1
|
Ben-Ari Y, Danchin ÉÉ. Limitations of genomics to predict and treat autism: a disorder born in the womb. J Med Genet 2025; 62:303-310. [PMID: 40081874 PMCID: PMC12015019 DOI: 10.1136/jmg-2024-110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Brain development involves the sequential expression of vulnerable biological processes including cell proliferation, programmed cell death, neuronal migration, synapse and functional unit formation. All these processes involve gene and activity-dependent events that can be distorted by many extrinsic and intrinsic environmental factors, including stress, microbiota, inflammatory signals, hormonal signals and epigenetic factors, hence leading to disorders born in the womb that are manifested later in autism spectrum disorders (ASDs) and other neurodevelopmental disorders. Predicting and treating such disorders call for a conceptual framework that includes all aspects of developmental biology. Here, taking the high incidence of ASDs as an example, we first discuss the intrinsic limitations of the genetic approach, notably the widely used twin studies and SNPs. We then review the long list of in utero events that can deviate developmental sequences, leading to persistent aberrant activity generated by immature misplaced and misconnected neuronal ensembles that are the direct cause of ASD. In a clinical perspective, we suggest analysing non-genetic maternity data to enable an early prediction of babies who will develop ASD years later, thereby facilitating early psycho-educative techniques. Subsequently, agents capable of selectively silencing malformed immature networks offer promising therapeutic perspectives. In summary, understanding developmental processes is critical to predicting, understanding and treating ASD, as well as most other disorders that arise in the womb.
Collapse
Affiliation(s)
| | - Étienne É Danchin
- Centre de biologie integrative, Centre de recherches sur la cognition animale, Toulouse University, Toulouse, France
| |
Collapse
|
2
|
Gumusoglu SB, Schickling BM, Santillan DA, Teesch LM, Santillan MK. Disrupted fetal carbohydrate metabolism in children with autism spectrum disorder. J Neurodev Disord 2025; 17:16. [PMID: 40158086 PMCID: PMC11954230 DOI: 10.1186/s11689-025-09601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Despite the power and promise of early detection and treatment in autism spectrum disorder (ASD), early-life biomarkers are limited. An early-life risk biosignature would advance the field's understanding of ASD pathogenies and targets for early diagnosis and intervention. We therefore sought to add to the growing ASD biomarker literature and evaluate whether fetal metabolomics are altered in idiopathic ASD. METHODS Banked cord blood plasma samples (N = 36 control, 16 ASD) were analyzed via gas chromatography and mass spectrometry (GC-MS). Samples were from babies later diagnosed with idiopathic ASD (non-familial, non-syndromic) or matched, neurotypical controls. Metabolite set enrichment analysis (MSEA) and biomarker prediction were performed (MetaboAnalyst). RESULTS We detected 76 metabolites in all samples. Of these, 20 metabolites differed significantly between groups: 10 increased and 10 decreased in ASD samples relative to neurotypical controls (p < 0.05). MSEA revealed significant changes in metabolic pathways related to carbohydrate metabolism and glycemic control. Untargeted principle components analysis of all metabolites did not reveal group differences, while targeted biomarker assessment (using only Fructose 6-phosphate, D-Mannose, and D-Fructose) by a Random Forest algorithm generated an area under the curve (AUC) = 0.766 (95% CI: 0.612-0.896) for ASD prediction. CONCLUSIONS Despite a high and increasing prevalence, ASD has no definitive biomarkers or available treatments for its core symptoms. ASD's earliest developmental antecedents remain unclear. We find that fetal plasma metabolomics differ with child ASD status, in particular invoking altered carbohydrate metabolism. While prior clinical and preclinical work has linked carbohydrate metabolism to ASD, no prior fetal studies have reported these disruptions in neonates or fetuses who go on to be diagnosed with ASD. Future work will investigate concordance with maternal metabolomics to determine maternal-fetal mechanisms.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA
| | | | - Donna A Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA
| | - Lynn M Teesch
- Department of Chemistry, University of Iowa, Iowa City, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA.
