1
|
Öz HH, Braga CL, Gudneppanavar R, Di Pietro C, Huang PH, Zhang PX, Krause DS, Egan ME, Murray TS, Bruscia EM. CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and cystic fibrosis mice. J Leukoc Biol 2025; 117:qiae218. [PMID: 39365279 PMCID: PMC11953069 DOI: 10.1093/jleuko/qiae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Extravasation of CCR2-positive monocytes into tissue and to the site of injury is a fundamental immunological response to infections. Nevertheless, exuberant recruitment and/or activity of these monocytes and monocyte-derived macrophages can propagate tissue damage, especially in chronic inflammatory disease conditions. We have previously shown that inhibiting the recruitment of CCR2-positive monocytes ameliorates lung tissue damage caused by chronic neutrophilic inflammation in cystic fibrosis mouse models. A potential concern with targeting monocyte recruitment for therapeutic benefit in cystic fibrosis, however, is whether they are essential for eradicating infections such as Pseudomonas aeruginosa, a pathogen that commonly colonizes and damages the lungs of patients with cystic fibrosis. In this study, we investigated the role of CCR2-positive monocytes in the immune response to acute pulmonary P. aeruginosa infection. Our data show that the altered host immune response caused by the lack of monocyte recruitment to the lungs does not impact P. aeruginosa lung colonization, clearance, and the severity of the infection. These results also hold up in a cystic fibrosis mouse background, which has a hyperinflammatory immune response yet exhibits reduced bactericidal activity. Thus, we lay the groundwork for future studies to investigate the use of CCR2 inhibitors as a potential therapy to ameliorate lung tissue damage in cystic fibrosis. This could be given alone or as an adjunct therapy with CFTR modulators that significantly improve clinical outcomes for eligible patients but do not completely resolve the persistent infection and inflammation that drive lung tissue damage.
Collapse
Affiliation(s)
- Hasan H Öz
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Cassia L Braga
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Ravindra Gudneppanavar
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Caterina Di Pietro
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Pamela H Huang
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Ping-Xia Zhang
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
- Departments of Laboratory Medicine, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Diane S Krause
- Departments of Laboratory Medicine, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
- Departments of Cell Biology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Marie E Egan
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Thomas S Murray
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
- Departments of Laboratory Medicine, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| | - Emanuela M Bruscia
- Departments of Pediatrics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510, United States
| |
Collapse
|
2
|
Woods PS, Mutlu GM. Differences in glycolytic metabolism between tissue-resident alveolar macrophages and recruited lung macrophages. Front Immunol 2025; 16:1535796. [PMID: 40092977 PMCID: PMC11906440 DOI: 10.3389/fimmu.2025.1535796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Immunometabolism has emerged as a key area of focus in immunology and has the potential to lead to new treatments for immune-related diseases. It is well-established that glycolytic metabolism is essential for adaptation to hypoxia and for macrophage inflammatory function. Macrophages have been shown to upregulate their glycolytic metabolism in response to pathogens and pathogen-associated molecular patterns such as LPS. As a direct link to the external environment, the lungs' distinctive nutrient composition and multiple macrophage subtypes provide a unique opportunity to study macrophage metabolism. This review aims to highlight how the steady-state airway and severely inflamed airway offer divergent environments for macrophage glycolytic metabolism. We describe the differences in glycolytic metabolism between tissue-resident alveolar macrophages, and other lung macrophages at steady-state and during inflammation/injury. We also provide an overview of experimental guidelines on how to assess metabolism at the cellular level using Seahorse-based bioenergetic analysis including a review of pharmacologic agents used to inhibit or activate glycolysis.
