barbon A, Popoli M. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol Psychiatry 2023; 28:4977-4994. [PMID: 37391530 DOI: 10.1038/s41380-023-02139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.
Collapse
Affiliation(s)
- Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
- Molecular Pharmacology, Cellular and Behavioral Physiology; Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
29
|
da Silva LE, de Oliveira MP, da Silva MR, Abel JDS, Tartari G, de Aguiar da Costa M, Ludvig Gonçalves C, Rezin GT. L-carnitine and Acetyl-L Carnitine: A Possibility for Treating Alterations Induced by Obesity in the Central Nervous System. Neurochem Res 2023; 48:3316-3326. [PMID: 37495838 DOI: 10.1007/s11064-023-04000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Excessive consumption of nutrients, as well as obesity, leads to an inflammatory process, especially in adipose tissue. This inflammation reaches the systemic level and, subsequently, the central nervous system (CNS), which can lead to oxidative stress and mitochondrial dysfunction, resulting in brain damage. Thus, adequate treatment for obesity is necessary, including lifestyle changes (diet adequation and physical activity) and pharmacotherapy. However, these drugs can adversely affect the individual's health. In this sense, searching for new therapeutic alternatives for reestablishing metabolic homeostasis is necessary. L-carnitine (LC) and acetyl-L-carnitine (LAC) have neuroprotective effects against oxidative stress and mitochondrial dysfunction in several conditions, including obesity. Therefore, this study aimed to conduct a narrative review of the literature on the effect of LC and LAC on brain damage caused by obesity, in particular, on mitochondrial dysfunction and oxidative stress. Overall, these findings highlight that LC and LAC may be a promising treatment for recovering REDOX status and mitochondrial dysfunction in the CNS in obesity. Future work should focus on better elucidating the molecular mechanisms behind this treatment.
Collapse
Affiliation(s)
- Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil.
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Jéssica da Silva Abel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Gisele Tartari
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Neurology, Graduate Program in Health Sciences, University of Extreme South Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Neurology, Graduate Program in Health Sciences, University of Extreme South Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| |
Collapse
|
30
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Oraki Kohshour M, Papiol S, Delalle I, Rossner MJ, Schulze TG. Extracellular vesicle approach to major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2023; 273:1279-1293. [PMID: 36302978 PMCID: PMC10450008 DOI: 10.1007/s00406-022-01497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Over the last few years, extracellular vesicles (EVs) have received increasing attention as potential non-invasive diagnostic and therapeutic biomarkers for various diseases. The interest in EVs is related to their structure and content, as well as to their changing cargo in response to different stimuli. One of the potential areas of use of EVs as biomarkers is the central nervous system (CNS), in particular the brain, because EVs can cross the blood-brain barrier, exist also in peripheral tissues and have a diverse cargo. Thus, they may represent "liquid biopsies" of the CNS that can reflect brain pathophysiology without the need for invasive surgical procedures. Overall, few studies to date have examined EVs in neuropsychiatric disorders, and the present evidence appears to lack reproducibility. This situation might be due to a variety of technical obstacles related to working with EVs, such as the use of different isolation strategies, which results in non-uniform vesicular and molecular outputs. Multi-omics approaches and improvements in the standardization of isolation procedures will allow highly pure EV fractions to be obtained in which the molecular cargo, particularly microRNAs and proteins, can be identified and accurately quantified. Eventually, these advances will enable researchers to decipher disease-relevant molecular signatures of the brain-derived EVs involved in synaptic plasticity, neuronal development, neuro-immune communication, and other related pathways. This narrative review summarizes the findings of studies on EVs in major psychiatric disorders, particularly in the field of biomarkers, and discusses the respective therapeutic potential of EVs.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Neuropathology Service, Rhode Island Hospital, Lifespan Academic Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA, 02118, USA