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA.
| |
Collapse
|
3
|
LaSalle JM. DNA methylation biomarkers of intellectual/developmental disability across the lifespan. J Neurodev Disord 2025; 17:10. [PMID: 39972408 PMCID: PMC11841270 DOI: 10.1186/s11689-025-09598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Epigenetic mechanisms, including DNA methylation, act at the interface of genes and environment by allowing a static genome to respond and adapt to a dynamic environment during the lifespan of an individual. Genome-wide DNA methylation analyses on a wide range of human biospecimens are beginning to identify epigenetic biomarkers that can predict risk of intellectual/developmental disabilities (IDD). DNA methylation-based epigenetic signatures are becoming clinically useful in categorizing benign from pathogenic genetic variants following exome sequencing. While DNA methylation marks differ by tissue source, recent studies have shown that accessible perinatal tissues, such as placenta, cord blood, newborn blood spots, and cell free DNA may serve as accessible surrogate tissues for testing epigenetic biomarkers relevant to understanding genetic, environmental, and gene by environment interactions on the developing brain. These DNA methylation signatures may also provide important information about the biological pathways that become dysregulated prior to disease progression that could be used to develop early pharmacological interventions. Future applications could involve preventative screenings using DNA methylation biomarkers during pregnancy or the newborn period for IDDs and other neurodevelopmental disorders. DNA methylation biomarkers in adolescence and adulthood are also likely to be clinically useful for tracking biological aging or co-occurring health conditions that develop across the lifespan. In conclusion, DNA methylation biomarkers are expected to become more common in clinical diagnoses of IDD, to improve understanding of complex IDD etiologies, to improve endpoints for clinical trials, and to monitor potential health concerns for individuals with IDD as they age.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Cortese S, Bellato A, Gabellone A, Marzulli L, Matera E, Parlatini V, Petruzzelli MG, Persico AM, Delorme R, Fusar-Poli P, Gosling CJ, Solmi M, Margari L. Latest clinical frontiers related to autism diagnostic strategies. Cell Rep Med 2025; 6:101916. [PMID: 39879991 DOI: 10.1016/j.xcrm.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
The diagnosis of autism is currently based on the developmental history, direct observation of behavior, and reported symptoms, supplemented by rating scales/interviews/structured observational evaluations-which is influenced by the clinician's knowledge and experience-with no established diagnostic biomarkers. A growing body of research has been conducted over the past decades to improve diagnostic accuracy. Here, we provide an overview of the current diagnostic assessment process as well as of recent and ongoing developments to support diagnosis in terms of genetic evaluation, telemedicine, digital technologies, use of machine learning/artificial intelligence, and research on candidate diagnostic biomarkers. Genetic testing can meaningfully contribute to the assessment process, but caution is required when interpreting negative results, and more work is needed to strengthen the transferability of genetic information into clinical practice. Digital diagnostic and machine-learning-based analyses are emerging as promising approaches, but larger and more robust studies are needed. To date, there are no available diagnostic biomarkers. Moving forward, international collaborations may help develop multimodal datasets to identify biomarkers, ensure reproducibility, and support clinical translation.
Collapse
Affiliation(s)
- Samuele Cortese
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Hampshire and Isle of Wight NHS Foundation Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy.
| | - Alessio Bellato
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK; Mind and Neurodevelopment (MiND) Interdisciplinary Cluster, University of Nottingham, Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alessandra Gabellone
- DIBRAIN - Department of Biomedicine Translational and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Marzulli
- DIBRAIN - Department of Biomedicine Translational and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Emilia Matera
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| | - Valeria Parlatini
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Hampshire and Isle of Wight NHS Foundation Trust, Southampton, UK
| | | | - Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, & Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy
| | - Richard Delorme
- Child and Adolescent Psychiatry Department & Child Brain Institute, Robert Debré Hospital, Paris Cité University, Paris, France
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Outreach and Support in South-London (OASIS) Service, South London and Maudlsey (SLaM) NHS Foundation Trust, London, UK; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Corentin J Gosling
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Child and Adolescent Psychiatry Department & Child Brain Institute, Robert Debré Hospital, Paris Cité University, Paris, France; Université Paris Nanterre, Laboratoire DysCo, Nanterre, France; Université de Paris Cite', Laboratoire de Psychopathologie et Processus de Santé, Boulogne-Billancourt, France
| | - Marco Solmi
- SCIENCES Lab, Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada; Regional Centre for the Treatment of Eating Disorders and On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, ON, Canada; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Lucia Margari
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
5
|
