1
|
Maizels RM, McSorley HJ, Smits HH, Ten Dijke P, Hinck AP. Cytokines from parasites: manipulating host responses by molecular mimicry. Biochem J 2025; 482:BCJ20253061. [PMID: 40302223 DOI: 10.1042/bcj20253061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
Helminth parasites have evolved sophisticated methods for manipulating the host immune response to ensure long-term survival in their chosen niche, for example, by secreting products that interfere with the host cytokine network. Studies on the secretions of Heligmosomoides polygyrus have identified a family of transforming growth factor-β (TGF-β) mimics (TGMs), which bear no primary amino acid sequence similarity to mammalian TGF-β, but functionally replicate or antagonise TGF-β effects in restricted cell types. The prototypic member, TGM1, induces in vitro differentiation of Foxp3+ T regulatory cells and attenuates airway allergic and intestinal inflammation in animal models. TGM1 is one of a family of ten TGM proteins expressed by H. polygyrus. It is a five-domain modular protein in which domains 1-2 bind TGFBR1, and domain 3 binds TGFBR2; domains 4-5 increase its potency by binding a co-receptor, CD44, highly expressed on immune cells. Domains 4-5 are more diverse in other TGMs, which bind co-receptors on cells such as fibroblasts. One variant, TGM6, lacks domains 1-2 and hence cannot transduce a signal but binds TGFBR2 through domain 3 and a co-receptor expressed on fibroblasts through domains 4-5 and blocks TGF-β signalling in fibroblasts and epithelial cells; T cells do not express the co-receptor and are not inhibited by TGM6. Hence, different family members have evolved to act as agonists or antagonists on various cell types. TGMs, which function by molecularly mimicking binding of the host cytokine to the host TGF-β receptors, are examples of highly evolved immunomodulators from parasites, including those that block interleukin (IL)-13 and IL-33 signalling, modulate macrophage and dendritic cell responses and modify host cell metabolism. The emerging panoply and potency of helminth evasion molecules illustrates the range of strategies in play to maintain long-term infections in the mammalian host.
Collapse
Affiliation(s)
- Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Glasgow, U.K
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Hermelijn H Smits
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, Leiden, Netherlands
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15260, U.S.A
| |
Collapse
|
2
|
Mou R, Cui XY, Luo YS, Cheng Y, Luo QY, Zhang ZF, Wu WL, Li JF, Zhang K. Adult Hymenolepis nana and its excretory-secretory products elicit mouse immune responses via tuft/IL-13 and FOXM1 signaling pathways. Parasit Vectors 2025; 18:100. [PMID: 40069907 PMCID: PMC11899370 DOI: 10.1186/s13071-025-06719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Hosts typically elicit diverse immune responses to the infection of various parasitic worms, with intestinal epithelial cells playing pivotal roles in detecting parasite invasion. Hymenolepis nana (H. nana) is a zoonotic parasitic worm that resides in the host's intestine. The contribution and underlying mechanisms of tuft cell-mediated immune reactions against H. nana remain unexplored. METHODS This study endeavors to examine the immune responses in the mouse intestine elicited by the adult H. nana and its excretory-secretory products (ESP). Ileal tissue alteration was detected using hematoxylin and eosin (H&E) staining, changes in the number of intestinal stem cells, goblet cells, tuft cells, and Paneth cells were detected by immunohistochemistry (IHC), immunofluorescence (IF), etc., and changes in the expression of type 2 cytokines and FOXM1 were detected by Western blotting (WB) or real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS The presence of adult H. nana and its ESP enhanced the number of tuft cells and goblet cells while fostering the production of type 2 cytokines. Furthermore, the surge in Paneth cells and FOXM1 triggered by H. nana aids in maintaining intestinal stem cells homeostasis and proliferation. Notably, the FOXM1 inhibitor RCM-1 dampened intestinal stem cells differentiation and type 2 cytokines secretion, potentially impeding the host's capacity to eliminate H. nana. CONCLUSIONS The adult H. nana and its ESP stimulate the immune responses in mice through tuft/interleukin (IL)-13 and FOXM1 signaling pathways and promote the elimination of H. nana from the host through the differentiation of intestinal stem cells into tuft cells, goblet cells, and Paneth cells, as well as the activation of type 2 immune responses. Meanwhile, RCM-1 inhibits the immune responses to H. nana in mice, thus affecting the excretion of H. nana by host.