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Wang X, Yang H, Liu C, Liu K. A new diagnostic tool for brain disorders: extracellular vesicles derived from neuron, astrocyte, and oligodendrocyte. Front Mol Neurosci 2023; 16:1194210. [PMID: 37621405 PMCID: PMC10445044 DOI: 10.3389/fnmol.2023.1194210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Brain disorders are the leading cause of disability worldwide, affecting people's quality of life and causing economic burdens. The current clinical diagnosis of brain disorders relies solely on individual phenotypes and lacks accurate molecular biomarkers. An emerging field of research centers around extracellular vesicles (EVs), nanoscale membrane vesicles which can easily cross the blood-brain barrier. EVs in the blood are derived from various tissues, including the brain. Therefore, purifying central nervous system (CNS)-derived EVs from the blood and analyzing their contents may be a relatively non-invasive way to analyze brain molecular alterations and identify biomarkers in brain disorders. Recently, methods for capturing neuron-derived EVs (NDEs), astrocyte-derived EVs (ADEs), and oligodendrocyte-derived EVs (ODEs) in peripheral blood were reported. In this article, we provide an overview of the research history of EVs in the blood, specifically focusing on biomarker findings in six major brain disorders (Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, depression, and autism spectrum disorder). Additionally, we discuss the methodology employed for testing CNS-derived EVs. Among brain disorders, Alzheimer's disease has received the most extensive attention in EV research to date. Most studies focus on specific molecules, candidate proteins, or miRNAs. Notably, the most studied molecules implicated in the pathology of these diseases, such as Aβ, tau, and α-synuclein, exhibit good reproducibility. These findings suggest that CNS-derived EVs can serve as valuable tools for observing brain molecular changes minimally invasively. However, further analysis is necessary to understand the cargo composition of these EVs and improve isolation methods. Therefore, research efforts should prioritize the analysis of CNS-derived EVs' origin and genome-wide biomarker discovery studies.
Collapse
Affiliation(s)
- Xueying Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huihui Yang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Kefu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Bigio B, Sagi Y, Barnhill O, Dobbin J, El Shahawy O, de Angelis P, Nasca C. Epigenetic embedding of childhood adversity: mitochondrial metabolism and neurobiology of stress-related CNS diseases. Front Mol Neurosci 2023; 16:1183184. [PMID: 37564785 PMCID: PMC10411541 DOI: 10.3389/fnmol.2023.1183184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 08/12/2023] Open
Abstract
This invited article ad memoriam of Bruce McEwen discusses emerging epigenetic mechanisms underlying the long and winding road from adverse childhood experiences to adult physiology and brain functions. The conceptual framework that we pursue suggest multidimensional biological pathways for the rapid regulation of neuroplasticity that utilize rapid non-genomic mechanisms of epigenetic programming of gene expression and modulation of metabolic function via mitochondrial metabolism. The current article also highlights how applying computational tools can foster the translation of basic neuroscience discoveries for the development of novel treatment models for mental illnesses, such as depression to slow the clinical manifestation of Alzheimer's disease. Citing an expression that many of us heard from Bruce, while "It is not possible to roll back the clock," deeper understanding of the biological pathways and mechanisms through which stress produces a lifelong vulnerability to altered mitochondrial metabolism can provide a path for compensatory neuroplasticity. The newest findings emerging from this mechanistic framework are among the latest topics we had the good fortune to discuss with Bruce the day before his sudden illness when walking to a restaurant in a surprisingly warm evening that preluded the snowstorm on December 18th, 2019. With this article, we wish to celebrate Bruce's untouched love for Neuroscience.