Ziętek MM, Jaszczyk A, Stankiewicz AM, Sampino S. Prenatal gene-environment interactions mediate the impact of advanced maternal age on mouse offspring behavior. Sci Rep 2024; 14:31733. [PMID: 39738558 PMCID: PMC11685589 DOI: 10.1038/s41598-024-82070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Autism spectrum disorders encompass diverse neurodevelopmental conditions marked by alterations in social communication and repetitive behaviors. Advanced maternal age is associated with an increased risk of bearing children affected by autism but the etiological factors underlying this association are not well known. Here, we investigated the effects of advanced maternal age on offspring health and behavior in two genetically divergent mouse strains: the BTBR T+ Itpr3tf/J (BTBR) mouse model of idiopathic autism, and the C57BL/6 J (B6) control strain, as a model of genetic variability. In both strains, advanced maternal age negatively affected female reproductive and pregnancy outcomes, and perturbed placental and fetal growth, and the expression of genes in the fetal brain tissues. Postnatally, advanced maternal age had strain-dependent effects on offspring sociability, learning skills, and the occurrence of perseverative behaviors, varying between male and female offspring. These findings disentangle the relationship between genetic determinants and maternal age-related factors in shaping the emergence of autism-like behaviors in mice, highlighting the interplay between maternal age, genetic variability, and prenatal programming, in the occurrence of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Marlena Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Adrian Mateusz Stankiewicz
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
6
|
Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C. Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD. Genes (Basel) 2024; 16:11. [PMID: 39858558 PMCID: PMC11764921 DOI: 10.3390/genes16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control. METHODS We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level. We employ Cell-Specific Network Inference via Integer Value Programming and Causal Reasoning (CS-NIVaCaR) to identify core modules and Cell-Specific Probabilistic Contextualization for mRNA Regulatory Networks (CS-ProComReN) to quantitatively reveal activated sub-pathways involving MAPK1, MKNK1, RPS6KA5, and MTOR across different cell types in ASD. RESULTS The results indicate that specific pivotal molecules, such as EIF4EBP1 and EIF4E, lacking Differential Expression (DE) characteristics and responsible for protein translation with long-term potentiation (LTP) or long-term depression (LTD), are dysregulated. We further uncover distinct activation patterns causally linked to the EIF4EBP1-EIF4E module in excitatory and inhibitory neurons. CONCLUSIONS Importantly, our work introduces a methodology for leveraging extensive transcriptomics data to parse the signal transduction network, transforming it into mSiReN, and mapping it back to the protein level. These algorithms can serve as potent tools in systems biology to analyze other omics and regulatory networks. Furthermore, the biomarkers within the activated sub-pathways, revealed by identifying convergent dysregulation, illuminate potential diagnostic and prognostic factors in ASD.
Collapse
Affiliation(s)
- Chao Kong
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zigang Huang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Old Aberdeen AB24 3UE, UK
| |
Collapse
|
7
|
Natowicz MR, Bauman ML, Edelson SM. A most important gift: the critical role of postmortem brain tissue in autism science. Front Neurol 2024; 15:1486227. [PMID: 39726759 PMCID: PMC11670190 DOI: 10.3389/fneur.2024.1486227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Marvin R. Natowicz
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Margaret L. Bauman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
8
|
Richards-Steed R, Wan N, Bakian A, Medina RM, Brewer SC, Smith KR, VanDerslice JA. Observational methods for human studies of transgenerational effects. Epigenetics 2024; 19:2366065. [PMID: 38870389 PMCID: PMC11178273 DOI: 10.1080/15592294.2024.2366065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
There are substantial challenges in studying human transgenerational epigenetic outcomes resulting from environmental conditions. The task requires specialized methods and tools that incorporate specific knowledge of multigenerational relationship combinations of probands and their ancestors, phenotype data for individuals, environmental information of ancestors and their descendants, which can span historical to present datasets, and informative environmental data that chronologically aligns with ancestors and descendants over space and time. As a result, there are few epidemiologic studies of potential transgenerational effects in human populations, thus limiting the knowledge of ancestral environmental conditions and the potential impacts we face with modern human health outcomes. In an effort to overcome some of the challenges in studying human transgenerational effects, we present two transgenerational study designs: transgenerational space-time cluster detection and transgenerational case-control study design. Like other epidemiological methods, these methods determine whether there are statistical associations between phenotypic outcomes (e.g., adverse health outcomes) among probands and the shared environments and environmental factors facing their ancestors. When the ancestor is a paternal grandparent, a statistically significant association provides some evidence that a transgenerational inheritable factor may be involved. Such results may generate useful hypotheses that can be explored using epigenomic data to establish conclusive evidence of transgenerational heritable effects. Both methods are proband-centric: They are designed around the phenotype of interest in the proband generation for case selection and family pedigree creation. In the examples provided, we incorporate at least three generations of paternal lineage in both methods to observe a potential transgenerational effect.