Collapse
Affiliation(s)
- Rong Mou
- The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China
| | - Xuan-Yin Cui
- The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China
| | - Yu-Si Luo
- Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Department of Emergency, Liupanshui Hospital of the Affiliated Hospital of Guizhou Medical University, Liupanshui, 553000, China
| | - Yi Cheng
- The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China
| | - Qing-Yuan Luo
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 561113, China
| | - Zhen-Fen Zhang
- The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China
| | - Wen-Lan Wu
- The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China
| | - Jin-Fu Li
- The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China
| | - Ke Zhang
- The Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/The Key and Characteristic Laboratory of Modern Pathogenicity Biology, Departments of Parasitology & Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Room 220, E-1 Building, Ankang Avenue No. 6, Guiyang, 561113, China.
| |
Collapse
|
3
|
Boschiero C, Beshah E, Bakshi M, Miramontes E, Hebert D, Thompson PC, Li CJ, Zhu X, Zarlenga D, Liu GE, Tuo W. Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with Ostertagia ostertagi. Int J Mol Sci 2025; 26:2264. [PMID: 40076885 PMCID: PMC11900041 DOI: 10.3390/ijms26052264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design. Therefore, the present study investigated comprehensive changes in gene transcription in the abomasal mucosa of cattle infected with O. ostertagi at 0, 3-5, 7-9, 10, and 21 days post-infection (dpi) using RNA sequencing (RNA-seq). Compared to uninfected controls, infected animals exhibited significant increases in differentially expressed genes (DEGs) throughout the infection period. Infection induced more upregulated than downregulated genes in the abomasal fundic mucosa (FUN) when compared to the abomasal pyloric mucosa (PYL). The largest transcriptional changes occurred between 7-9 and 10 dpi during the final development of the L4 and their emergence from the gastric glands. Most DEGs are associated with host immunity, cellular reorganization, cell migration, and proliferation. Tuft/epithelial cell response to the infection was atypical, lacking an anticipated increase in key alarmin cytokine genes. Numerous genes associated with T helper (Th) 1, Th2, and Th17 responses and T cell exhaustion were upregulated, suggesting altered immune regulation. The data collectively indicate that O. ostertagi infection elicits massive host responses, particularly immune responses, which are intertwined with the parasite's disruption of abomasal function, which likely impairs the nutrient utilization of the host. The infection is characterized by the absence of a dominant Th response and displaying a mixed activation of Th1, Th2, and Th17 pathways. Elevated expression of T cell exhaustion genes and lack of increase in epithelial alarmin cytokine genes suggest a downregulation of, or a deficiency in initiating, effective host immunity to the infection. Understanding mechanisms of parasite-mediated immune evasion and their nutritional consequences will facilitate the rational design of protective vaccines against infections of complex nematode parasites.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Mariam Bakshi
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Eliseo Miramontes
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Deborah Hebert
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Peter C. Thompson
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Xing Z, Liu S, He X. Critical and diverse role of alarmin cytokines in parasitic infections. Front Cell Infect Microbiol 2024; 14:1418500. [PMID: 39559705 PMCID: PMC11570582 DOI: 10.3389/fcimb.2024.1418500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Alarmin cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) function as danger signals to trigger host immunity in response to tissue injury caused by pathogenic factors such as parasitic infections. Parasitic diseases also provide an excellent context to study their functions and mechanisms. Numerous studies have indicated that alarmin cytokine released by non-immune cells such as epithelial and stromal cells induce the hosts to initiate a type 2 immunity that drives parasite expulsion but also host pathology such as tissue injury and fibrosis. By contrast, alarmin cytokines especially IL-33 derived from immune cells such as dendritic cells may elicit an immuno-suppressive milieu that promotes host tolerance to parasites. Additionally, the role of alarmin cytokines in parasite infections is reported to depend on species of parasites, cellular source of alarmin cytokines, and immune microenvironment, all of which is relevant to the parasitic sites or organs. This narrative review aims to provide information on the crucial and diverse role of alarmin cytokines in parasitic infections involved in different organs including intestine, lung, liver and brain.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing He