Collapse
Affiliation(s)
- Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Yotam Sagi
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Olivia Barnhill
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Josh Dobbin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Omar El Shahawy
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Paolo de Angelis
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
34
|
Kurtulmuş A, Koçana CÇ, Toprak SF, Sözer S. The role of Extracellular Genomic Materials (EGMs) in psychiatric disorders. Transl Psychiatry 2023; 13:262. [PMID: 37464177 PMCID: PMC10354097 DOI: 10.1038/s41398-023-02549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Extracellular Genomic Materials (EGMs) are the nucleic acids secreted or released from all types of cells by endogenous or exogenous stimuli through varying mechanisms into the extracellular region and inevitably to all biological fluids. EGMs could be found as free, protein-bound, and/ or with vesicles. EGMs can potentially have immunophenotypic and/or genotypic characteristics of a cell of origin, travel to distant organs, and interact with the new microenvironment. To achieve all, EGMs might bi-directionally transit through varying membranes, including the blood-brain barrier. Such ability provides the transfer of any information related to the pathophysiological changes in psychiatric disorders in the brain to the other distant organ systems or vice versa. In this article, many aspects of EGMs have been elegantly reviewed, including their potential in diagnosis as biomarkers, application in treatment modalities, and functional effects in the pathophysiology of psychiatric disorders. The psychiatric disorders were studied under subgroups of Schizophrenia spectrum disorders, bipolar disorder, depressive disorders, and an autism spectrum disorders. EGMs provide a robust and promising tool in clinics for prognosis and diagnosis. The successful application of EGMs into treatment modalities might further provide encouraging outcomes for researchers and clinicians in psychiatric disorders.
Collapse
Affiliation(s)
- Ayşe Kurtulmuş
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
- Istanbul Göztepe Prof.Dr.Süleyman Yalçın City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Cemal Çağıl Koçana
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
35
|
Liebers DT, Ebina W, Iosifescu DV. Sodium-Glucose Cotransporter-2 Inhibitors in Depression. Harv Rev Psychiatry 2023; 31:214-221. [PMID: 37437254 DOI: 10.1097/hrp.0000000000000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
ABSTRACT Novel treatment strategies that refract existing treatment algorithms for depressive disorders are being sought. Abnormal brain bioenergetic metabolism may represent an alternative, therapeutically targetable neurobiological basis for depression. A growing body of research points to endogenous ketones as candidate neuroprotective metabolites with the potential to enhance brain bioenergetics and improve mood. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for the treatment of diabetes, induce ketogenesis and are associated with mood improvement in population-based studies. In this column, we highlight the rationale for the hypothesis that ketogenesis induced by SGLT2 inhibitors may be an effective treatment for depressive disorders.
Collapse
Affiliation(s)
- David T Liebers
- From Department of Psychiatry, New York University Grossman School of Medicine (Drs. Liebers and Iosifescu); Division of Hematology and Medical Oncology, New York University Grossman School of Medicine (Dr. Ebina); Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Dr. Iosifescu)
| | | | | |
Collapse
|
36
|
Zaidan S, Rahmadani F, Maalouf M, Jelinek HF. Oxidative Stress Biomarkers in Predictive Multi-Class Modeling of Depression Severity with Diabetes Mellitus, Cardiovascular Disease and Hypertension Comorbidity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083345 DOI: 10.1109/embc40787.2023.10339962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this study, depression severity was defined by the Patient Health Questionnaire (PHQ-9) and five machine learning algorithms were applied to classify depression severity in the presence of diabetes mellitus (DM), cardiovascular disease (CVD), and hypertension (HT) utilizing oxidative stress (OS) biomarkers (8-isoprostane, 8-hydroxydeoxyguanosine, reduced glutathione and oxidized glutathione), demographic details, and medication for eight hundred and thirty participants. The results show that the Random Forest (RF) outperformed other classifiers with the highest accuracy of 92% in a 4-class depression classification when considering all OS biomarkers along with DM, CVD and HT. RF also achieved the highest accuracy of 91% in 3-class classification when studying depression in presence of DM only and an accuracy of 88% and 87% in 5-class classification when investigating depression with CVD and HT, respectively. Moreover, RF performed best in the 3-class depression model with an accuracy of 85% when examining depression severity in the presence of OS biomarkers only. Our findings suggest that depression severity can be accurately identified with RF as a base classifier and that OS is a major contributor to depression severity in the presence of comorbidities. Biomarker analysis can supplement DSM-5-based diagnostics as part of personalized medicine and especially as point of care testing has become available for many of the given OS biomarkers.Clinical Relevance- Depression is the most common form of psychiatric disorder that has an oxidative stress etiology. Current diagnosis relies primarily on the Diagnostic and Statistical Manual for Mental Disorders (DSM-5), which may be too general and not informative for optimal multi-comorbidity diagnostics and treatment. Understanding the role of oxidative stress associated with depression can provide additional information for timely detection, comprehensive assessment, and appropriate intervention of depression illness.