Collapse
Affiliation(s)
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University
of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Wang C, Wu Y, Liu C, Li Y, Mi S, Yang X, Liu T, Tian Y, Zhang Y, Hu P, Qiao L, Deng G, Liang N, Sun J, Zhang Y, Zhang J. Nervonic acid alleviates radiation-induced early phase lung inflammation by targeting macrophages activation in mice. Front Immunol 2024; 15:1405020. [PMID: 39723218 PMCID: PMC11668677 DOI: 10.3389/fimmu.2024.1405020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Patients receiving chest radiation therapy, or exposed to high radiation levels due to accidental nuclear leakage are at risk of radiation-induced lung injury (RILI). In innate immunity, macrophages not only exhibit certain radiation tolerance but also play an important regulatory role in the whole pathological process. Nervonic acid (NA), a long-chain unsaturated fatty acid found in nerve tissue, plays a pivotal role in maintaining normal tissue growth and repair. However, the influence of NA on RILI progression has yet to be examined. Aim This study aimed to assess the role of macrophage subtypes in RILI and whether NA can alleviate RILI. Specifically, whether NA can alleviate RILI by targeting macrophages and reducing the levels of inflammatory mediators in mouse models was assessed. Methods Mice RILI model was employed with 13 Gy whole thoracic radiation with or without administration of NA. Various assays were performed to evaluate lung tissue histological changes, cytokine expression, IκB-α expression and the number and proportion of macrophages. Results Radiation can lead to the release of inflammatory mediators, thereby exacerbating RILI. The specific radiation dose and duration of exposure can lead to different dynamic changes in the number of subpopulations of lung macrophages. NA can affect the changes of macrophages after irradiation and reduce inflammatory responses to alleviate RILI. Conclusion Macrophages play a significant role in the integrated pathological process of lung injury after irradiation which shows a dynamic change with different times. NA can protect lung tissues against the toxic effects of ionizing radiation and is a new potential functional component for targeting macrophages.
Collapse
Affiliation(s)
- Chenlin Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yanan Wu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Song Mi
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaofan Yang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Yuanjing Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - YingYing Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yan Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeto College of Medicine, Shandong University, Jinan, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Rich HE, Bhutia S, Gonzales de Los Santos F, Entrup GP, Warheit-Niemi HI, Gurczynski SJ, Bame M, Douglas MT, Morris SB, Zemans RL, Lukacs NW, Moore BB. RSV enhances Staphylococcus aureus bacterial growth in the lung. Infect Immun 2024; 92:e0030424. [PMID: 39150268 PMCID: PMC11475690 DOI: 10.1128/iai.00304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Patients coinfected with respiratory syncytial virus (RSV) and bacteria have longer hospital stays, higher risk of intensive care unit admission, and worse outcomes. We describe a model of RSV line 19F/methicillin-resistant Staphylococcus aureus (MRSA) USA300 coinfection that does not impair viral clearance, but prior RSV infection enhances USA300 MRSA bacterial growth in the lung. The increased bacterial burden post-RSV correlates with reduced accumulation of neutrophils and impaired bacterial killing by alveolar macrophages. Surprisingly, reduced neutrophil accumulation is likely not explained by reductions in phagocyte-recruiting chemokines or alterations in proinflammatory cytokine production compared with mice infected with S. aureus alone. Neutrophils from RSV-infected mice retain their ability to migrate toward chemokine signals, and neutrophils from the RSV-infected lung are better able to phagocytize and kill S. aureus ex vivo on a per cell basis. In contrast, while alveolar macrophages could ingest USA300 post-RSV, intracellular bacterial killing was impaired. The RSV/S. aureus coinfected lung promotes a state of overactivation in neutrophils, demonstrated by increased production of reactive oxygen species (ROS) that can drive formation of neutrophil extracellular traps (NETs), resulting in cell death. Mice with RSV/S. aureus coinfection had increased extracellular DNA and protein in bronchoalveolar lavage fluid and histological evidence confirmed NETosis in vivo. Taken together, these data highlight that prior RSV infection can prime the overactivation of neutrophils leading to cell death that impairs neutrophil accumulation in the lung. Additionally, alveolar macrophage killing of bacteria is impaired post-RSV. Together, these defects enhance USA300 MRSA bacterial growth in the lung post-RSV.