Collapse
Affiliation(s)
| | - Neng Wan
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Amanda Bakian
- Psychiatry, University of Utah Health, Salt Lake City, UT, USA
| | - Richard M. Medina
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Simon C. Brewer
- Geography, University of Utah Department of Geography, Salt Lake City, UT, USA
| | - Ken R. Smith
- Child and Consumer Studies, University of Utah Health, Salt Lake City, UT, USA
| | | |
Collapse
|
9
|
Kuodza GE, Kawai R, LaSalle JM. Intercontinental insights into autism spectrum disorder: a synthesis of environmental influences and DNA methylation. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae023. [PMID: 39703685 PMCID: PMC11658417 DOI: 10.1093/eep/dvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by a broad range of symptoms. The etiology of ASD is thought to involve complex gene-environment interactions, which are crucial to understanding its various causes and symptoms. DNA methylation is an epigenetic mechanism that potentially links genetic predispositions to environmental factors in the development of ASD. This review provides a global perspective on ASD, focusing on how DNA methylation studies may reveal gene-environment interactions characteristic of specific geographical regions. It delves into the role of DNA methylation in influencing the causes and prevalence of ASD in regions where environmental influences vary significantly. We also address potential explanations for the high ASD prevalence in North America, considering lifestyle factors, environmental toxins, and diagnostic considerations. Asian and European studies offer insights into endocrine-disrupting compounds, persistent organic pollutants, maternal smoking, and their associations with DNA methylation alterations in ASD. In areas with limited data on DNA methylation and ASD, such as Africa, Oceania, and South America, we discuss prevalent environmental factors based on epidemiological studies. Additionally, the review integrates global and country-specific prevalence data from various studies, providing a comprehensive picture of the variables influencing ASD diagnoses over region and year of assessment. This prevalence data, coupled with regional environmental variables and DNA methylation studies, provides a perspective on the complexities of ASD research. Integrating global prevalence data, we underscore the need for a comprehensive global understanding of ASD's complex etiology. Expanded research into epigenetic mechanisms of ASD is needed, particularly in underrepresented populations and locations, to enhance biomarker development for diagnosis and intervention strategies for ASD that reflect the varied environmental and genetic landscapes worldwide.
Collapse
Affiliation(s)
- George E Kuodza
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Ray Kawai
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
10
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
11
|
Zhang B, Li W, Li J, Li Y, Luo H, Xi Y, Dong S, Wu F, Yu W. Rapid genome-wide profiling of DNA methylation and genetic variation using guide positioning sequencing (GPS). Front Cell Dev Biol 2024; 12:1457387. [PMID: 39381371 PMCID: PMC11459621 DOI: 10.3389/fcell.2024.1457387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Whole-genome bisulfite sequencing (WGBS) has been extensively utilized for DNA methylation profiling over the past decade. However, it has shown limitations in terms of high costs and inefficiencies. The productivity and accuracy of DNA methylation detection rely critically on the optimization of methodologies and the continuous refinements of related sequencing platforms. Here, we describe a detailed protocol of guide positioning sequencing (GPS), a bisulfite-based, location-specific sequencing technology designed for comprehensive DNA methylation characterization across the genome. The fundamental principle of GPS lies in the substitution of dCTP with 5-methyl-dCTP (5 mC) at the 3'-end of DNA fragments by T4 DNA polymerase, which protects cytosines from bisulfite conversion to preserve the integrity of the base composition. This alteration allows the 3'-end to independently facilitate genetic variation profiling and guides the 5'-end, enriched with methylation information, to align more rapidly to the reference genome. Hence, GPS enables the concurrent detection of both genetic and epigenetic variations. Additionally, we provide an accessible description of the data processing, specifically involving certain software and scripts. Overall, the entire GPS procedure can be completed within a maximum of 15 days, starting with a low initial DNA input of 100-500 ng, followed by 4-5 days for library construction, 8-10 days for high-throughput sequencing (HTS) and data analysis, which can greatly facilitate the promotion and application of DNA methylation detection, especially for the rapid clinical diagnosis of diverse disease pathologies associated with concurrent genetic and epigenetic variations.