Collapse
|
37
|
Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GES. DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson's disease: a mutual relationship. Pharmacol Rep 2023:10.1007/s43440-023-00500-5. [PMID: 37269487 DOI: 10.1007/s43440-023-00500-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Parkinson's disease (PD) usually occurs due to the degeneration of dopaminergic neurons in the substantia nigra (SN). Management of PD is restricted to symptomatic improvement. Consequently, a novel treatment for managing motor and non-motor symptoms in PD is necessary. Abundant findings support the protection of dipeptidyl peptidase 4 (DPP-4) inhibitors in PD. Consequently, this study aims to reveal the mechanism of DPP-4 inhibitors in managing PD. DPP-4 inhibitors are oral anti-diabetic agents approved for managing type 2 diabetes mellitus (T2DM). T2DM is linked with an increased chance of the occurrence of PD. Extended usage of DPP-4 inhibitors in T2DM patients may attenuate the development of PD by inhibiting inflammatory and apoptotic pathways. Thus, DPP-4 inhibitors like sitagliptin could be a promising treatment against PD neuropathology via anti-inflammatory, antioxidant, and anti-apoptotic impacts. DPP-4 inhibitors, by increasing endogenous GLP-1, can also reduce memory impairment in PD. In conclusion, the direct effects of DPP-4 inhibitors or indirect effects through increasing circulating GLP-1 levels could be an effective therapeutic strategy in treating PD patients through modulation of neuroinflammation, oxidative stress, mitochondrial dysfunction, and neurogenesis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali K Al-Buhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
38
|
Wu J, Li S, Zhang Y. Research progress in role of exosomes exosomes in mental disorders. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:771-781. [PMID: 37539580 PMCID: PMC10930398 DOI: 10.11817/j.issn.1672-7347.2023.220379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 08/05/2023]
Abstract
Exosomes are a class of extracellular vesicles with a structure of lipid bilayer-membrane. In the central nervous system (CNS), exosomes can be secreted from both neurons and glial cells. Exosomes released into the extracellular matrix can freely cross the blood-brain barrier and function as crucial carriers of cellular communication and substance exchange in the CNS. Exosomes play a key role in the pathological process of mental disorders such as schizophrenia, depression, and bipolar disorder, and they have the potential to be used as a targeted carrier of antipsychotic medications. Exosomes are likely to become a new tool in the future to aid in the early prevention, accurate diagnosis, and effective treatment for people with mental disorders.
Collapse
Affiliation(s)
- Jialing Wu
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Shansi Li
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yi Zhang
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Medical Psychological Institute, Central South University, Changsha 410011.
- National Clinical Research Center for Mental Disorders (Xiangya), Changsha 410011, China.
| |
Collapse
|
39
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
40
|
Extracellular vesicles: Critical bilateral communicators in periphery-brain crosstalk in central nervous system disorders. Biomed Pharmacother 2023; 160:114354. [PMID: 36753954 DOI: 10.1016/j.biopha.2023.114354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Growing evidence shows that there is a comorbid mechanism between the central nervous system (CNS) and the peripheral organs. The bilateral transmission of signal molecules in periphery-brain crosstalk plays an important role in the underlying mechanism, which result from complex networks of neurohumoral circuits. Secreted by almost all cells and considered innovative information transport systems, extracellular vesicles (EVs) encapsulate and deliver nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), they are also identified primarily as essential communicators between the periphery and the CNS. In addition to transporting molecules under physiological or pathological conditions, EVs also show novel potential in targeted drug delivery. In this review, we discuss the mechanisms implicated in the transport of EVs in crosstalk between the peripheral and the central immune systems as well as in crosstalk between the peripheral organs and the brain in CNS disorders, especially in neurodegenerative diseases, stroke, and trauma. This work will help in elucidating the contributions of EVs to brain health and disorders, and promote the development of new strategies for minimally invasive treatment.