Collapse
Affiliation(s)
- Helen E. Rich
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Simran Bhutia
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Gabrielle P. Entrup
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Helen I. Warheit-Niemi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Monica Bame
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael T. Douglas
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan B. Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Sun L, Wang L, Moore BB, Zhang S, Xiao P, Decker AM, Wang HL. IL-17: Balancing Protective Immunity and Pathogenesis. J Immunol Res 2023; 2023:3360310. [PMID: 37600066 PMCID: PMC10439834 DOI: 10.1155/2023/3360310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The biological role of interleukin 17 (IL-17) has been explored during recent decades and identified as a pivotal player in coordinating innate and adaptive immune responses. Notably, IL-17 functions as a double-edged sword with both destructive and protective immunological roles. While substantial progress has implicated unrestrained IL-17 in a variety of infectious diseases or autoimmune conditions, IL-17 plays an important role in protecting the host against pathogens and maintaining physiological homeostasis. In this review, we describe canonical IL-17 signaling mechanisms promoting neutrophils recruitment, antimicrobial peptide production, and maintaining the epithelium barrier integrity, as well as some noncanonical mechanisms involving IL-17 that elicit protective immunity.
Collapse
Affiliation(s)
- Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa, IA, USA
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Immunological Disease Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ann M. Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Kalanaky S, Fakharzadeh S, Karimi P, Hafizi M, Jamaati H, Hassanzadeh SM, Khorasani A, Mahdavi M, Nazaran MH. Nanoadjuvants Produced by Advanced Nanochelating Technology in the Inactivated-Severe Acute Respiratory Syndrome Coronavirus-2 Vaccine Formulation: Preliminary Results on Cytokines and IgG Responses. Viral Immunol 2023; 36:409-423. [PMID: 37506342 DOI: 10.1089/vim.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Despite the great success of vaccines in various infectious diseases, most current vaccines are not effective enough, and on the contrary, clinically approved alum adjuvants cannot induce sufficient immune responses, including a potent cellular immune response to confer protection. In this study, we used Nanochelating Technology to develop novel nanoadjuvants to boost the potency of the alum-adjuvanted inactivated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine. BALB/c mice were immunized twice over 2 weeks with different doses of adjuvanted-vaccine formulations and immune responses were assessed. The analysis results of IFN-γ and IL-17 cytokines demonstrated the effectiveness of the nanoadjuvants produced by the Nanochelating Technology in shifting the alum-based vaccine toward a stronger Th1 pattern. In addition, these nanoadjuvants improved IL-2 cytokine response, which shows the efficacy of these novel formulations in inducing specific T lymphocyte proliferation. Using these nanoadjuvants increased IL-10 cytokine secretion that may be representative of a better immunoregulatory impact and may also potentially prevent immunopathology responses. Moreover, specific IgG titer analysis revealed the potency of these nanoadjuvants in improving humoral immune responses. The enzyme-linked immunosorbent assay of receptor-binding domain (RBD)-specific IgG response showed that the developed novel formulations induced strong IgG responses against this protein. This study shows that the nanostructures produced by the Advanced Nanochelating Technology have potent adjuvant effects on alum-based SARS-CoV-2 vaccines to not only compensate for alum weakness in inducing the cellular immune responses by smart regulation of the immune system but also significantly improve the humoral and cellular immune responses simultaneously.
Collapse
Affiliation(s)
- Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Hassanzadeh
- Department of BCG Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Medical Division, Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mohammad Hassan Nazaran
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
- Owner of Nanochelating Technology and Executive Manager and Chairman of Management Board of Sodour Ahrar Shargh Company, Tehran, Iran
| |
Collapse
|
7
|
Tang Y, Su R, Gu Q, Hu Y, Yang H. PI3K/AKT-mediated autophagy inhibition facilitates mast cell activation to enhance severe inflammatory lung injury in influenza A virus- and secondary Staphylococcus aureus-infected mice. Antiviral Res 2023; 209:105502. [PMID: 36549394 DOI: 10.1016/j.antiviral.2022.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Influenza A virus infection causes considerable morbidity and mortality each year globally, and secondary bacterial infection further exacerbates the severity and fatality of the initial viral infection. Mast cells have substantial roles in protecting the respiratory tract mucosa, while their role in viral and bacterial co-infection remains unclear. The present study revealed that secondary Staphylococcus aureus infection significantly aggravated the activation of mast cells during the initial H1N1 infection both in vivo and in vitro, which was closely related to the increased inflammatory lung injury and mortality. Meanwhile, the secondary S. aureus infection suppressed autophagy and promoted inflammatory mediators released by mast cells through activating the PI3K/Akt signaling pathway. Blocking PI3K/Akt pathway by LY294002, an inhibitor of Akt phosphorylation, could rescue autophagy and inhibit the release of inflammatory mediators. Furthermore, based on the influenza A viral and secondary bacterial infected mice model, we showed that the combination of LY294002 and antiviral drug oseltamivir could effectively reduce the inflammatory damage and pro-inflammatory cytokines releasing in lungs, recovering body weight loss and improving the survival rate from the co-infections. In conclusion, secondary bacterial infection can inhibit autophagy and stimulate mast cell activation through the PI3K/Akt pathway, which might explain why secondary bacterial infection would cause severe and fatal consequences following an initial influenza A viral infection.