Collapse
Affiliation(s)
- Baolong Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huaibing Luo
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanping Xi
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shihua Dong
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feizhen Wu
- Key Laboratory of Medical Epigenetics and Metabolism, Institute of Clinical Science of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqiang Yu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Climent-Pérez P, Martínez-González AE, Andreo-Martínez P. Contributions of Artificial Intelligence to Analysis of Gut Microbiota in Autism Spectrum Disorder: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:931. [PMID: 39201866 PMCID: PMC11352523 DOI: 10.3390/children11080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder whose etiology is not known today, but everything indicates that it is multifactorial. For example, genetic and epigenetic factors seem to be involved in the etiology of ASD. In recent years, there has been an increase in studies on the implications of gut microbiota (GM) on the behavior of children with ASD given that dysbiosis in GM may trigger the onset, development and progression of ASD through the microbiota-gut-brain axis. At the same time, significant progress has occurred in the development of artificial intelligence (AI). METHODS The aim of the present study was to perform a systematic review of articles using AI to analyze GM in individuals with ASD. In line with the PRISMA model, 12 articles using AI to analyze GM in ASD were selected. RESULTS Outcomes reveal that the majority of relevant studies on this topic have been conducted in China (33.3%) and Italy (25%), followed by the Netherlands (16.6%), Mexico (16.6%) and South Korea (8.3%). CONCLUSIONS The bacteria Bifidobacterium is the most relevant biomarker with regard to ASD. Although AI provides a very promising approach to data analysis, caution is needed to avoid the over-interpretation of preliminary findings. A first step must be taken to analyze GM in a representative general population and ASD samples in order to obtain a GM standard according to age, sex and country. Thus, more work is required to bridge the gap between AI in mental health research and clinical care in ASD.
Collapse
Affiliation(s)
- Pau Climent-Pérez
- Department of Computing Technology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain;
| | | | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
14
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
15
|
Zhang S, Yang J, Ji D, Meng X, Zhu C, Zheng G, Glessner J, Qu HQ, Cui Y, Liu Y, Wang W, Li X, Zhang H, Xiu Z, Sun Y, Sun L, Li J, Hakonarson H, Li J, Xia Q. NASP gene contributes to autism by epigenetic dysregulation of neural and immune pathways. J Med Genet 2024; 61:677-688. [PMID: 38443156 DOI: 10.1136/jmg-2023-109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.
Collapse
Affiliation(s)
- Sipeng Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyi Meng
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chonggui Zhu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Zheng
- National Supercomputer Center in Tianjin (NSCC-TJ), Tianjin, China
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuechen Cui
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Wang
- The Institute of Psychology of the Chinese Academy of Sciences, Beijing, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanjie Xiu
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Sun
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Sun
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
K. C. R, Tiemroth AS, Thurmon AN, Meadows SM, Galazo MJ. Zmiz1 is a novel regulator of brain development associated with autism and intellectual disability. Front Psychiatry 2024; 15:1375492. [PMID: 38686122 PMCID: PMC11057416 DOI: 10.3389/fpsyt.2024.1375492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a class of pathologies arising from perturbations in brain circuit formation and maturation with complex etiological triggers often classified as environmental and genetic. Neuropsychiatric conditions such as autism spectrum disorders (ASD), intellectual disability (ID), and attention deficit hyperactivity disorders (ADHD) are common NDDs characterized by their hereditary underpinnings and inherent heterogeneity. Genetic risk factors for NDDs are increasingly being identified in non-coding regions and proteins bound to them, including transcriptional regulators and chromatin remodelers. Importantly, de novo mutations are emerging as important contributors to NDDs and neuropsychiatric disorders. Recently, de novo mutations in transcriptional co-factor Zmiz1 or its regulatory regions have been identified in unrelated patients with syndromic ID and ASD. However, the role of Zmiz1 in brain development is unknown. Here, using publicly available databases and a Zmiz1 mutant mouse model, we reveal that Zmiz1 is highly expressed during embryonic brain development in mice and humans, and though broadly expressed across the brain, Zmiz1 is enriched in areas prominently impacted in ID and ASD such as cortex, hippocampus, and cerebellum. We investigated the relationship between Zmiz1 structure and pathogenicity of protein variants, the epigenetic marks associated with Zmiz1 regulation, and protein interactions and signaling pathways regulated by Zmiz1. Our analysis reveals that Zmiz1 regulates multiple developmental processes, including neurogenesis, neuron connectivity, and synaptic signaling. This work paves the way for future studies on the functions of Zmiz1 and highlights the importance of combining analysis of mouse models and human data.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Alina S. Tiemroth
