1
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
2
|
Lu YY, Lin CY, Lu CC, Tsai HP, Wang WT, Zhang ZH, Wu CH. Bleomycin triggers chronic mechanical nociception by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals. Brain Res Bull 2024; 217:111081. [PMID: 39277019 DOI: 10.1016/j.brainresbull.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Chronic pain is a universal public health problem with nearly one third of global human involved, which causes significant distressing personal burden. After painful stimulus, neurobiological changes occur not only in peripheral nervous system but also in central nervous system where somatosensory cortex is important for nociception. Being an ion channel, transient receptor potential vanilloid 1 (TRPV1) act as an inflammatory detector in the brain. Thymic stromal lymphopoietin (TSLP) is a potent neuroinflammation mediator after nerve injury. Bleomycin is applied to treat dermatologic diseases, and its administration elicits local painful sensation. However, whether bleomycin administration can cause chronic pain remains unknown. In the present study, we aimed to investigate how mice develop chronic pain after receiving repeated bleomycin administration. In addition, the relevant neurobiological brain changes after noxious stimuli were clarified. C57BL/6 mice aged five- to six-weeks were randomly classified into two group, PBS (normal) group and bleomycin group which bleomycin was intradermally administered to back five times a week over a three-week period. Calibrated forceps testing was used to measure mouse pain threshold. Western blots were used to assess neuroinflammatory response; immunofluorescence assay was used to measure the status of neuron apoptosis, glial reaction, and neuro-glial communication. Bleomycin administration induced mechanical nociception and activated both TRPV1 and TSLP/TSLPR/pSTAT5 signals in mouse somatosensory cortex. Through these pathways, bleomycin not only activates glial reaction but also causes neuronal apoptosis. TRPV1 and TSLP/TSLPR/pSTAT5 signaling had co-labeled each other by immunofluorescence assay. Taken together, our study provides a new chronic pain model by repeated intradermal bleomycin injection by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chia-Yang Lin
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chun-Ching Lu
- Department of Orthopaedics and Traumatology, National Yang Ming Chiao Tung University Hospital, Yilan 260006, Taiwan; Department of Orthopaedics, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wei-Ting Wang
- National Defense Medical Center, Department of Radiology, Tri-Service General Hospital, Taipei City 114202, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei 050700, PR China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Poole JA, England BR, Sayles H, Johnson TM, Duryee MJ, Hunter CD, Baker JF, Kerr GS, Kunkel G, Cannon GW, Sauer BC, Wysham KD, Joseph AM, Wallace BI, Thiele GM, Mikuls TR. Serum alarmins and the risk of incident interstitial lung disease in rheumatoid arthritis. Rheumatology (Oxford) 2024; 63:1998-2005. [PMID: 37812235 PMCID: PMC11215989 DOI: 10.1093/rheumatology/kead535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVES To quantify associations of serum alarmins with risk of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS Using serum collected at enrolment, three alarmins (IL-33, thymic stromal lymphopoietin [TSLP] and IL-25) were measured in a multicentre prospective RA cohort. ILD was classified using systematic medical record review. Cross-sectional associations of log-transformed (IL-33, TSLP) or quartile (IL-25) values with RA-ILD at enrolment (prevalent RA-ILD) were examined using logistic regression, while associations with incident RA-ILD developing after enrolment were examined using Cox proportional hazards. Covariates in multivariate models included age, sex, race, smoking status, RA disease activity score and anti-cyclic citrullinated antibody positivity. RESULTS Of 2835 study participants, 115 participants (4.1%) had prevalent RA-ILD at baseline and an additional 146 (5.1%) developed incident ILD. There were no associations between serum alarmin concentrations and prevalent ILD in unadjusted or adjusted logistic regression models. In contrast, there was a significant inverse association between IL-33 concentration and the risk of developing incident RA-ILD in unadjusted (hazard ratio [HR] 0.73 per log-fold increase; 95% CI: 0.57, 0.95; P = 0.018) and adjusted (HR 0.77; 95% CI: 0.59, 1.00; P = 0.047) models. No significant associations of TSLP or IL-25 with incident ILD were observed. CONCLUSION In this study, we observed a significant inverse association between serum IL-33 concentration and the risk of developing incident RA-ILD, but no associations with prevalent ILD. Additional investigation is required to better understand the mechanisms driving this relationship and how serum alarmin IL-33 assessment might contribute to clinical risk stratification in patients with RA.