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Chen D, Wu J, Zhang F, Lyu R, You Q, Qian Y, Cai Y, Tian X, Tao H, He Y, Nawaz W, Wu Z. Trained immunity of intestinal tuft cells during infancy enhances host defense against enteroviral infections in mice. EMBO Mol Med 2024; 16:2516-2538. [PMID: 39261649 PMCID: PMC11479266 DOI: 10.1038/s44321-024-00128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Innate immune cells have been acknowledged as trainable in recent years. While intestinal tuft cells are recognized for their crucial roles in the host defense against intestinal pathogens, there remains uncertainty regarding their trainability. Enterovirus 71 (EV71), a prevalent enterovirus that primarily infects children but rarely infects adults. At present, there is a significant expansion of intestinal tuft cells in the EV71-infected mouse model, which is associated with EV71-induced interleukin-25 (IL-25) production. Further, we found that IL-25 pre-treatment at 2 weeks old mouse enabled tuft cells to acquire immune memory. This was evidenced by the rapid expansion and stronger response of IL-25-trained tuft cells in response to EV71 infection at 6 weeks old, surpassing the reactivity of naïve tuft cells in mice without IL-25-trained progress. Interestingly, IL-25-trained intestinal tuft cells exhibit anti-enteroviral effect via producing a higher level of IL-25. Mechanically, IL-25 treatment upregulates spermidine/spermine acetyl-transferase enzyme (SAT1) expression, mediates intracellular polyamine deficiency, further inhibits enterovirus replication. In summary, tuft cells can be trained by IL-25, which supports faster and higher level IL-25 production in response to EV71 infection and further exhibits anti-enteroviral effect via SAT1-mediated intracellular polyamine deficiency. Given that IL-25 can be induced by multiple gut microbes during human growth and development, including shifts in gut flora abundance, which may partially explain the different susceptibility to enteroviral infections between adults and children.
Collapse
Affiliation(s)
- Deyan Chen
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Wu
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruining Lyu
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qiao You
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoyan Tian
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hongji Tao
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yating He
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Waqas Nawaz
- Hȏpital Maisonneuve-Rosemont, School of medicine, University of Montreal, Montreal, Canada
| | - Zhiwei Wu
- Medical School of Nanjing University, Nanjing, Jiangsu, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| |
Collapse
|
6
|
Lopez-Perez D, Prados-Lopez B, Galvez J, Leon J, Carazo A. Eosinophils in Colorectal Cancer: Emerging Insights into Anti-Tumoral Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:6098. [PMID: 38892286 PMCID: PMC11172675 DOI: 10.3390/ijms25116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Eosinophils are myeloid effector cells whose main homing is the gastrointestinal tract. There, they take part in type I and type II immune responses. They also contribute to other non-immunological homeostatic functions like mucus production, tissue regeneration, and angiogenesis. In colorectal cancer (CRC), eosinophils locate in the center of the tumor and in the front of invasion and play an anti-tumoral role. They directly kill tumor cells by releasing cytotoxic compounds and eosinophil extracellular traps or indirectly by activating other immune cells via cytokines. As CRC progresses, the number of infiltrating eosinophils decreases. Although this phenomenon is not fully understood, it is known that some changes in the microenvironmental milieu and microbiome can affect eosinophil infiltration. Importantly, a high number of intratumoral eosinophils is a favorable prognostic factor independent from the tumor stage. Moreover, after immunotherapy, responding patients usually display eosinophilia, so eosinophils could be a good biomarker candidate to monitor treatment outcomes. Finally, even though eosinophils seem to play an interesting anti-tumoral role in CRC, much more research is needed to fully understand their interactions in the CRC microenvironment. This review explores the multifaceted roles of eosinophils in colorectal cancer, highlighting their anti-tumoral effects, prognostic significance, and potential as a biomarker for treatment outcomes.