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Abbigail N. Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
17
|
Csoka AB, El Kouhen N, Bennani S, Getachew B, Aschner M, Tizabi Y. Roles of Epigenetics and Glial Cells in Drug-Induced Autism Spectrum Disorder. Biomolecules 2024; 14:437. [PMID: 38672454 PMCID: PMC11048423 DOI: 10.3390/biom14040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by severe deficits in social communication and interaction, repetitive movements, abnormal focusing on objects, or activity that can significantly affect the quality of life of the afflicted. Neuronal and glial cells have been implicated. It has a genetic component but can also be triggered by environmental factors or drugs. For example, prenatal exposure to valproic acid or acetaminophen, or ingestion of propionic acid, can increase the risk of ASD. Recently, epigenetic influences on ASD have come to the forefront of investigations on the etiology, prevention, and treatment of this disorder. Epigenetics refers to DNA modifications that alter gene expression without making any changes to the DNA sequence. Although an increasing number of pharmaceuticals and environmental chemicals are being implicated in the etiology of ASD, here, we specifically focus on the molecular influences of the abovementioned chemicals on epigenetic alterations in neuronal and glial cells and their potential connection to ASD. We conclude that a better understanding of these phenomena can lead to more effective interventions in ASD.
Collapse
Affiliation(s)
- Antonei B. Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
18
|
Autism Across the Lifespan. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:194-195. [PMID: 38680978 PMCID: PMC11046723 DOI: 10.1176/appi.focus.24022001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
|
19
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Launay JM, Delorme R, Pagan C, Callebert J, Leboyer M, Vodovar N. Impact of IDO activation and alterations in the kynurenine pathway on hyperserotonemia, NAD + production, and AhR activation in autism spectrum disorder. Transl Psychiatry 2023; 13:380. [PMID: 38071324 PMCID: PMC10710433 DOI: 10.1038/s41398-023-02687-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Hyperserotonemia is the most replicated biochemical anomaly associated with autism spectrum disorder (ASD) and has been reported in 35-46% of individuals with ASD. Serotonin is synthesised from the essential amino acid tryptophan (TRP). However, the main catabolic route of TRP is the kynurenine pathway (KP), which competes with serotonin synthesis when indoleamine dioxygenase (IDO) is activated. Using the same cohort of individuals with ASD, we used to report extensive studies of the serotonin/melatonin pathway, and found increased kynurenine (KYN), suggesting IDO activation in 58.7% of individuals with ASD (159/271), supported by a strong negative correlation between KYN/TRP ratio and miR-153-3p plasma levels, which negatively regulates IDO. IDO activation was associated with normoserotonemia, suggesting that IDO activation could mask hyperserotonemia which meant that hyperserotonemia, if not masked by IDO activation, could be present in ~94% of individuals with ASD. We also identified several KP alterations, independent of IDO status. We observed a decrease in the activity of 3-hydroxyanthranilate dioxygenase which translated into the accumulation of the aryl hydrocarbon receptor (AhR) selective ligand cinnabarinic acid, itself strongly positively correlated with the AhR target stanniocalcin 2. We also found a deficit in NAD+ production, the end-product of the KP, which was strongly correlated with plasma levels of oxytocin used as a stereotypical neuropeptide, indicating that regulated neuropeptide secretion could be limiting. These results strongly suggest that individuals with ASD exhibit low-grade chronic inflammation that is mediated in most cases by chronic AhR activation that could be associated with the highly prevalent gastrointestinal disorders observed in ASD, and explained IDO activation in ~58% of the cases. Taken together, these results extend biochemical anomalies of TRP catabolism to KP and posit TRP catabolism as a possible major component of ASD pathophysiology.