Collapse
Affiliation(s)
- Yuling Tang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Ruijing Su
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Qingyue Gu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| |
Collapse
|
8
|
Öz HH, Cheng EC, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang PX, Huang PH, Esquibies SS, Britto CJ, Schupp JC, Murray TS, Halene S, Krause DS, Egan ME, Bruscia EM. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Rep 2022; 41:111797. [PMID: 36516754 PMCID: PMC9833830 DOI: 10.1016/j.celrep.2022.111797] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent neutrophil-dominated lung inflammation contributes to lung damage in cystic fibrosis (CF). However, the mechanisms that drive persistent lung neutrophilia and tissue deterioration in CF are not well characterized. Starting from the observation that, in patients with CF, c-c motif chemokine receptor 2 (CCR2)+ monocytes/macrophages are abundant in the lungs, we investigate the interplay between monocytes/macrophages and neutrophils in perpetuating lung tissue damage in CF. Here we show that CCR2+ monocytes in murine CF lungs drive pathogenic transforming growth factor β (TGF-β) signaling and sustain a pro-inflammatory environment by facilitating neutrophil recruitment. Targeting CCR2 to lower the numbers of monocytes in CF lungs ameliorates neutrophil inflammation and pathogenic TGF-β signaling and prevents lung tissue damage. This study identifies CCR2+ monocytes as a neglected contributor to the pathogenesis of CF lung disease and as a therapeutic target for patients with CF, for whom lung hyperinflammation and tissue damage remain an issue despite recent advances in CF transmembrane conductance regulator (CFTR)-specific therapeutic agents.
Collapse
Affiliation(s)
- Hasan H Öz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | | | - Toma Tebaldi
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Giulia Biancon
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Sofia S Esquibies
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Thomas S Murray
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Warheit-Niemi HI, Huizinga GP, Edwards SJ, Wang Y, Murray SK, O’Dwyer DN, Moore BB. Fibrotic Lung Disease Alters Neutrophil Trafficking and Promotes Neutrophil Elastase and Extracellular Trap Release. Immunohorizons 2022; 6:817-834. [PMID: 36534439 PMCID: PMC10542701 DOI: 10.4049/immunohorizons.2200083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 01/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible disease characterized by collagen deposition within the interstitium of the lung. This impairs gas exchange and results in eventual respiratory failure. Clinical studies show a correlation between elevated neutrophil numbers and IPF disease progression; however, the mechanistic roles neutrophils play in this disease are not well described. In the present study, we describe alterations to the trafficking and function of neutrophils after the development of fibrosis. We observed increased numbers of total and aged neutrophils in peripheral tissues of fibrotic mice. This appeared to be driven by an upregulation of neutrophil chemokine Cxcl2 by lung cells. In addition, neutrophil recruitment back to the bone marrow for clearance appeared to be impaired, because we saw decreased aged neutrophils in the bone marrow of fibrotic mice. Neutrophils in fibrosis were activated, because ex vivo assays showed increased elastase and extracellular trap release by neutrophils from fibrotic mice. This likely mediated disease exacerbation, because mice exhibiting a progressive disease phenotype with greater weight loss and mortality had more activated neutrophils and increased levels of extracellular DNA present in their lungs than did mice with a nonprogressive disease phenotype. These findings further our understanding of the dynamics of neutrophil populations and their trafficking in progressive fibrotic lung disease and may help inform treatments targeting neutrophil function for patients with IPF experiencing disease exacerbation in the future.