Collapse
Affiliation(s)
- David Lopez-Perez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
| | - Belen Prados-Lopez
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
| | - Julio Galvez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
- Centro de Investigación Biomédica en Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), Center for Biomedical Research, University of Granada, 18012 Granada, Spain
| | - Josefa Leon
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Angel Carazo
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
- Unidad de Gestión de Microbiología, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| |
Collapse
|
7
|
Wang W, Jin Z, Kong M, Yan Z, Fu L, Du X. Single-Cell Transcriptomic Profiling Unveils Dynamic Immune Cell Responses during Haemonchus contortus Infection. Cells 2024; 13:842. [PMID: 38786064 PMCID: PMC11120485 DOI: 10.3390/cells13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the dynamic immune cell responses in diverse peripheral blood mononuclear cells (PBMCs) during H. contortus infection in goats through single-cell RNA sequencing (scRNA-Seq) analysis. METHODS AND RESULTS A total of four Boer goats, two goats with oral infection with the L3 larvae of H. contortus and two healthy goats as controls, were used in the animal test. The infection model in goats was established and validated by the fecal egg count (FEC) test and qPCR analysis of the gene expression of IL-5 and IL-6. Using scRNA-Seq, we identified seven cell types, including T cells, monocytes, natural killer cells, B cells, and dendritic cells with distinct gene expression signatures. After identifying cell subpopulations of differentially expressed genes (DEGs) in the case and control groups, we observed the upregulation of multiple inflammation-associated genes, including NFKBIA and NFKBID. Kyoto Encyclopedia of the Genome (KEGG) enrichment analysis revealed significant enrichment of NOD-like receptor pathways and Th1/Th2 cell differentiation signaling pathways in CD4 T cells DEGs. Furthermore, the analysis of ligand-receptor interaction networks showed a more active state of cellular communication in the PBMCs from the case group, and the inflammatory response associated MIF-(CD74 + CXCR4) ligand receptor complex was significantly more activated in the case group, suggesting a potential inflammatory response. CONCLUSIONS Our study preliminarily revealed transcriptomic profiling characterizing the cell type specific mechanisms in host PBMCs at the single-cell level during H. contortus infection.
Collapse
Affiliation(s)
- Wenxuan Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhe Jin
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Kong
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuofan Yan
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaoyong Du
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Hellman S, Martin F, Tydén E, Sellin ME, Norman A, Hjertner B, Svedberg P, Fossum C. Equine enteroid-derived monolayers recapitulate key features of parasitic intestinal nematode infection. Vet Res 2024; 55:25. [PMID: 38414039 PMCID: PMC10900620 DOI: 10.1186/s13567-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024] Open
Abstract
Stem cell-derived organoid cultures have emerged as attractive experimental models for infection biology research regarding various types of gastro-intestinal pathogens and host species. However, the large size of infectious nematode larvae and the closed structure of 3-dimensional organoids often hinder studies of the natural route of infection. To enable easy administration to the apical surface of the epithelium, organoids from the equine small intestine, i.e. enteroids, were used in the present study to establish epithelial monolayer cultures. These monolayers were functionally tested by stimulation with IL-4 and IL-13, and/or exposure to infectious stage larvae of the equine nematodes Parascaris univalens, cyathostominae and/or Strongylus vulgaris. Effects were recorded using transcriptional analysis combined with histochemistry, immunofluorescence-, live-cell- and scanning electron microscopy. These analyses revealed heterogeneous monolayers containing both immature and differentiated cells including tuft cells and mucus-producing goblet cells. Stimulation with IL-4/IL-13 increased tuft- and goblet cell differentiation as demonstrated by the expression of DCLK1 and MUC2. In these cytokine-primed monolayers, the expression of MUC2 was further promoted by co-culture with P. univalens. Moreover, live-cell imaging revealed morphological alterations of the epithelial cells following exposure to larvae even in the absence of cytokine stimulation. Thus, the present work describes the design, characterization and usability of an experimental model representing the equine nematode-infected small intestinal epithelium. The presence of tuft cells and goblet cells whose mucus production is affected by Th2 cytokines and/or the presence of larvae opens up for mechanistic studies of the physical interactions between nematodes and the equine intestinal mucosa.