Collapse
Affiliation(s)
- Jill A Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bryant R England
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Harlan Sayles
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tate M Johnson
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Michael J Duryee
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Carlos D Hunter
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Joshua F Baker
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, School of Medicine and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gail S Kerr
- Washington, D.C. VA, Georgetown and Howard University, Washington, DC, USA
| | - Gary Kunkel
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Grant W Cannon
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Brian C Sauer
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Katherine D Wysham
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Amy M Joseph
- VA St. Louis Health Care System, Washington University School of Medicine, St Louis, MO, USA
| | - Beth I Wallace
- VA Ann Arbor Healthcare System, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Geoffrey M Thiele
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ted R Mikuls
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
4
|
Zhang Z, Zhu T, Zhang L, Xing Y, Yan Z, Li Q. Critical influence of cytokines and immune cells in autoimmune gastritis. Autoimmunity 2023; 56:2174531. [PMID: 36762543 DOI: 10.1080/08916934.2023.2174531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gastric cancer (GC) is a type of the most common cancers. Autoimmune gastritis (AIG) and infection with Helicobacter pylori (HP) are the risk factors of triggering GC. With the emphasis on the treatment of HP, the incidence and prevalence of HP infection in population is decreasing. However, AIG lacks accurate diagnosis and treatment methods, which occupies high cancer risk factors. AIG is controlled by the immune environment of the stomach, including immune cells, inflammatory cells, and infiltrating intercellular material. Various immune cells or cytokines play a central role in the process of regulating gastric parietal cells. Abnormal expression levels of cytokines involved in immunity are bound to face the risk of tumorigenesis. Therefore, it is particularly important for preventing or treating AIG and avoiding the risk of gastric cancer to clarify the confirmed action mode of immune cells and cytokines in the gastric system. Herein, we briefly reviewed the role of the immune environment under AIG, focussing on describing these double-edged effects between immune cells and cytokines, and pointing out potential research challenges.
Collapse
Affiliation(s)
- Zepeng Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Tongtong Zhu
- Kunshan Hospital of Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Lei Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yanchao Xing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yan
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Qingsong Li
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Smolinska S, Antolín-Amérigo D, Popescu FD, Jutel M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci 2023; 24:12725. [PMID: 37628907 PMCID: PMC10454039 DOI: 10.3390/ijms241612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that has emerged as a critical player in the development and progression of allergy and asthma. It is primarily produced by epithelial cells and functions as a potent immune system activator. TSLP acts through interaction with its receptor complex, composed of the TSLP receptor (TSLPR) and interleukin-7 receptor alpha chain (IL-7Rα), activating downstream complex signalling pathways. The TSLP major isoform, known as long-form TSLP (lfTSLP), is upregulated in the airway epithelium of patients with allergic diseases. More research is warranted to explore the precise mechanisms by which short-form TSLP (sfTSLP) regulates immune responses. Understanding the dynamic interplay between TSLP and the dysfunctional epithelium provides insights into the mechanisms underlying allergy and asthma pathogenesis. Targeting TSLP represents an important therapeutic strategy, as it may upstream disrupt the inflammatory cascade and alleviate symptoms associated with allergic inflammation.
Collapse
Affiliation(s)
- Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Darío Antolín-Amérigo
- Servicio de Alergia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Florin-Dan Popescu
- Department of Allergology “Nicolae Malaxa” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 022441 Bucharest, Romania;
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- “ALL-MED” Research Medical Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
6
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
7
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
8
|
Allenspach EJ, Shubin NJ, Cerosaletti K, Mikacenic C, Gorman JA, MacQuivey MA, Rosen AB, Timms AE, Wray-Dutra MN, Niino K, Liggitt D, Wurfel MM, Buckner JH, Piliponsky AM, Rawlings DJ. The Autoimmune Risk R262W Variant of the Adaptor SH2B3 Improves Survival in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2710-2719. [PMID: 34740959 PMCID: PMC8612972 DOI: 10.4049/jimmunol.2100454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The single-nucleotide polymorphism (SNP) rs3184504 is broadly associated with increased risk for multiple autoimmune and cardiovascular diseases. Although the allele is uniquely enriched in European descent, the mechanism for the widespread selective sweep is not clear. In this study, we find the rs3184504*T allele had a strong association with reduced mortality in a human sepsis cohort. The rs3184504*T allele associates with a loss-of-function amino acid change (p.R262W) in the adaptor protein SH2B3, a likely causal variant. To better understand the role of SH2B3 in sepsis, we used mouse modeling and challenged SH2B3-deficient mice with a polymicrobial cecal-ligation puncture (CLP) procedure. We found SH2B3 deficiency improved survival and morbidity with less organ damage and earlier bacterial clearance compared with control mice. The peritoneal infiltrating cells exhibited augmented phagocytosis in Sh2b3 -/- mice with enriched recruitment of Ly6Chi inflammatory monocytes despite equivalent or reduced chemokine expression. Rapid cycling of monocytes and progenitors occurred uniquely in the Sh2b3 -/- mice following CLP, suggesting augmented myelopoiesis. To model the hypomorphic autoimmune risk allele, we created a novel knockin mouse harboring a similar point mutation in the murine pleckstrin homology domain of SH2B3. At baseline, phenotypic changes suggested a hypomorphic allele. In the CLP model, homozygous knockin mice displayed improved mortality and morbidity compared with wild-type or heterozygous mice. Collectively, these data suggest that hypomorphic SH2B3 improves the sepsis response and that balancing selection likely contributed to the relative frequency of the autoimmune risk variant.