Collapse
Affiliation(s)
| | | | - Summer J. Edwards
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Yizhou Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Susan K. Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - David N. O’Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
10
|
Wang Y, Dikeman D, Zhang J, Ackerman N, Kim S, Alphonse MP, Ortines RV, Liu H, Joyce DP, Dillen CA, Thompson JM, Thomas AA, Plaut RD, Miller LS, Archer NK. CCR2 contributes to host defense against Staphylococcus aureus orthopedic implant-associated infections in mice. J Orthop Res 2022; 40:409-419. [PMID: 33713394 PMCID: PMC8435538 DOI: 10.1002/jor.25027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2) is an important mediator of myeloid cell chemotaxis during inflammation and infection. Myeloid cells such as monocytes, macrophages, and neutrophils contribute to host defense during orthopedic implant-associated infections (OIAI), but whether CCR2-mediated chemotaxis is involved remains unclear. Therefore, a Staphylococcus aureus OIAI model was performed by surgically placing an orthopedic-grade titanium implant and inoculating a bioluminescent S. aureus strain in knee joints of wildtype (wt) and CCR2-deficient mice. In vivo bioluminescent signals significantly increased in CCR2-deficient mice compared with wt mice at later time points (Days 14-28), which was confirmed with ex vivo colony-forming unit enumeration. S. aureus γ-hemolysin utilizes CCR2 to induce host cell lysis. However, there were no differences in bacterial burden when the OIAI model was performed with a parental versus a mutant γ-hemolysin-deficient S. aureus strain, indicating that the protection was mediated by the host cell function of CCR2 rather than γ-hemolysin virulence. Although CCR2-deficient and wt mice had similar cellular infiltrates in the infected joint tissue, CCR2-deficient mice had reduced myeloid cells and γδ T cells in the draining lymph nodes. Taken together, CCR2 contributed to host defense at later time points during an OIAI by increasing immune cell infiltrates in the draining lymph nodes, which likely contained the infection and prevented invasive spread.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Nicole Ackerman
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Sophia Kim
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Roger V. Ortines
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Daniel P. Joyce
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Carly A. Dillen
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - John M. Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University
School of Medicine, Baltimore, Maryland, USA
| | - Abigail A. Thomas
- Division of Bacterial Parasitic, and Allergenic Products,
Center for Biologics Evaluation and Research, Food and Drug Administration, Silver
Spring, Maryland, USA
| | - Roger D. Plaut
- Division of Bacterial Parasitic, and Allergenic Products,
Center for Biologics Evaluation and Research, Food and Drug Administration, Silver
Spring, Maryland, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA,Department of Immunology, Janssen Research and Development,
Spring House, Pennsylvania, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Specific Cytokine Profiles Predict the Severity of Influenza A Pneumonia: A Prospectively Multicenter Pilot Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9533044. [PMID: 34692846 PMCID: PMC8528594 DOI: 10.1155/2021/9533044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Purpose Studying the cytokine profiles in influenza A pneumonia could be helpful to better understand the pathogenesis of the disease and predict its prognosis. Patients and Methods. Patients with influenza A pneumonia (including 2009H1N1, H1N1, H3N1, and H7N1) hospitalized in six hospitals from January 2017 to October 2018 were enrolled (ClinicalTrials.gov ID, NCT03093220). Sputum samples were collected within 24 hours after admission and subsequently analyzed for cytokine profiles using a Luminex assay. Results A total of 35 patients with influenza A pneumonia were included in the study. The levels of IL-6, IFN-γ, and IL-2 were increased in patients with severe influenza A pneumonia (n =10) (P = 0.002, 0.009, and 0.008, respectively), while those of IL-5, IL-25, IL-17A, and IL-22 were decreased compared to patients with nonsevere pneumonia (P = 0.0001, 0.009, 0.0001, and 0.006, respectively). The levels of IL-2 and IL-6 in the nonsurvivors (n = 5) were significantly higher than those in the survivors (P = 0.043 and 0.0001, respectively), while the levels of IL-5, IL-17A, and IL-22 were significantly lower (P = 0.001, 0.012, and 0.043, respectively). The IL-4/IL-17A ratio has the potential to be a good predictor (AUC = 0.94, P < 0.05, sensitivity = 88.89%, specificity = 92.31%) and an independent risk factor (OR, 95% CI: 3.772, 1.188-11.975; P < 0.05) for intermittent positive pressure ventilation (n = 9). Conclusion Significant dysregulation of cytokine profiles can be observed in patients with severe influenza A pneumonia.
