1
|
Sangani KA, Parker ME, Anderson HD, Chen L, Pandey SP, Pierre JF, Meisel M, Riesenfeld SJ, Hinterleitner R, Jabri B. Epigenetic control of commensal induced Th2 Responses and Intestinal immunopathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610485. [PMID: 39257820 PMCID: PMC11383986 DOI: 10.1101/2024.08.30.610485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding the initiation of T-helper (Th)-2 immunity is crucial for addressing allergic diseases that have been linked to the commensal microbiota. However, Th2 responses are notably absent from known host-microbiota intestinal immune circuits. Notably, the commensal protist Tritrichomonas induces a transient innate ILC2 circuit rather than a chronic Th2 circuit. Canonical Th2 responses rely on the induction of IL-4 production by innate cells. This study shows that the absence of Tet2 , a DNA demethylase, reprograms naïve T cells to autonomously produce IL-4 upon T cell receptor stimulation, bypassing the need for IL-4 from innate cells for Th2 differentiation. Loss of this checkpoint induces chronic Th2 responses to Tritrichomonas , associated with IL-25-dependent barrier dysfunction and increased susceptibility to allergic pathology in response to dietary antigens. Sentence Summary Regulation of cell autonomous IL-4 in T cells is critical to prevent dysregulated Th2 immunity to commensals and predisposition to allergy.
Collapse
|
2
|
Perdijk O, Butler A, Macowan M, Chatzis R, Bulanda E, Grant RD, Harris NL, Wypych TP, Marsland BJ. Antibiotic-driven dysbiosis in early life disrupts indole-3-propionic acid production and exacerbates allergic airway inflammation in adulthood. Immunity 2024; 57:1939-1954.e7. [PMID: 39013465 DOI: 10.1016/j.immuni.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Antibiotic use in early life disrupts microbial colonization and increases the risk of developing allergies and asthma. We report that mice given antibiotics in early life (EL-Abx), but not in adulthood, were more susceptible to house dust mite (HDM)-induced allergic airway inflammation. This susceptibility was maintained even after normalization of the gut microbiome. EL-Abx decreased systemic levels of indole-3-propionic acid (IPA), which induced long-term changes to cellular stress, metabolism, and mitochondrial respiration in the lung epithelium. IPA reduced mitochondrial respiration and superoxide production and altered chemokine and cytokine production. Consequently, early-life IPA supplementation protected EL-Abx mice against exacerbated HDM-induced allergic airway inflammation in adulthood. These results reveal a mechanism through which EL-Abx can predispose the lung to allergic airway inflammation and highlight a possible preventative approach to mitigate the detrimental consequences of EL-Abx.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Alana Butler
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew Macowan
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Roxanne Chatzis
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Edyta Bulanda
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rhiannon D Grant
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Nicola L Harris
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Tomasz P Wypych
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland; Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Benjamin J Marsland
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Grondin JA, Jamal A, Mowna S, Seto T, Khan WI. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024; 13:608. [PMID: 39204209 PMCID: PMC11356857 DOI: 10.3390/pathogens13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal parasites, including helminths and protozoa, account for a significant portion of the global health burden. The gastrointestinal (GI) tract not only serves as the stage for these parasitic infections but also as the residence for millions of microbes. As the intricacies of the GI microbial milieu continue to unfold, it is becoming increasingly apparent that the interactions between host, parasite, and resident microbes help dictate parasite survival and, ultimately, disease outcomes. Across both clinical and experimental models, intestinal parasites have been shown to impact microbial composition and diversity. Reciprocally, microbes can directly influence parasitic survival, colonization and expulsion. The gut microbiota can also indirectly impact parasites through the influence and manipulation of the host. Studying this host-parasite-microbiota axis may help bring about novel therapeutic strategies for intestinal parasitic infection as well as conditions such as inflammatory bowel disease (IBD). In this review, we explore the relationship between intestinal parasites, with a particular focus on common protozoa and helminths, and the gut microbiota, and how these interactions can influence the host defence and intestinal immune response. We will also explore the impact of this tripartite relationship in a clinical setting and its broader implications for human health.
