1
|
Sun Y, Zhang Y, Chen Y, Peng H, Cheng T, Sun X, Liu J, Xu C. MeCP2 Modulates Depression-Like Behaviors Comorbid to Chronic Pain by Regulating Adult Hippocampal Neurogenesis. CNS Neurosci Ther 2025; 31:e70311. [PMID: 40193046 PMCID: PMC11974449 DOI: 10.1111/cns.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 04/10/2025] Open
Abstract
AIMS Although previous studies have revealed the association between chronic pain-induced depression and defective adult hippocampal neurogenesis (AHN), the underlying molecular mechanism remains elusive. This study aims to examine the association between AHN and depression-like behaviors, and to reveal the underlying mechanisms. METHODS The chronic neuropathic pain model was established using mice with the spared nerve injury (SNI) surgery. The depression-like behaviors were evaluated by using the sucrose preference test (SPT), the tail suspension test (TST), the forced swimming test (FST), and the open field test (OFT). The expression of Methyl-CpG-binding protein 2 (MeCP2) was modulated by injecting the adeno-associated virus (AAV) with the DIO system into the ventral DG of the Nes-CreERT2 mice. The miRNAs in hippocampal neural stem cells (NSCs) of mice with chronic pain were analyzed via miRNA sequencing. RESULTS We found that MeCP2, an epigenetic factor that plays a key role in the development of neurons, was significantly down-regulated in NSCs in the dentate gyrus (DG) of the hippocampus in adult mice with chronic pain and comorbid depression, suggesting a role of MeCP2 in the regulation of depression-like behavior induced by chronic neuropathic pain. MeCP2 expression levels in hippocampal NSCs were closely related to AHN and chronic pain comorbid depression, and miR-199b-3p specifically targeted and inhibited MeCP2 expression by directly interacting with its 3'-UTR sequence. Furthermore, we demonstrated that the increased level of miR-199b-3p in NSCs after the occurrence of chronic pain was responsible for AHN inhibition and comorbid depression. CONCLUSION Chronic neuropathic pain may result in an increased level of miR-199b-3p in hippocampal NSCs, which in turn targeted the Mecp2 gene and inhibited its transcription. Inhibited MeCP2 expression in NSCs contributes to AHN inhibition and depression-like behaviors.
Collapse
Affiliation(s)
- Yanting Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Ying Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Yexiang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Huisheng Peng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Tiantian Cheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Xiujian Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Jing‐Gen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| |
Collapse
|
2
|
Ulrichs H, Shekhar S. Regulation of actin dynamics by Twinfilin. Curr Opin Cell Biol 2025; 92:102459. [PMID: 39765045 PMCID: PMC11769735 DOI: 10.1016/j.ceb.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated. While early studies suggested twinfilin caps filament barbed ends, later research demonstrated its role in nucleotide-specific barbed-end depolymerization. Further, it was initially thought to be a processive depolymerase. Recent structural and single-molecule studies have however challenged this view, indicating that twinfilin binding events result in the removal of only one or two actin subunits from the barbed end. Additionally, twinfilin directly binds capping protein (CP) and facilitates uncapping of CP-bound barbed ends. Here, we summarize twinfilin's cellular and tissue-specific localization, and examine its evolving role in regulating cellular actin dynamics in light of its known biochemical functions.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Kärkkäinen V, Hannonen S, Rusanen M, Lehtola JM, Saari T, Uusitalo H, Leinonen V, Thiede B, Kaarniranta K, Koivisto AM, Utheim TP. Tear fluid reflects the altered protein expressions of Alzheimer's disease patients in proteins involved in protein repair and clearance system or the regulation of cytoskeleton. J Alzheimers Dis 2024:13872877241295315. [PMID: 39558606 DOI: 10.1177/13872877241295315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND New biomarkers that improve diagnosis of Alzheimer's disease (AD) are warranted. Tear fluid (TF) containing variety of proteins that reflect pathophysiological changes of systemic diseases makes TF proteins potential biomarker candidates for AD. OBJECTIVE We investigated the expression levels of TF proteins in persons with mild AD and cognitively healthy controls (CO) to find out if altered proteins may link to the AD pathophysiology. METHODS We analyzed the data of the 53 study participants (34 COs, mean age 71 and Mini-Mental State Examination (MMSE) 28.9 ± 1.4 and 19 persons with AD, CDR 0.5-1, mean age 71 and MMSE 23.8 ± 2.8). All went through neurological status examination, cognitive tests, and ophthalmological examination. TF was collected using Schirmer strips. The TF protein content was evaluated via mass spectrometry-based proteomics and label-free quantification. RESULTS Eleven proteins having a role either in protein repair and clearance system, or regulation of cytoskeleton, showed altered expression in AD group compared to CO group. Seven of them were significantly (p ≤ 0.05) upregulated (Sti1, Twf1, Myl6, Otub1, Pls1 and Caza1) or, downregulated (HSP90) in AD group. CONCLUSIONS Altered expression of all these up- or downregulated proteins may be linked to AD pathophysiology. Thus, our results are encouraging for searching new biomarker candidates for AD. TF is potential biomarker candidate, because TF seems to reflect altered protein levels already in mild AD dementia.