Collapse
Affiliation(s)
- Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden.
| | - Frida Martin
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Albin Norman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Pia Svedberg
- Vidilab AB, P.O. Box 33, 745 21, Enköping, Sweden
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|
9
|
Yang H, Huang YX, Xiong PY, Li JQ, Chen JL, Liu X, Gong YJ, Ding WJ. Possible connection between intestinal tuft cells, ILC2s and obesity. Front Immunol 2024; 14:1266667. [PMID: 38283340 PMCID: PMC10811205 DOI: 10.3389/fimmu.2023.1266667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Intestinal tuft cells (TCs) are defined as chemosensory cells that can "taste" danger and induce immune responses. They play a critical role in gastrointestinal parasite invasion, inflammatory bowel diseases and high-fat diet-induced obesity. Intestinal IL-25, the unique product of TCs, is a key activator of type 2 immunity, especially to promote group 2 innate lymphoid cells (ILC2s) to secret IL-13. Then the IL-13 mainly promotes intestinal stem cell (ISCs) proliferation into TCs and goblet cells. This pathway formulates the circuit in the intestine. This paper focuses on the potential role of the intestinal TC, ILC2 and their circuit in obesity-induced intestinal damage, and discussion on further study and the potential therapeutic target in obesity.
Collapse
Affiliation(s)
- Hong Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Xing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Yu Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Qian Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji-Lan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Ju Gong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Ding L, Weygant N, Ding C, Lai Y, Li H. DCLK1 and tuft cells: Immune-related functions and implications for cancer immunotherapy. Crit Rev Oncol Hematol 2023; 191:104118. [PMID: 37660932 DOI: 10.1016/j.critrevonc.2023.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
DCLK1, a tuft cell marker, is widely expressed in various tumors. Its high expression levels are closely linked to malignant tumor progression, making it a potential tumor-related marker. Recent studies have shed light on the critical roles of DCLK1 and tuft cells in the immune response and the maintenance of epithelial homeostasis, as well as targeted immune escape mechanisms in the tumor microenvironment. This review aims to comprehensively examine the current understanding of immune-related functions mediated by DCLK1 and tuft cells in epithelial tissues, including the roles of relevant cells and important factors involved. Additionally, this review will discuss recent advances in anti-tumor immunity mediated by DCLK1/tuft cells and their potential as immunotherapeutic targets. Furthermore, we will consider the potential impact of DCLK1 targeted therapy in cancer immunotherapy, particularly DCLK1 kinase inhibitors as potential therapeutic drugs in anti-tumor immunity, providing a new perspective and reference for future research.
Collapse
Affiliation(s)
- Ling Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
11
|
Ghosh S, Humera Khathun AH, Athulya GS, Vignesh P, Mathan L, Mudaraddi N, Narendran S, Lalitha P, Venkatesh Prajna N. Host cell-type and pathogen-specific immunomodulatory functions of macrophage migration inhibitory factor (MIF) in infectious keratitis. Exp Eye Res 2023; 236:109669. [PMID: 37774962 DOI: 10.1016/j.exer.2023.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Therapeutic management of inflammation in infectious keratitis (IK) requires new strategy and targets for selective immunomodulation. Targeting host cell-type specific inflammatory responses might be a viable strategy to curtail unnecessary inflammation and reduce tissue damage without affecting pathogen clearance. This study explores the possibility of pathogen and host cell-type dependent differences in the inflammatory pathways relevant in the pathogenesis of IK. Human corneal epithelial cell line (HCEC) and phorbol 12-myristate-13 acetate (PMA) differentiated THP-1 macrophage line were infected with either Aspergillus flavus conidia or Acanthamoeba castellanii trophozoites and the elicited inflammatory responses were studied in terms of gene expression and secretion of proinflammatory factors interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) and an upstream inflammatory regulator and mediator protein-the Macrophage Migration Inhibitory Factor (MIF). Given the pleotropic mode of MIF function in diverse cell types relevant in many human diseases, we tested if MIF driven responses to infection is different in HCECs and THP-1 macrophages by studying its expression, secretion and involvement in inflammation by siRNA mediated knockdown. We also examined IK patient tear samples for MIF levels. Infection with A. flavus or A. castellanii induced IL-8 and TNF-α responses in HCECs and THP-1 macrophages but to different levels. Our preliminary human data showed that the level of secreted MIF protein was elevated in IK patient tear, however, MIF secretion by the two cell types were strikingly different in-vitro, under both normal and infected conditions. We found that HCECs released MIF constitutively, which was significantly inhibited with infection, whereas THP-1 macrophages were stimulated to release MIF during infection. MIF gene expression remained largely unaffected by infection in both the cell lines. Although MIF in HCECs appeared to be intracellularly captured during infection, MIF knockdown in HCECs associated with a partial reduction of the IL-8 and TNF-α expression produced by either of the pathogens, suggesting a pro-inflammatory role for MIF in HCECs, independent of its canonical cytokine like function. In contrast, MIF knockdown in THP-1 macrophages accompanied a dramatic increase in IL-8 and TNF-α expression during A. castellanii infection, while the responses to A. flavus infection remained unchanged. These data imply a host cell-type and pathogen specific distinction in the MIF- related inflammatory signaling and MIF as a potential selective immunomodulatory target in infectious keratitis.