Collapse
|
41
|
Li Y, Gui Y, Zhao M, Chen X, Li H, Tian C, Zhao H, Jiang C, Xu P, Zhang S, Ye S, Huang M. The roles of extracellular vesicles in major depressive disorder. Front Psychiatry 2023; 14:1138110. [PMID: 36970289 PMCID: PMC10033661 DOI: 10.3389/fpsyt.2023.1138110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease characterized by depressed mood, loss of interest and suicidal ideation. Its rising prevalence has rendered MDD one of the largest contributors to the global disease burden. However, its pathophysiological mechanism is still unclear, and reliable biomarkers are lacking. Extracellular vesicles (EVs) are widely considered important mediators of intercellular communication, playing an important role in many physiological and pathological processes. Most preclinical studies focus on the related proteins and microRNAs in EVs, which can regulate energy metabolism, neurogenesis, neuro-inflammation and other pathophysiological processes in the development of MDD. The purpose of this review is to describe the current research progress of EVs in MDD and highlight their potential roles as biomarkers, therapeutic indicators and drug delivery carriers for the treatment of MDD.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yan Gui
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Miaomiao Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Xuanqiang Chen
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chen Tian
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shaoyong Ye
- Henan University School of Medicine, Henan University, Kaifeng, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- *Correspondence: Manli Huang,
| |
Collapse
|
42
|
Hagey DW, El Andaloussi S. The promise and challenges of extracellular vesicles in the diagnosis of neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:227-241. [PMID: 36803813 DOI: 10.1016/b978-0-323-85555-6.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as essential means of intercommunication for all cell types, and their role in CNS physiology is increasingly appreciated. Accumulating evidence has demonstrated that EVs play important roles in neural cell maintenance, plasticity, and growth. However, EVs have also been demonstrated to spread amyloids and inflammation characteristic of neurodegenerative disease. Such dual roles suggest that EVs may be prime candidates for neurodegenerative disease biomarker analysis. This is supported by several intrinsic properties of EVs: Populations can be enriched by capturing surface proteins from their cell of origin, their diverse cargo represent the complex intracellular states of the cells they derive from, and they can pass the blood-brain barrier. Despite this promise, there are important questions outstanding in this young field that will need to be answered before it can fulfill its potential. Namely, overcoming the technical challenges of isolating rare EV populations, the difficulties inherent in detecting neurodegeneration, and the ethical considerations of diagnosing asymptomatic individuals. Although daunting, succeeding to answer these questions has the potential to provide unprecedented insight and improved treatment of neurodegenerative disease in the future.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
43
|
Singh D, Dobrowolny H, Kapogiannis D, Steiner J. Canonical insulin signaling is not significantly impaired in early stages of depression. Eur Arch Psychiatry Clin Neurosci 2023; 273:283-286. [PMID: 35524821 PMCID: PMC9637890 DOI: 10.1007/s00406-022-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 11/03/2022]
Abstract
Patients with major depression (MD) are at high-risk for insulin resistance (IR), type-2 diabetes, metabolic syndrome, cardiovascular morbidity and mortality. However, our recent study published in this journal [Eur Arch Psychiatry Clin Neurosci. 2019 Jun;269(4):373-377], found no evidence of IR in acutely-ill drug-naive first-episode MD (FEMD) using the homeostatic model assessment of insulin resistance (HOMA-IR). We concluded, that MD may be related to impaired glucose/insulin homeostasis in the long-term but not in early disease stages. Now, we performed a complementary analysis of the canonical insulin signalling pathway containing the set of control and FEMD samples from the study mentioned above. The first node (pS312-IRS-1, pY-IRS-1) and downstream pathway which affects glucose and lipid homeostasis (phosphorylated proteins: pS473-AKT, pS9-GSK3β, pS2448-mTOR, pT389-p70S6K; total proteins AKT, GSK3β, mTOR, p70S6K) were analyzed by electrochemiluminescence (ECL) in neuronal extracellular vesicles (nEVs) enriched for L1 neural cell adhesion molecule (L1CAM) expression. No significant diagnosis-related differences were observed for the pS312-IRS-1 / pYIRS-1 ratio (P = 0.093), but the mean ratio was reduced by ~ 70% in FEMD versus controls. Moreover, omnibus analysis of downstream phosphorylated / total signaling protein ratios and respective post-hoc analyses revealed no significant changes in FEMD patients versus controls (P = 0.734). HAMD-21 scores were not correlated with pS312-IRS-1 / pY-IRS-1 or downstream phosphorylated/total signaling protein ratios. In summary, we did not find evidence for altered neuronal insulin signaling in early disease stages of MD. This is in contrast to schizophrenia, where we and other researchers have seen evidence of IR in first-episode patients.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), 251 Bayview Blvd, 8C228, Baltimore, MD, 21224, USA.