Collapse
Affiliation(s)
- Jensine A. Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asif Jamal
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sadrina Mowna
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
4
|
Rajeev S, Li S, Leon-Coria A, Wang A, Kraemer L, Wang SJ, Boim A, Flannigan K, Shute A, Baggio CH, Callejas BE, MacNaughton WK, Finney CAM, McKay DM. Enteric tuft cells coordinate timely expulsion of the tapeworm Hymenolepis diminuta from the murine host by coordinating local but not systemic immunity. PLoS Pathog 2024; 20:e1012381. [PMID: 39083533 PMCID: PMC11290655 DOI: 10.1371/journal.ppat.1012381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.
Collapse
Affiliation(s)
- Sruthi Rajeev
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - ShuHua Li
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Aralia Leon-Coria
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Kraemer
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Susan Joanne Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Annaliese Boim
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Kyle Flannigan
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Shute
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane H. Baggio
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blanca E. Callejas
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Constance A. M. Finney
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Billipp TE, Fung C, Webeck LM, Sargent DB, Gologorsky MB, Chen Z, McDaniel MM, Kasal DN, McGinty JW, Barrow KA, Rich LM, Barilli A, Sabat M, Debley JS, Wu C, Myers R, Howitt MR, von Moltke J. Tuft cell-derived acetylcholine promotes epithelial chloride secretion and intestinal helminth clearance. Immunity 2024; 57:1243-1259.e8. [PMID: 38744291 PMCID: PMC11168877 DOI: 10.1016/j.immuni.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.
Collapse
Affiliation(s)
- Tyler E Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Connie Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily M Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Derek B Sargent
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew B Gologorsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Darshan N Kasal
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - John W McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kaitlyn A Barrow
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucille M Rich
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Mark Sabat
- Takeda Pharmaceuticals, San Diego, CA, USA
| | - Jason S Debley
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Michael R Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Han A, Hudson-Paz C, Robinson BG, Becker L, Jacobson A, Kaltschmidt JA, Garrison JL, Bhatt AS, Monack DM. Temperature-dependent differences in mouse gut motility are mediated by stress. Lab Anim (NY) 2024; 53:148-159. [PMID: 38806681 PMCID: PMC11147774 DOI: 10.1038/s41684-024-01376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic-pituitary-adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways.
Collapse
Affiliation(s)
- Alvin Han
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | - Beatriz G Robinson
- Neurosciences IDP Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Laren Becker
- Department of Medicine (Gastroenterology and Hepatology), Stanford University, Stanford, CA, USA
| | - Amanda Jacobson
- Genentech Inc., Research and Early Development, Immunology Discovery, South San Francisco, CA, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, CA, USA
- Global Consortium for Reproductive Longevity & Equality, Novato, CA, USA
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Yang L, He H, Guo XK, Wang J, Wang W, Li D, Liang S, Shao F, Liu W, Hu X. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 2024; 57:1056-1070.e5. [PMID: 38614091 DOI: 10.1016/j.immuni.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEβ7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Kun Guo
- Chinese Institutes for Medical Research, Beijing, China
| | - Jiali Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Wenwen Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Da Li
- National Institute of Biological Sciences, Beijing, China
| | - Shaonan Liang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wanli Liu
- Institute for Immunology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China.