Collapse
Affiliation(s)
- Swagata Ghosh
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India.
| | - A H Humera Khathun
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India
| | - G S Athulya
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India
| | - P Vignesh
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India
| | - L Mathan
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, India
| | - Ninad Mudaraddi
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India
| | - Siddharth Narendran
- Department of Microbiology, Aravind Medical Research Foundation, Madurai, India; Aravind Eye Hospital, Coimbatore, India
| | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India
| |
Collapse
|
12
|
Maizels RM, Gause WC. Targeting helminths: The expanding world of type 2 immune effector mechanisms. J Exp Med 2023; 220:e20221381. [PMID: 37638887 PMCID: PMC10460967 DOI: 10.1084/jem.20221381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
In this new review, Rick Maizels and Bill Gause summarize how type 2 immune responses combat helminth parasites through novel mechanisms, coordinating multiple innate and adaptive cell and molecular players that can eliminate infection and repair-resultant tissue damage.
Collapse
Affiliation(s)
- Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - William C. Gause
- Center for Immunity and Inflammation, Rutgers Biomedical Health Sciences Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| |
Collapse
|
13
|
Lintomen L, Kluppel LM, Kitoko JZ, Montes-Cobos E, Vidal VM, Tan LB, de Farias JN, de Souza HS, Olsen PC, Bozza MT. MIF is essential to the establishment of house dust mite-induced airway inflammation and tissue remodeling in mice. Eur J Immunol 2023; 53:e2250016. [PMID: 37061852 DOI: 10.1002/eji.202250016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/17/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is present in high amounts in the BALF and serum of asthmatic patients, contributing to the pathogenesis of experimental asthma induced by OVA in mice. Whether MIF contributes to the physiopathology on a more complex and relevant asthma model has not been characterized. Mif-deficient (Mif-/- ) or WT mice treated with anti-MIF antibody were challenged multiple times using house dust mite (HDM) extract by the intranasal route. HDM-challenged Mif-/- mice presented decreased airway hyperresponsiveness, lung infiltration of eosinophils, mucus hypersecretion, and subepithelial fibrosis compared to HDM-challenged WT mice. Amounts of IL-4, IL-5, and IL-13 were decreased in the lungs of Mif-/- mice upon HDM challenges, but the increase of CCL11 was preserved, compared to HDM-challenged WT mice. We also observed increased numbers of group 2 innate lymphoid cells and Th2 cells in the BALF and mediastinal LNs (mLN)-induced challenged by HDM of WT mice, but not in HDM-challenged Mif-/- mice. Anti-MIF treatment abrogated the airway infiltration of eosinophils, mucus hypersecretion, and subepithelial fibrosis in the lungs of HDM-challenged mice. In conclusion, MIF ablation prevents the pathologic hallmarks of asthma in HDM-challenged mice, reinforcing the promising target of MIF for asthma therapy.