Collapse
Affiliation(s)
- Eric J. Allenspach
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Nicholas J. Shubin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Carmen Mikacenic
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jacquelyn A Gorman
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Matthew A. MacQuivey
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Aaron B.I. Rosen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew E. Timms
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Michelle N. Wray-Dutra
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Mark M. Wurfel
- Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Departments of Pediatrics, Pathology and Global Health, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA,Correspondence should be addressed to D.J.R. () and E.J.A. ()
| |
Collapse
|
9
|
Michailidou D, Schwartz DM, Mustelin T, Hughes GC. Allergic Aspects of IgG4-Related Disease: Implications for Pathogenesis and Therapy. Front Immunol 2021; 12:693192. [PMID: 34305927 PMCID: PMC8292787 DOI: 10.3389/fimmu.2021.693192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
IgG4-related disease (IgG4-RD) is a rare systemic fibroinflammatory disease frequently associated with allergy. The pathogenesis of IgG4-RD is poorly understood, and effective therapies are limited. However, IgG4-RD appears to involve some of the same pathogenic mechanisms observed in allergic disease, such as T helper 2 (Th2) and regulatory T cell (Treg) activation, IgG4 and IgE hypersecretion, and blood/tissue eosinophilia. In addition, IgG4-RD tissue fibrosis appears to involve activation of basophils and mast cells and their release of alarmins and cytokines. In this article, we review allergy-like features of IgG4-RD and highlight targeted therapies for allergy that have potential in treating patients with IgG4-RD.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Daniella Muallem Schwartz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomas Mustelin
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Grant C. Hughes
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
11
|
Cicchella A, Stefanelli C, Massaro M. Upper Respiratory Tract Infections in Sport and the Immune System Response. A Review. BIOLOGY 2021; 10:biology10050362. [PMID: 33922542 PMCID: PMC8146667 DOI: 10.3390/biology10050362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary This review aims at clarifying the relationships of heavy training with the upper respiratory tract infections (URTI), a topic which has reach the public awareness with the recent outbreaks of Covid 19. The URTIs are quite common in several sport activities among athletes who undergo heavy training. Causes of URTI are still poorly understood, because can be related with innate and genetic susceptibility and with several environmental factors connected with training load and nutrition. The time course of the inflammation process affecting URTI after training, has been also reviewed. After a survey of the possible physiological and psychological causes (stressors), including a survey of the main markers of inflammation currently found in scientific literature (mainly catecholamines), we provided evidence of the ingestion of carbohydrates, C, D, and E vitamins, probiotics and even certain fat, in reducing URTI in athletes. Possible countermeasures to URTI can be a correct nutrition, sleep hygiene, a proper organization of training loads, and the use of technique to reduce stress in professional athletes. There is a lack of studies investigating social factors (isolation) albeit with Covid 19 this gap has been partially fill. The results can be useful also for non-athletes. Abstract Immunity is the consequence of a complex interaction between organs and the environment. It is mediated the interaction of several genes, receptors, molecules, hormones, cytokines, antibodies, antigens, and inflammatory mediators which in turn relate and influence the psychological health. The immune system response of heavily trained athletes resembles an even more complex conditions being theorized to follow a J or S shape dynamics at times. High training loads modify the immune response elevating the biological markers of immunity and the body susceptibility to infections. Heavy training and/or training in a cold environment increase the athletes’ risk to develop Upper Respiratory Tract Infections (URTIs). Therefore, athletes, who are considered healthier than the normal population, are in fact more prone to infections of the respiratory tract, due to lowering of the immune system in the time frames subsequent heavy training sessions. In this revision we will review the behavioral intervention, including nutritional approaches, useful to minimize the “open window” effect on infection and how to cope with stressors and boost the immune system in athletes.
Collapse
Affiliation(s)
- Antonio Cicchella
- Department for Quality of Life Studies, University of Bologna, 40127 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2088772
| | - Claudio Stefanelli
- Department for Quality of Life Studies, University of Bologna, 40127 Bologna, Italy;
| | - Marika Massaro
- Institute of Clinical Physiology, National Research Council (CNR), 73047 Lecce, Italy;
| |
Collapse
|
12
|
Development of a Human Respiratory Mucosa-on-a-chip using Decellularized Extracellular Matrix. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4306-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|