Collapse
Affiliation(s)
| | - Richard Delorme
- Université Paris Cité and Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Pagan
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500, Bron, France
| | - Jacques Callebert
- Université Paris Cité and Inserm UMR-S 942 MASCOT, Paris, France
- Department of Biochemistry, Hôpital Lariboisière - Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marion Leboyer
- Université Paris Est Créteil and Inserm U955, IMRB, Translational Neuropsychiatry, Créteil, France
- AP-HP, DMU IMPACT, FHU ADAPT, Hôpitaux Universitaires Henri Mondor, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Nicolas Vodovar
- Université Paris Cité and Inserm UMR-S 942 MASCOT, Paris, France.
| |
Collapse
|
21
|
Pedini G, Chen CL, Achsel T, Bagni C. Cancer drug repurposing in autism spectrum disorder. Trends Pharmacol Sci 2023; 44:963-977. [PMID: 37940430 DOI: 10.1016/j.tips.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with uncertain origins. Understanding of the mechanisms underlying ASD remains limited, and treatments are lacking. Genetic diversity complicates drug development. Given the complexity and severity of ASD symptoms and the rising number of diagnoses, exploring novel therapeutic strategies is essential. Here, we focus on shared molecular pathways between ASD and cancer and highlight recent progress on the repurposing of cancer drugs for ASD treatment, such as mTOR inhibitors, histone deacetylase inhibitors, and anti-inflammatory agents. We discuss how to improve trial design considering drug dose and patient age. Lastly, the discussion explores the critical aspects of side effects, commercial factors, and the efficiency of drug-screening pipelines; all of which are essential considerations in the pursuit of repurposing cancer drugs for addressing core features of ASD.
Collapse
Affiliation(s)
- Giorgia Pedini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy
| | - Chin-Lin Chen
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Tilmann Achsel
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy; University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
22
|
Harker SA, Al-Hassan L, Huentelman MJ, Braden BB, Lewis CR. APOE ε4-Allele in Middle-Aged and Older Autistic Adults: Associations with Verbal Learning and Memory. Int J Mol Sci 2023; 24:15988. [PMID: 37958971 PMCID: PMC10650864 DOI: 10.3390/ijms242115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability and recent evidence suggests that autistic adults are more likely to develop Alzheimer's disease (Alz) and other dementias compared to neurotypical (NT) adults. The ε4-allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alz and negatively impacts cognition in middle-aged and older (MA+) adults. This study aimed to determine the impact of the APOE ε4-allele on verbal learning and memory in MA+ autistic adults (ages 40-71 years) compared to matched NT adults. Using the Auditory Verbal Learning Test (AVLT), we found that ε4 carriers performed worse on short-term memory and verbal learning across diagnosis groups, but there was no interaction with diagnosis. In exploratory analyses within sex and diagnosis groups, only autistic men carrying APOE ε4 showed worse verbal learning (p = 0.02), compared to autistic men who were not carriers. Finally, the APOE ε4-allele did not significantly affect long-term memory in this sample. These findings replicate previous work indicating that the APOE ε4-allele negatively impacts short-term memory and verbal learning in MA+ adults and presents new preliminary findings that MA+ autistic men may be vulnerable to the effects of APOE ε4 on verbal learning. Future work with a larger sample is needed to determine if autistic women may also be vulnerable.
Collapse
Affiliation(s)
- Samantha A. Harker
- School of Life Sciences and Psychology, Arizona State University, Tempe, AZ 85287, USA;
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Lamees Al-Hassan
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Candace R. Lewis
- School of Life Sciences and Psychology, Arizona State University, Tempe, AZ 85287, USA;
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| |
Collapse
|
23
|
Zucchini C, Serpe C, De Sanctis P, Ghezzo A, Visconti P, Posar A, Facchin F, Marini M, Abruzzo PM. TLDc Domain-Containing Genes in Autism Spectrum Disorder: New Players in the Oxidative Stress Response. Int J Mol Sci 2023; 24:15802. [PMID: 37958785 PMCID: PMC10647648 DOI: 10.3390/ijms242115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress (OS) plays a key role in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by deficits in social communication, restricted interests, and repetitive behaviors. Recent evidence suggests that the TLDc [Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic] domain is a highly conserved motif present in proteins that are important players in the OS response and in neuroprotection. Human proteins sharing the TLDc domain include OXR1, TLDC1, NCOA7, TBC1D24, and C20ORF118. This study was aimed at understanding whether TLDc domain-containing mRNAs together with specific microRNAs (200b-3p and 32-5p) and long noncoding RNAs (TUG1), known to target TLDc proteins, contributed to regulate the OS response in ASD. Data showed a significant increase in the levels of OXR1 and TLDC1 mRNAs in peripheral blood mononuclear cells (PBMCs) of ASD children compared to their neurotypically developing (NTD) counterparts, along with an increase in TUG1 mRNA expression levels, suggesting its possible role in the regulation of TLDc proteins. A positive correlation between the expression of some TLDc mRNAs and the Childhood Autism Rating Scale (CARS) global score as well as inflammatory gene expression was found. In conclusion, our data suggest a novel biological pathway in the OS response of ASD subjects that deserves further exploration.