Collapse
|
12
|
Abstract
Influenza viruses are one of the leading causes of respiratory tract infections in humans and their newly emerging and re-emerging virus strains are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global public health systems. The poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models are often associated with elevated proinflammatory cytokines and chemokines production, which is also known as hypercytokinemia or "cytokine storm", that precedes acute respiratory distress syndrome (ARDS) and often leads to death. Although we still do not fully understand the complex nature of cytokine storms, the use of immunomodulatory drugs is a promising approach for treating hypercytokinemia induced by an acute viral infection, including highly pathogenic avian influenza virus infection and Coronavirus Disease 2019 (COVID-19). This review aims to discuss the immune responses and cytokine storm pathology induced by influenza virus infection and also summarize alternative experimental strategies for treating hypercytokinemia caused by influenza virus.
Collapse
Affiliation(s)
- Fanhua Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
13
|
Cui TX, Brady AE, Fulton CT, Zhang YJ, Rosenbloom LM, Goldsmith AM, Moore BB, Popova AP. CCR2 Mediates Chronic LPS-Induced Pulmonary Inflammation and Hypoalveolarization in a Murine Model of Bronchopulmonary Dysplasia. Front Immunol 2020; 11:579628. [PMID: 33117383 PMCID: PMC7573800 DOI: 10.3389/fimmu.2020.579628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
The histopathology of bronchopulmonary dysplasia (BPD) includes hypoalveolarization and interstitial thickening due to abnormal myofibroblast accumulation. Chorioamnionitis and sepsis are major risk factors for BPD development. The cellular mechanisms leading to these lung structural abnormalities are poorly understood. We used an animal model with repeated lipopolysaccharide (LPS) administration into the airways of immature mice to simulate prolonged airway exposure to gram-negative bacteria, focusing on the role of C-C chemokine receptor type 2-positive (CCR2+) exudative macrophages (ExMf). Repetitive LPS exposure of immature mice induced persistent hypoalveolarization observed at 4 and 18 days after the last LPS administration. LPS upregulated the expression of lung pro-inflammatory cytokines (TNF-α, IL-17a, IL-6, IL-1β) and chemokines (CCL2, CCL7, CXCL1, and CXCL2), while the expression of genes involved in lung alveolar and mesenchymal cell development (PDGFR-α, FGF7, FGF10, and SPRY1) was decreased. LPS induced recruitment of ExMf, including CCR2+ ExMf, as well as other myeloid cells like DCs and neutrophils. Lungs of LPS-exposed CCR2−/− mice showed preserved alveolar structure and normal patterns of α-actin and PDGFRα expression at the tips of the secondary alveolar crests. Compared to wild type mice, a significantly lower number of ExMf, including TNF-α+ ExMf were recruited to the lungs of CCR2−/− mice following repetitive LPS exposure. Further, pharmacological inhibition of TLR4 with TAK-242 also blocked the effect of LPS on alveolarization, α-SMA and PDGFRα expression. TNF-α and IL-17a induced α-smooth muscle actin expression in the distal airspaces of E16 fetal mouse lung explants. In human preterm lung mesenchymal stromal cells, TNF-α reduced mRNA and protein expression of PDGFR-α and decreased mRNA expression of WNT2, FOXF2, and SPRY1. Collectively, our findings demonstrate that in immature mice repetitive LPS exposure, through TLR4 signaling increases lung inflammation and impairs lung alveolar growth in a CCR2-dependent manner.
Collapse
Affiliation(s)
- Tracy X Cui
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexander E Brady
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Christina T Fulton
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ying-Jian Zhang
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Liza M Rosenbloom
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adam M Goldsmith
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Antonia P Popova
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Influenza sequelae: from immune modulation to persistent alveolitis. Clin Sci (Lond) 2020; 134:1697-1714. [PMID: 32648583 DOI: 10.1042/cs20200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Acute influenza virus infections are a global public health concern accounting for millions of illnesses worldwide ranging from mild to severe with, at time, severe complications. Once an individual is infected, the immune system is triggered in response to the pathogen. This immune response can be beneficial ultimately leading to the clearance of the viral infection and establishment of immune memory mechanisms. However, it can be detrimental by increasing susceptibility to secondary bacterial infections and resulting in permanent changes to the lung architecture, in the form of fibrotic sequelae. Here, we review influenza associated bacterial super-infection, the formation of T-cell memory, and persistent lung injury resulting from influenza infection.