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany.
- German Center for Mental Health (DZP), Center for Intervention and Research on adaptive and maladaptive Brain Circuits underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
44
|
Mitra P, Gupta S, Sharma P. Extracellular Vesicles (EVs) as "A Window to the Brain": Potential, Challenges and Future Perspectives. Indian J Clin Biochem 2023; 38:1-3. [PMID: 36684493 PMCID: PMC9852378 DOI: 10.1007/s12291-023-01111-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Shruti Gupta
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| |
Collapse
|
45
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
46
|
Lyu Q, Zhou X, Shi LQ, Chen HY, Lu M, Ma XD, Ren L. Exosomes may be the carrier of acupuncture treatment for major depressive disorder. Front Behav Neurosci 2023; 17:1107265. [PMID: 36873772 PMCID: PMC9978012 DOI: 10.3389/fnbeh.2023.1107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence of major depressive disorder (MDD) is increasing all over the world. There is a great need for complementary or alternative therapies with high safety, few side effects, and precise efficacy to care for MDD. In China, acupuncture has significant laboratory data and clinical trials to demonstrate its antidepressant efficacy. However, there is no clear answer as to how it works. Exosomes are membranous vesicles that rely on cellular multivesicular bodies (MVBs) fused to the cell membrane for release into the extracellular matrix. Almost all cell types are capable of producing and releasing exosomes. As a result, exosomes contain complex RNAs and proteins from their relatives (Cells that secretes exosomes). They can cross biological barriers and participate in biological activities, such as cell migration, angiogenesis, and immune regulation. These properties have made them a popular research topic. Some experts have suggested that exosomes may serve as delivery vehicles for acupuncture to work. This presents both an opportunity and a new challenge for improving the protocols of acupuncture as a treatment for MDD. To better define the relationship between MDD, exosomes, and acupuncture, we reviewed the literature from the last few years. Inclusion criteria included randomized controlled trials and basic trials evaluating acupuncture in the treatment or prevention of MDD, the role of exosomes in the development and progression of MDD, and the role of exosomes in acupuncture. We believe that acupuncture may affect the distribution of exosomes in vivo, and exosomes may be a new carrier for acupuncture treatment of MDD in the future.