| |
Collapse
|
8
|
Mules TC, Tang JS, Vacca F, Yumnam B, Schmidt A, Lavender B, Maclean K, Noble SL, Waugh C, van Ginkel R, Camberis M, Le Gros G, Inns S. Modulation of intestinal epithelial permeability by chronic small intestinal helminth infections. Immunol Cell Biol 2024; 102:396-406. [PMID: 38648862 DOI: 10.1111/imcb.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | - Jeffry S Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Alfonso Schmidt
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Kate Maclean
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Stephen Inns
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| |
Collapse
|
9
|
Sun XM, Hao CY, Wu AQ, Luo ZN, El-Ashram S, Alouffi A, Gu Y, Liu S, Huang JJ, Zhu XP. Trichinella spiralis -induced immunomodulation signatures on gut microbiota and metabolic pathways in mice. PLoS Pathog 2024; 20:e1011893. [PMID: 38166140 PMCID: PMC10786400 DOI: 10.1371/journal.ppat.1011893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
The hygiene hypothesis proposes that decreased exposure to infectious agents in developed countries may contribute to the development of allergic and autoimmune diseases. Trichinella spiralis, a parasitic roundworm, causes trichinellosis, also known as trichinosis, in humans. T. spiralis had many hosts, and almost any mammal could become infected. Adult worms lived in the small intestine, while the larvae lived in muscle cells of the same mammal. T. spiralis was a significant public health threat because it could cause severe illness and even death in humans who eat undercooked or raw meat containing the parasite. The complex interactions between gastrointestinal helminths, gut microbiota, and the host immune system present a challenge for researchers. Two groups of mice were infected with T. spiralis vs uninfected control, and the experiment was conducted over 60 days. The 16S rRNA gene sequences and untargeted LC/MS-based metabolomics of fecal and serum samples, respectively, from different stages of development of the Trichinella spiralis-mouse model, were examined in this study. Gut microbiota alterations and metabolic activity accompanied by parasite-induced immunomodulation were detected. The inflammation parameters of the duodenum (villus/crypt ratio, goblet cell number and size, and histological score) were involved in active inflammation and oxidative metabolite profiles. These profiles included increased biosynthesis of phenylalanine, tyrosine, and tryptophan while decreasing cholesterol metabolism and primary and secondary bile acid biosynthesis. These disrupted metabolisms adapted to infection stress during the enteral and parenteral phases and then return to homeostasis during the encapsulated phase. There was a shift from an abundance of Bacteroides in the parenteral phase to an abundance of probiotic Lactobacillus and Treg-associated-Clostridia in the encapsulated phase. Th2 immune response (IL-4/IL-5/IL-13), lamina propria Treg, and immune hyporesponsiveness metabolic pathways (decreased tropane, piperidine and pyridine alkaloid biosynthesis and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid) were all altered. These findings enhanced our understanding of gut microbiota and metabolic profiles of Trichinella -infected mice, which could be a driving force in parasite-shaping immune system maintenance.
Collapse
Affiliation(s)
- Xi-Meng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chun-Yue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - An-Qi Wu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ze-Ni Luo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong province, China
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sha Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing-Jing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin-Ping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
11
|
Lane JM, Brosschot TP, Gatti DM, Gauthier CM, Lawrence KM, Pluzhnikova V, Reynolds LA. Chronic small intestinal helminth infection perturbs bile acid homeostasis and disrupts bile acid signaling in the murine small intestine. FRONTIERS IN PARASITOLOGY 2023; 2:1214136. [PMID: 39816838 PMCID: PMC11731828 DOI: 10.3389/fpara.2023.1214136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2023] [Indexed: 01/18/2025]
Abstract
Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection. We found that murine helminth infection resulted in consistently reduced concentrations of specific taurine-conjugated primary BAs (T-α-MCA and T-CDCA) in the small intestinal luminal contents of mice. BA transporters facilitate the uptake of BAs from the small intestinal lumen, allowing BAs to engage with nuclear BA receptors, and helminth infected mice showed reduced expression of genes encoding basal BA transporters in the small intestine. Finally, we report that there is reduced signaling through the nuclear BA receptor FXR in both the proximal small intestine and ileum of mice during small intestinal helminth infection. Together, our data reveal disruptions to BA homeostasis and signaling in the small intestine during helminth infection. As BAs are known to impact many aspects of mucosal physiology and immunity, examining the functional consequences of BA disruptions during helminth infection will be an important avenue for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
12
|
Abstract
Just as mammals have coevolved with the intestinal bacterial communities that are part of the microbiota, intestinal helminths represent an important selective force on their mammalian host. The complex interaction between helminths, microbes, and their mammalian host is likely an important determinant of mutual fitness. The host immune system in particular is a critical interface with both helminths and the microbiota, and this crosstalk often determines the balance between tolerance and resistance against these widespread parasites. Hence, there are many examples of how both helminths and the microbiota can influence tissue homeostasis and homeostatic immunity. Understanding these processes at a cellular and molecular level is an exciting area of research that we seek to highlight in this review and that will potentially guide future treatment approaches.