Collapse
|
15
|
Sato-Kaneko F, Yao S, Lao FS, Shpigelman J, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Chu PJ, Burkhart D, Schoener R, Matsutani T, Carson DA, Corr M, Hayashi T. A Novel Synthetic Dual Agonistic Liposomal TLR4/7 Adjuvant Promotes Broad Immune Responses in an Influenza Vaccine With Minimal Reactogenicity. Front Immunol 2020; 11:1207. [PMID: 32636840 PMCID: PMC7318308 DOI: 10.3389/fimmu.2020.01207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
The limited efficacy of seasonal influenza vaccines is usually attributed to ongoing variation in the major antigenic targets for protective antibody responses including hemagglutinin (HA) and neuraminidase (NA). Hence, vaccine development has largely focused on broadening antigenic epitopes to generate cross-reactive protection. However, the vaccine adjuvant components which can accelerate, enhance and prolong antigenic immune responses, can also increase the breadth of these responses. We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus HA, inducing rapid, and sustained antibody responses that are protective against influenza viruses in homologous and heterologous murine challenge models. To further enhance adjuvant efficacy, we performed a structure-activity relationship study for the TLR4 ligand, N-cyclohexyl-2-((5-methyl-4-oxo-3-phenyl-4,5-dihydro-3H-pyrimido[5,4-b]indol-2-yl)thio)acetamide (C25H26N4O2S; 1Z105), and identified the 8-(furan-2-yl) substituted pyrimido[5,4-b]indole analog (C29H28N4O3S; 2B182C) as a derivative with higher potency in activating both human and mouse TLR4-NF-κB reporter cells and primary cells. In a prime-boost immunization model using inactivated influenza A virus [IIAV; A/California/04/2009 (H1N1)pdm09], 2B182C used as adjuvant induced higher serum anti-HA and anti-NA IgG1 levels compared to 1Z105, and also increased the anti-NA IgG2a responses. In combination with a TLR7 ligand, 1V270, 2B182C induced equivalent levels of anti-NA and anti-HA IgG1 to 1V270+1Z105. However, the combination of 1V270+2B182C induced 10-fold higher anti-HA and anti-NA IgG2a levels compared to 1V270+1Z105. A stable liposomal formulation of 1V270+2B182C was developed, which synergistically enhanced anti-HA and anti-NA IgG1 and IgG2a responses without demonstrable reactogenicity after intramuscular injection. Notably, vaccination with IIAV plus the liposomal formulation of 1V270+2B182C protected mice against lethal homologous influenza virus (H1N1)pdm09 challenge and reduced lung viral titers and cytokine levels. The combination adjuvant induced a greater diversity in B cell clonotypes of immunoglobulin heavy chain (IGH) genes in the draining lymph nodes and antibodies against a broad spectrum of HA epitopes encompassing HA head and stalk domains and with cross-reactivity against different subtypes of HA and NA. This novel combination liposomal adjuvant contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.
Collapse
Affiliation(s)
- Fumi Sato-Kaneko
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Fitzgerald S. Lao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Shpigelman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Karen Messer
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Minya Pu
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Nikunj M. Shukla
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Howard B. Cottam
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Michael Chan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Paul J. Chu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | | | | | | | - Dennis A. Carson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. Renal fibrosis is considered to be closely related to various cell types, such as fibroblasts, myofibroblasts, T cells, and other inflammatory cells. Multiple types of cells regulate renal fibrosis through the recruitment, proliferation, and activation of fibroblasts, and the production of the extracellular matrix. Cell trafficking is orchestrated by a family of small proteins called chemokines. Chemokines are cytokines with chemotactic properties, which are classified into 4 groups: CXCL, CCL, CX3CL, and XCL. Similarly, chemokine receptors are G protein-coupled seven-transmembrane receptors classified into 4 groups: XCR, CCR, CXCR, and CX3CR. Chemokine receptors are also implicated in the infiltration, differentiation, and survival of functional cells, triggering inflammation that leads to fibrosis development. In this review, we summarize the different chemokine receptors involved in the processes of fibrosis in different cell types. Further studies are required to identify the molecular mechanisms of chemokine signaling that contribute to renal fibrosis.