Collapse
Affiliation(s)
- Virve Kärkkäinen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Hannonen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Minna Rusanen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha-Matti Lehtola
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Toni Saari
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Eye and Vision Research, Tampere University, Tampere, Finland
| | - Ville Leinonen
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Anne M Koivisto
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Geriatrics, Helsinki University Hospital and Department of Neurosciences, University of Helsinki, Helsinki, Finland
| | - Tor Paaske Utheim
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway|
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Yang X, Yu D, Gao F, Yang J, Chen Z, Liu J, Yang X, Li L, Zhang Y, Yan C. Integrative Analysis of Morphine-Induced Differential Circular RNAs and ceRNA Networks in the Medial Prefrontal Cortex. Mol Neurobiol 2024; 61:4602-4618. [PMID: 38109006 DOI: 10.1007/s12035-023-03859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNAs. Despite the fact that the functional mechanisms of most circRNAs remain unknown, emerging evidence indicates that circRNAs could sponge microRNAs (miRNAs), bind to RNA binding proteins (RBP), and even be translated into protein. Recent research has demonstrated the crucial roles played by circRNAs in neuropsychiatric disorders. The medial prefrontal cortex (mPFC) is a crucial component of drug reward circuitry and exerts top-down control over cognitive functions. However, there is currently limited knowledge about the correlation between circRNAs and morphine-associated contextual memory in the mPFC. Here, we performed morphine-induced conditioned place preference (CPP) in mice and extracted mPFC tissue for RNA-sequencing. Our study represented the first attempt to identify differentially expressed circRNAs (DEcircRNAs) and mRNAs (DEmRNAs) in the mPFC after morphine-induced CPP. We identified 47 significantly up-regulated DEcircRNAs and 429 significantly up-regulated DEmRNAs, along with 74 significantly down-regulated DEcircRNAs and 391 significantly down-regulated DEmRNAs. Functional analysis revealed that both DEcircRNAs and DEmRNAs were closely associated with neuroplasticity. To further validate the DEcircRNAs, we conducted qRT-PCR, Sanger sequencing, and RNase R digestion assays. Additionally, using an integrated bioinformatics approach, we constructed ceRNA networks and identified critical circRNA/miRNA/mRNA axes that contributed to the development of morphine-associated contextual memory. In summary, our study provided novel insights into the role of circRNAs in drug-related memory, specifically from the perspective of ceRNAs.
Collapse
Affiliation(s)
- Xixi Yang
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Feifei Gao
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Jingsi Yang
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Junlin Liu
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Xiaoyu Yang
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Lanjiang Li
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China
| | - Yuxiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China.
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China.
| | - Chunxia Yan
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
- Key Laboratory of Forensic Medicine, National Health Commission, Xi'an 710061, Shaanxi, China.
- Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an 710100, Shaanxi, China.
| |
Collapse
|
5
|
Pandey S, Miller CA. Targeting the cytoskeleton as a therapeutic approach to substance use disorders. Pharmacol Res 2024; 202:107143. [PMID: 38499081 PMCID: PMC11034636 DOI: 10.1016/j.phrs.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Substance use disorders (SUD) are chronic relapsing disorders governed by continually shifting cycles of positive drug reward experiences and drug withdrawal-induced negative experiences. A large body of research points to plasticity within systems regulating emotional, motivational, and cognitive processes as drivers of continued compulsive pursuit and consumption of substances despite negative consequences. This plasticity is observed at all levels of analysis from molecules to networks, providing multiple avenues for intervention in SUD. The cytoskeleton and its regulatory proteins within neurons and glia are fundamental to the structural and functional integrity of brain processes and are potentially the major drivers of the morphological and behavioral plasticity associated with substance use. In this review, we discuss preclinical studies that provide support for targeting the brain cytoskeleton as a therapeutic approach to SUD. We focus on the interplay between actin cytoskeleton dynamics and exposure to cocaine, methamphetamine, alcohol, opioids, and nicotine and highlight preclinical studies pointing to a wide range of potential therapeutic targets, such as nonmuscle myosin II, Rac1, cofilin, prosapip 1, and drebrin. These studies broaden our understanding of substance-induced plasticity driving behaviors associated with SUD and provide new research directions for the development of SUD therapeutics.