Collapse
Affiliation(s)
- P'ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Myhill LJ, Williams AR. Diet-microbiota crosstalk and immunity to helminth infection. Parasite Immunol 2023; 45:e12965. [PMID: 36571323 DOI: 10.1111/pim.12965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/27/2022]
Abstract
Helminths are large multicellular parasites responsible for widespread chronic disease in humans and animals. Intestinal helminths live in close proximity with the host gut microbiota and mucosal immune network, resulting in reciprocal interactions that closely influence the course of infections. Diet composition may strongly regulate gut microbiota composition and intestinal immune function and therefore may play a key role in modulating anti-helminth immune responses. Characterizing the multitude of interactions that exist between different dietary components (e.g., dietary fibres), immune cells, and the microbiota, may shed new light on regulation of helminth-specific immunity. This review focuses on the current knowledge of how metabolism of dietary components shapes immune response during helminth infection, and how this information may be potentially harnessed to design new therapeutics to manage parasitic infections and associated diseases.
Collapse
Affiliation(s)
- Laura J Myhill
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
14
|
Morelli M, Kurek D, Ng CP, Queiroz K. Gut-on-a-Chip Models: Current and Future Perspectives for Host-Microbial Interactions Research. Biomedicines 2023; 11:biomedicines11020619. [PMID: 36831155 PMCID: PMC9953162 DOI: 10.3390/biomedicines11020619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The intestine contains the largest microbial community in the human body, the gut microbiome. Increasing evidence suggests that it plays a crucial role in maintaining overall health. However, while many studies have found a correlation between certain diseases and changes in the microbiome, the impact of different microbial compositions on the gut and the mechanisms by which they contribute to disease are not well understood. Traditional pre-clinical models, such as cell culture or animal models, are limited in their ability to mimic the complexity of human physiology. New mechanistic models, such as organ-on-a-chip, are being developed to address this issue. These models provide a more accurate representation of human physiology and could help bridge the gap between clinical and pre-clinical studies. Gut-on-chip models allow researchers to better understand the underlying mechanisms of disease and the effect of different microbial compositions on the gut. They can help to move the field from correlation to causation and accelerate the development of new treatments for diseases associated with changes in the gut microbiome. This review will discuss current and future perspectives of gut-on-chip models to study host-microbial interactions.
Collapse
|
15
|
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays. Parasit Vectors 2022; 15:354. [PMID: 36184586 PMCID: PMC9528173 DOI: 10.1186/s13071-022-05443-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. METHODS Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. RESULTS Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. CONCLUSIONS Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity.
Collapse
|
16
|
Perona-Wright G, McSorley HJ. Lessons from helminths: what worms have taught us about mucosal immunology. Mucosal Immunol 2022; 15:1049-1051. [PMID: 35999461 DOI: 10.1038/s41385-022-00560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Affiliation(s)
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
17
|
Oyesola OO, Souza COS, Loke P. The Influence of Genetic and Environmental Factors and Their Interactions on Immune Response to Helminth Infections. Front Immunol 2022; 13:869163. [PMID: 35572520 PMCID: PMC9103684 DOI: 10.3389/fimmu.2022.869163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Helminth infection currently affect over 2 billion people worldwide, with those with the most pathologies and morbidities, living in regions with unequal and disproportionate access to effective healthcare solutions. Host genetics and environmental factors play critical roles in modulating and regulating immune responses following exposure to various pathogens and insults. However, the interplay of environment and genetic factors in influencing who gets infected and the establishment, persistence, and clearance of helminth parasites remains unclear. Inbred strains of mice have long been used to investigate the role of host genetic factors on pathogenesis and resistance to helminth infection in a laboratory setting. This review will discuss the use of ecological and environmental mouse models to study helminth infections and how this could be used in combination with host genetic variation to explore the relative contribution of these factors in influencing immune response to helminth infections. Improved understanding of interactions between genetics and the environment to helminth immune responses would be important for efforts to identify and develop new prophylactic and therapeutic options for the management of helminth infections and their pathogenesis.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health, Bethesda, MD, United States
| | | | | |
Collapse
|