Collapse
|
17
|
Linezolid Attenuates Lethal Lung Damage during Postinfluenza Methicillin-Resistant Staphylococcus aureus Pneumonia. Infect Immun 2019; 87:IAI.00538-19. [PMID: 31383747 DOI: 10.1128/iai.00538-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
Postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) infection can quickly develop into severe, necrotizing pneumonia, causing over 50% mortality despite antibiotic treatments. In this study, we investigated the efficacy of antibiotic therapies and the impact of S. aureus alpha-toxin in a model of lethal influenza virus and MRSA coinfection. We demonstrate that antibiotics primarily attenuate alpha-toxin-induced acute lethality, even though both alpha-toxin-dependent and -independent mechanisms significantly contribute to animal mortality after coinfection. Furthermore, we found that the protein synthesis-suppressing antibiotic linezolid has an advantageous therapeutic effect on alpha-toxin-induced lung damage, as measured by protein leak and lactate dehydrogenase (LDH) activity. Importantly, using a Panton-Valentine leucocidin (PVL)-negative MRSA isolate from patient sputum, we show that linezolid therapy significantly improves animal survival from postinfluenza MRSA pneumonia compared with vancomycin treatment. Rather than improved viral or bacterial control, this advantageous therapeutic effect is associated with a significantly attenuated proinflammatory cytokine response and acute lung damage in linezolid-treated mice. Together, our findings not only establish a critical role of alpha-toxin in the extreme mortality of secondary MRSA pneumonia after influenza but also provide support for the possibility that linezolid could be a more effective treatment than vancomycin to improve disease outcomes.
Collapse
|
18
|
TIV Vaccination Modulates Host Responses to Influenza Virus Infection that Correlate with Protection against Bacterial Superinfection. Vaccines (Basel) 2019; 7:vaccines7030113. [PMID: 31547409 PMCID: PMC6789870 DOI: 10.3390/vaccines7030113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Influenza virus infection predisposes to secondary bacterial pneumonia. Currently licensed influenza vaccines aim at the induction of neutralizing antibodies and are less effective if the induction of neutralizing antibodies is low and/or the influenza virus changes its antigenic surface. We investigated the effect of suboptimal vaccination on the outcome of post-influenza bacterial superinfection. Methods: We established a mouse vaccination model that allows control of disease severity after influenza virus infection despite inefficient induction of virus-neutralizing antibody titers by vaccination. We investigated the effect of vaccination on virus-induced host immune responses and on the outcome of superinfection with Staphylococcus aureus. Results: Vaccination with trivalent inactivated virus vaccine (TIV) reduced morbidity after influenza A virus infection but did not prevent virus replication completely. Despite the poor induction of influenza-specific antibodies, TIV protected from mortality after bacterial superinfection. Vaccination limited loss of alveolar macrophages and reduced levels of infiltrating pulmonary monocytes after influenza virus infection. Interestingly, TIV vaccination resulted in enhanced levels of eosinophils after influenza virus infection and recruitment of neutrophils in both lungs and mediastinal lymph nodes after bacterial superinfection. Conclusion: These observations highlight the importance of disease modulation by influenza vaccination, even when suboptimal, and suggest that influenza vaccination is still beneficial to protect during bacterial superinfection in the absence of complete virus neutralization.
Collapse
|
19
|
Sun K, Metzger DW. Influenza and Staphylococcus aureus Coinfection: TLR9 at Play. Trends Microbiol 2019; 27:383-384. [PMID: 30871857 DOI: 10.1016/j.tim.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 11/27/2022]
Abstract
Bacterial lung infections are frequent causes of mortality following influenza infection, but the fundamental mechanisms remain largely unknown. A new study by Martínez-Colón et al. (PLoS Pathog. 2019;15:e1007560) now suggests that influenza-induced immune suppression of Staphylococcus aureus is mediated by TLR9 signaling.
Collapse
Affiliation(s)
- Keer Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| | - Dennis W Metzger
- Department for Immunology & Microbial Disease, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|