Collapse
Affiliation(s)
- Surya Pandey
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
6
|
Nguyen MT, Lee W. Induction of miR-665-3p Impairs the Differentiation of Myogenic Progenitor Cells by Regulating the TWF1-YAP1 Axis. Cells 2023; 12:cells12081114. [PMID: 37190023 DOI: 10.3390/cells12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Actin dynamics are known to orchestrate various myogenic processes in progenitor cells. Twinfilin-1 (TWF1) is an actin-depolymerizing factor that plays a crucial role in the differentiation of myogenic progenitor cells. However, little is known about the mechanisms underlying the epigenetic regulation of TWF1 expression and impaired myogenic differentiation in the background of muscle wasting. This study investigated how miR-665-3p affects TWF1 expression, actin filaments' modulation, proliferation, and myogenic differentiation in progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in food, suppressed TWF1 expression and inhibited the myogenic differentiation of C2C12 cells while increasing the level of miR-665-3p expression. Interestingly, miR-665-3p inhibited TWF1 expression by targeting TWF1 3'UTR directly. In addition, miR-665-3p accumulated filamentous actin (F-actin) and enhanced the nuclear translocation of Yes-associated protein 1 (YAP1), consequently promoting cell cycle progression and proliferation. Furthermore, miR-665-3p suppressed the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, and consequently impaired myoblast differentiation. In conclusion, this study suggests that SFA-inducible miR-665-3p suppresses TWF1 expression epigenetically and inhibits myogenic differentiation by facilitating myoblast proliferation via the F-actin/YAP1 axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
7
|
Nguyen MT, Lee W. Mir-302a/TWF1 Axis Impairs the Myogenic Differentiation of Progenitor Cells through F-Actin-Mediated YAP1 Activation. Int J Mol Sci 2023; 24:ijms24076341. [PMID: 37047312 PMCID: PMC10094299 DOI: 10.3390/ijms24076341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton dynamics have been found to regulate myogenesis in various progenitor cells, and twinfilin-1 (TWF1), an actin-depolymerizing factor, plays a vital role in actin dynamics and myoblast differentiation. Nevertheless, the molecular mechanisms underlying the epigenetic regulation and biological significance of TWF1 in obesity and muscle wasting have not been explored. Here, we investigated the roles of miR-302a in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation in C2C12 progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in the diet, decreased the expression of TWF1 and impeded myogenic differentiation while increasing the miR-302a levels in C2C12 myoblasts. Interestingly, miR-302a inhibited TWF1 expression directly by targeting its 3′UTR. Furthermore, ectopic expression of miR-302a promoted cell cycle progression and proliferation by increasing the filamentous actin (F-actin) accumulation, which facilitated the nuclear translocation of Yes-associated protein 1 (YAP1). Consequently, by suppressing the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, miR-302a impaired myoblast differentiation. Hence, this study demonstrated that SFA-inducible miR-302a suppresses TWF1 expression epigenetically and impairs myogenic differentiation by facilitating myoblast proliferation via F-actin-mediated YAP1 activation.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
8
|
Chen Y, Wang CY, Zan GY, Yao SY, Deng YZ, Shu XL, Wu WW, Ma Y, Wang YJ, Yu CX, Liu JG. Upregulation of dynorphin/kappa opioid receptor system in the dorsal hippocampus contributes to morphine withdrawal-induced place aversion. Acta Pharmacol Sin 2023; 44:538-545. [PMID: 36127507 PMCID: PMC9958091 DOI: 10.1038/s41401-022-00987-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 μg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 μg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 μg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chen-Yao Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Gui-Ying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Song-Yu Yao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying-Zhi Deng
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xue-Lian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Wei-Wei Wu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yan Ma
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yu-Jun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jing-Gen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
9
|
Nguyen MT, Won YH, Kwon TW, Lee W. Twinfilin-1 is an essential regulator of myogenic differentiation through the modulation of YAP in C2C12 myoblasts. Biochem Biophys Res Commun 2022; 599:17-23. [DOI: 10.1016/j.bbrc.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
|