Collapse
Affiliation(s)
- Cinzia Zucchini
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Carmela Serpe
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Paola De Sanctis
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Alessandro Ghezzo
- Grioni Center-Danelli Foundation, Largo Stefano ed Angela Danelli 1, 26900 Lodi, Italy;
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Via Altura 3, 40139 Bologna, Italy; (P.V.); (A.P.)
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Via Altura 3, 40139 Bologna, Italy; (P.V.); (A.P.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Marina Marini
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (C.Z.); (C.S.); (P.D.S.); (F.F.); (P.M.A.)
| |
Collapse
|
24
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
25
|
Stoccoro A, Conti E, Scaffei E, Calderoni S, Coppedè F, Migliore L, Battini R. DNA Methylation Biomarkers for Young Children with Idiopathic Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2023; 24:9138. [PMID: 37298088 PMCID: PMC10252672 DOI: 10.3390/ijms24119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, the underlying pathological mechanisms of which are not yet completely understood. Although several genetic and genomic alterations have been linked to ASD, for the majority of ASD patients, the cause remains unknown, and the condition likely arises due to complex interactions between low-risk genes and environmental factors. There is increasing evidence that epigenetic mechanisms that are highly sensitive to environmental factors and influence gene function without altering the DNA sequence, particularly aberrant DNA methylation, are involved in ASD pathogenesis. This systematic review aimed to update the clinical application of DNA methylation investigations in children with idiopathic ASD, investigating its potential application in clinical settings. To this end, a literature search was performed on different scientific databases using a combination of terms related to the association between peripheral DNA methylation and young children with idiopathic ASD; this search led to the identification of 18 articles. In the selected studies, DNA methylation is investigated in peripheral blood or saliva samples, at both gene-specific and genome-wide levels. The results obtained suggest that peripheral DNA methylation could represent a promising methodology in ASD biomarker research, although further studies are needed to develop DNA-methylation-based clinical applications.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Eugenia Conti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Elena Scaffei
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
26
|
Licinio J, Wong ML. Psychosis and autism spectrum disorder: a special issue of Molecular Psychiatry. Mol Psychiatry 2023; 28:1830-1832. [PMID: 37833367 DOI: 10.1038/s41380-023-02250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
27
|
Yin H, Wang Z, Liu J, Li Y, Liu L, Huang P, Wang W, Shan Z, Sun R, Shen J, Duan L. Dysregulation of immune and metabolism pathways in maternal immune activation induces an increased risk of autism spectrum disorders. Life Sci 2023; 324:121734. [PMID: 37105442 DOI: 10.1016/j.lfs.2023.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
AIMS Maternal immune activation (MIA) via infection during pregnancy is known to be an environmental risk factor for neurodevelopmental disorders and the development of autism spectrum disorders (ASD) in the offspring, but it still remains elusive that the molecular relevance between infection-induced abnormal neurodevelopmental events and an increased risk for ASD development. MAIN METHODS Fully considering the extremely high genetic heterogeneity of ASD and the universality of risk-gene with minimal effect-sizes, the gene and pathway-based association analysis was performed with the transcriptomic and DNA methylation landscapes of temporal human embryonic brain development and ASD, and the time-course transcriptional profiling of MIA. We conducted the transcriptional profiling of mouse abnormal neurodevelopment two days following induced MIA via LPS injection at E10.5. KEY FINDINGS A novel evidence was proved that illustrated altering four immune and metabolism-related risk pathways, including starch and sucrose metabolism, ribosome, protein processing in endoplasmic reticulum, and retrograde endocannabinoid signaling pathway, which were prominent involvement in the process of MIA regulating abnormal fetal brain development to induce an increased risk of ASD. Here, we have observed that almost all key genes within these risk pathways are significantly differentially expressed at embryonic days (E) 10.5-12.5, which is considered to be the optimal coincidence window of mouse embryonic brain development to study the intimate association between MIA and ASD using mouse animal models. SIGNIFICANCE There search establishes that MIA causes dysregulation of immune and metabolic pathways, which leads to abnormal embryonic neurodevelopment, thus promoting development of ASD symptoms in offspring.
Collapse
Affiliation(s)
- Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ying Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Peijun Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|