Collapse
Affiliation(s)
- Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Liu-Qing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai-Yang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xian-De Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
47
|
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232214417. [PMID: 36430894 PMCID: PMC9699017 DOI: 10.3390/ijms232214417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a global concern and has become a major public health event affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue pancreas. In recent years, more and more evidence has proved that insulin regulates various functions of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin resistance, is closely related to AD, which has drawn extensive attention to the relationship between hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin administration on memory and its underlying mechanism. We also highlight the molecular link between hippocampal insulin resistance and AD and provide a theoretical basis for finding new therapeutic targets for AD in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-6273-3778; Fax: +86-10-6273-3199
| |
Collapse
|
48
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
49
|
Low levels of serum LDH are associated with depression and suicide attempts. Gen Hosp Psychiatry 2022; 79:42-49. [PMID: 36265388 DOI: 10.1016/j.genhosppsych.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND A huge body of evidence has signaled a correlation between adult depression and energy metabolism. The key links are the energy supply and substrates for brain energy metabolism and the crucial signaling molecule lactate. Nevertheless, the association between lactate metabolism and depression remains elusive. OBJECTIVE The primary objective of this study was to explore the difference in serum LDH levels between patients with major depressive disorder (MDD) and the normal population and to determine whether LDH can be employed as a predictor of suicide attempt (SA) in MDD patients. METHODS Serum LDH levels were measured in 232 patients with MDD and 110 healthy controls. Depressive symptoms were assessed using the 24-item Hamilton Depression Scale (HAMD-24). The data were collected and analyzed with SPSS 22.0. RESULTS The serum LDH level of the control group was (196.50 ± 34.40) U/L, while that of the MDD group was (177.94 ± 25.89) U/L (P < 0.001). Notably, the LDH level [(169.96 ± 25.31) U/L] in the SA group was significantly lower than that in the control and non-SA groups [(181.25 ± 25.47) U/L] (P < 0.01); There was no significant correlation with HAMD-24 score (P > 0.05). Collectively, this study demonstrated that a decrease in serum LDH levels is an independent risk factor for SA in MDD patients. CONCLUSION Our results imply that a decrease in LDH levels may be associated with MDD and suicidal behaviors. Early identification of suicide risk and evaluation of the prognosis of depression is critical.
Collapse
|
50
|
Osborne LM, Payne JL, Sherer ML, Sabunciyan S. Altered extracellular mRNA communication in postpartum depression is associated with decreased autophagy. Mol Psychiatry 2022; 27:4526-4535. [PMID: 36138128 DOI: 10.1038/s41380-022-01794-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
We investigated whether extracellular RNA communication, which is a recently discovered mode of intercellular communication that is involved in a variety of important biological processes including pregnancy, is associated with postpartum depression (PPD). Extracellular RNA communication is increased during pregnancy and is involved in embryo implantation, uterine spiral artery remodeling, parturition, preterm birth, immunity, and the inflammatory response. Since immune anomalies are associated with PPD, we characterized the mRNA content of extracellular vesicles (EV) in a cohort of prospectively collected blood plasma samples at six time-points throughout pregnancy and the postpartum (2nd trimester, 3rd trimester, 2 weeks postpartum, 6 weeks postpartum, 3 months postpartum, and 6 months postpartum) in an academic medical setting from women who went on to develop PPD (N = 7, defined as euthymic in pregnancy with postpartum-onset depressive symptoms assessed by Edinburgh Postnatal Depression Scale ≥13 at any postpartum time point) and matched unaffected controls (N = 7, defined as euthymic throughout pregnancy and postpartum). Blood samples were available for all participants at the T2 and W6 timepoints, with fewer samples available at other time points. This analysis revealed that EV mRNA levels during pregnancy and the postpartum period were extensively altered in women who went on to develop PPD. Gene set enrichment analysis revealed that mRNAs associated with autophagy were decreased in PPD cases. In contrast, EV mRNAs from ribosomes and mitochondria, two organelles that are selectively targeted by autophagy, were elevated in PPD cases. Cellular deconvolution analysis discovered that EV mRNAs associated with PPD originated from monocytes and macrophages. Quantitative PCR analysis for four relevant genes in another cohort replicated these findings and confirmed that extracellular RNA levels are altered in PPD. We demonstrate that EV mRNA communication is robustly altered during pregnancy and the postpartum period in women who go on to develop PPD. Our work also establishes a direct link between reduced autophagy and PPD in patient samples. These data warrant investigating the feasibility of developing EV mRNA based biomarkers and therapeutic agents for PPD.
Collapse
Affiliation(s)
- Lauren M Osborne
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, New York, USA.,Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Jennifer L Payne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Morgan L Sherer
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Stanley Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|