Collapse
Affiliation(s)
- Leticia Lintomen
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana M Kluppel
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elena Montes-Cobos
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius M Vidal
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis B Tan
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Nazioberto de Farias
- Departamento de Clínica Médica, Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor S de Souza
- Departamento de Clínica Médica, Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto D'Or de Pesquisa e Educação (IDOR), Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Atagozli T, Elliott DE, Ince MN. Helminth Lessons in Inflammatory Bowel Diseases (IBD). Biomedicines 2023; 11:1200. [PMID: 37189818 PMCID: PMC10135676 DOI: 10.3390/biomedicines11041200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Helminths are multicellular invertebrates that colonize the gut of many vertebrate animals including humans. This colonization can result in pathology, which requires treatment. It can also lead to a commensal and possibly even a symbiotic relationship where the helminth and the host benefit from each other's presence. Epidemiological data have linked helminth exposure to protection from immune disorders that include a wide range of diseases, such as allergies, autoimmune illnesses, and idiopathic inflammatory disorders of the gut, which are grouped as inflammatory bowel diseases (IBD). Treatment of moderate to severe IBD involves the use of immune modulators and biologics, which can cause life-threatening complications. In this setting, their safety profile makes helminths or helminth products attractive as novel therapeutic approaches to treat IBD or other immune disorders. Helminths stimulate T helper-2 (Th2) and immune regulatory pathways, which are targeted in IBD treatment. Epidemiological explorations, basic science studies, and clinical research on helminths can lead to the development of safe, potent, and novel therapeutic approaches to prevent or treat IBD in addition to other immune disorders.
Collapse
Affiliation(s)
- Tyler Atagozli
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
| | - David E. Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Mirac Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
15
|
Higashiyama M, Miura S, Hokari R. Modulation by luminal factors on the functions and migration of intestinal innate immunity. Front Immunol 2023; 14:1113467. [PMID: 36860849 PMCID: PMC9968923 DOI: 10.3389/fimmu.2023.1113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Luminal antigens, nutrients, metabolites from commensal bacteria, bile acids, or neuropeptides influence the function and trafficking of immune cells in the intestine. Among the immune cells in the gut, innate lymphoid cells, including macrophages, neutrophils, dendritic cells, mast cells, and innate lymphoid cells, play an important role for the maintenance of intestinal homeostasis through a rapid immune response to luminal pathogens. These innate cells are influenced by several luminal factors, possibly leading to dysregulated gut immunity and intestinal disorders such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and intestinal allergy. Luminal factors are sensed by distinct neuro-immune cell units, which also have a strong impact on immunoregulation of the gut. Immune cell trafficking from the blood stream through the lymphatic organ to lymphatics, an essential function for immune responses, is also modulated by luminal factors. This mini-review examines knowledge of luminal and neural factors that regulate and modulate response and migration of leukocytes including innate immune cells, some of which are clinically associated with pathological intestinal inflammation.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan,*Correspondence: Masaaki Higashiyama,
| | - Soichiro Miura
- International University of Health and Welfare, Tokyo, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
16
|
Chen J, Wang Y, Shen L, Xiu Y, Wang B. Could IL-25 be a potential therapeutic target for intestinal inflammatory diseases? Cytokine Growth Factor Rev 2023; 69:43-50. [PMID: 35840510 DOI: 10.1016/j.cytogfr.2022.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
As a member of the IL-17 cytokine family, IL-25 (also called IL-17E) induces and sustains type 2 immunity. IL-25, which is mainly produced by intestinal epithelial cells, has been gradually investigated in recent years for its function in intestinal inflammation but is not yet fully understood. This review summarizes the expression and function of IL-25 in the intestine, especially the progression of its regulatory role on type 2 immunity-related cells. Finally, we discuss the dual role of IL-25 based on inflammatory bowel disease to inform research on targeting IL-25 for the treatment of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingshu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
17
|
Resistin-like beta reduction is associated to low survival rate and is downregulated by adjuvant therapy in colorectal cancer patients. Sci Rep 2023; 13:1490. [PMID: 36707698 PMCID: PMC9883247 DOI: 10.1038/s41598-023-28450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Colorectal Cancer (CRC) is one of the most common cancers accounting for 1.8 million new cases worldwide every year. Therefore, the identification of new potential therapeutic targets represents a continuous challenge to improve survival and quality of CRC patient's life. We performed a microarray analysis dataset consisting of colon biopsies of healthy subjects (HS) and CRC patients. These results were further confirmed in a clinical setting evaluating a series of CRC patients to assess the expression of Resistin-Like Beta (RETNLB) and to correlate it with their clinical data. Our results showed a significant reduction of RETNLB expression in CRC biopsies compared to the HS mucosa. Furthermore, such reduction was significantly associated with the TNM grade and patients' age. Furthermore, a significantly positive correlation was found within mutated subjects for KRAS, TP53, and BRAF. In particular, patients with poor prognosis at 5 years exhibited RETNLB lower levels. In-silico analysis data were confirmed by histochemical analysis in a series of CRC patients recruited by our group. The results obtained provided that RETNLB low levels are associated with an unfavorable prognosis in CRC patients and its expression is also dependent on adjuvant therapy. Further studies are warranted in order to evaluate the molecular mechanisms underlying the role of RETNLB in CRC progression.
Collapse
|
18
|
ILCs-Crucial Players in Enteric Infectious Diseases. Int J Mol Sci 2022; 23:ijms232214200. [PMID: 36430676 PMCID: PMC9695539 DOI: 10.3390/ijms232214200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Research of the last decade has remarkably increased our understanding of innate lymphoid cells (ILCs). ILCs, in analogy to T helper (Th) cells and their cytokine and transcription factor profile, are categorized into three distinct populations: ILC1s express the transcription factor T-bet and secrete IFNγ, ILC2s depend on the expression of GATA-3 and release IL-5 and IL-13, and ILC3s express RORγt and secrete IL-17 and IL-22. Noteworthy, ILCs maintain a level of plasticity, depending on exposed cytokines and environmental stimuli. Furthermore, ILCs are tissue resident cells primarily localized at common entry points for pathogens such as the gut-associated lymphoid tissue (GALT). They have the unique capacity to initiate rapid responses against pathogens, provoked by changes of the cytokine profile of the respective tissue. Moreover, they regulate tissue inflammation and homeostasis. In case of intracellular pathogens entering the mucosal tissue, ILC1s respond by secreting cytokines (e.g., IFNγ) to limit the pathogen spread. Upon infection with helminths, intestinal epithelial cells produce alarmins (e.g., IL-25) and activate ILC2s to secrete IL-13, which induces differentiation of intestinal stem cells into tuft and goblet cells, important for parasite expulsion. Additionally, during bacterial infection ILC3-derived IL-22 is required for bacterial clearance by regulating antimicrobial gene expression in epithelial cells. Thus, ILCs can limit infectious diseases via secretion of inflammatory mediators and interaction with other cell types. In this review, we will address the role of ILCs during enteric infectious diseases.
Collapse
|
19
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
20
|
Perona-Wright G, McSorley HJ. Lessons from helminths: what worms have taught us about mucosal immunology. Mucosal Immunol 2022; 15:1049-1051. [PMID: 35999461 DOI: 10.1038/s41385-022-00560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Affiliation(s)
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
21
|
Loke P, Lee SC, Oyesola OO. Effects of helminths on the human immune response and the microbiome. Mucosal Immunol 2022; 15:1224-1233. [PMID: 35732819 DOI: 10.1038/s41385-022-00532-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023]
Abstract
Helminths have evolved sophisticated immune regulating mechanisms to prevent rejection by their mammalian host. Our understanding of how the human immune system responds to these parasites remains poor compared to mouse models of infection and this limits our ability to develop vaccines as well as harness their unique properties as therapeutic strategies against inflammatory disorders. Here, we review how recent studies on human challenge infections, self-infected individuals, travelers, and endemic populations have improved our understanding of human type 2 immunity and its effects on the microbiome. The heterogeneity of responses between individuals and the limited access to tissue samples beyond the peripheral blood are challenges that limit human studies on helminths, but also provide opportunities to transform our understanding of human immunology. Organoids and single-cell sequencing are exciting new tools for immunological analysis that may aid this pursuit. Learning about the genetic and immunological basis of resistance, tolerance, and pathogenesis to helminth infections may thus uncover mechanisms that can be utilized for therapeutic purposes.
Collapse
Affiliation(s)
- P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Soo Ching Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oyebola O Oyesola
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Vornewald PM, Oudhoff MJ. Helminths get MIFfed by the tuft cell – ILC2 circuit. Immunol Cell Biol 2022; 100:301-303. [DOI: 10.1111/imcb.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Pia M Vornewald
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|