1
|
Sánchez-González JL, Sánchez-Gil A, Vicente-Muñoz E, Navarro-López V, Martín-Vallejo J, Perez J. Pharmacological interventions and telomere length in patients with schizophrenia and bipolar disorder: A systematic review and meta-analysis. J Psychiatr Res 2025; 186:33-49. [PMID: 40209537 DOI: 10.1016/j.jpsychires.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Patients with schizophrenia and bipolar disorder have a life expectancy shorter than the general population. Cellular mechanisms underlying accelerated ageing, such as telomere shortening, may contribute to this premature mortality. We aimed to provide a comprehensive evaluation of the impact of pharmacological treatments for schizophrenia and bipolar disorder on telomere length. METHOD PRISMA/MOOSE systematic review and meta-analysis from inception to June 2024. PubMed, Cochrane Library, SCOPUS, Web of Science, Embase and PsycInfo databases were searched for eligible studies. Methodological quality and risk of bias were evaluated with the Newcastle-Ottawa Scale and the Risk of Bias In Non-randomized Studies - of Exposure (ROBINS-E) respectively. RESULTS An initial search retrieved 2133 articles. However, only 28 studies were finally included in qualitative synthesis and 19 in meta-analysis. All studies identified in the review were observational. Random-effects model analysis was used to quantify the difference in telomere length between cohorts of patients with schizophrenia or bipolar disorder and healthy control groups. The meta-analysis confirmed that telomere length was shorter in patients with schizophrenia (SMD = 0.35, 95 % CI 0.11 to 0.60; p=<0.0001) and bipolar disorder (SMD = 0.18, 95 % CI -0.04 to 0.39 p=<0.0001) than in healthy controls. This difference was not modified by predominant treatment with either lithium (SMD = 0.37, 95 % CI 0.04 to 0.69; p=<0.0001) or antipsychotics (SMD = 0.20, 95 % CI 0.02 to 0.38; p=<0.0001) at cohort level across studies. CONCLUSIONS Patients with schizophrenia or bipolar disorder have shorter telomeres than healthy populations. Predominant treatment with lithium or antipsychotics at cohort level did not have an impact on such shortening difference. REGISTRATION PROSPERO CRD42024598840.
Collapse
Affiliation(s)
- Juan Luis Sánchez-González
- Faculty of Nursing and Physiotherapy, Department of Nursing and Physiotherapy University of Salamanca, Salamanca, 37007, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Alba Sánchez-Gil
- National Centre of Reference for People with Alzheimer's Disease and Other Dementias, Salamanca, 37008, Spain
| | - Elsa Vicente-Muñoz
- Faculty of Medicine, Department of Psychiatry, University of Salamanca, Salamanca, 37007, Spain
| | - Víctor Navarro-López
- Faculty of Health Sciences, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, 28032, Spain
| | - Javier Martín-Vallejo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Faculty of Medicine, Department of Statistics, University of Salamanca, Salamanca, 37007, Spain
| | - Jesus Perez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Faculty of Medicine, Department of Psychiatry, University of Salamanca, Salamanca, 37007, Spain; Department of Psychiatry, University of Cambridge, Cambridge, CB20SZ, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB215EF, UK; Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
2
|
Squassina A, Pisanu C, Menesello V, Meloni A, Congiu D, Manchia M, Paribello P, Abate M, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Treatment-Resistant Depression and Response to Electroconvulsive Therapy: A Pilot Longitudinal Study. J ECT 2025; 41:93-100. [PMID: 39178054 DOI: 10.1097/yct.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
OBJECTIVES In this study, we investigated if changes in leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNA-cn), 2 markers of cellular aging, are associated with treatment-resistant depression (TRD) and with response to electroconvulsive therapy (ECT). METHODS LTL and mtDNA-cn were measured in 31 TRD patients before (T0), 1 week (T1), and 4 weeks (T2) after the ECT course, as well as in a sample of 65 healthy controls. RESULTS TRD patients had significantly shorter LTL and higher mtDNA-cn compared with healthy controls at baseline. In the TRD sample, LTL was inversely correlated with Montgomery-Åsberg Depression Rating Scale scores at baseline. Baseline levels of LTL or mtDNA-cn were not correlated with response to ECT. Similarly, changes in LTL or mtDNA-cn were not associated with response to ECT either when considered as a dichotomous trait (responders vs nonresponders) or as a percentage change in symptoms improvements. CONCLUSIONS Ours is the first longitudinal study exploring the role of LTL and mtDNA-cn in response to ECT. Findings of this pilot investigation suggest that LTL and mtDNA-cn may constitute disease biomarkers for TRD but are not involved in response to ECT.
Collapse
Affiliation(s)
- Alessio Squassina
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anna Meloni
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara," Verona, Italy
| | | | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | | | | |
Collapse
|
3
|
Solh T, Cevher ŞC. The relationship between neuropsychiatric disorders and aging: A review on telomere length, oxidative stress, and inflammation. Behav Brain Res 2025; 485:115528. [PMID: 40064353 DOI: 10.1016/j.bbr.2025.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Aging is the group of time-independent changes that occur in an organism and that ultimately end in death. The relationship between aging and neuropsychiatric disorders is complex. Not only does the incidence of several neuropsychiatric disorders rise with age, but also these disorders are linked with premature mortality and are even thought to be syndromes of accelerated biological aging. Oxidative stress, inflammation and telomere length are factors commonly used to assess biological aging. The purpose of this review is to sum up the existing information about the state of those factors in schizophrenia, depression, bipolar disorder and anxiety disorders, and to summarize the effects of treatment on telomere length in patients with those neuropsychiatric disorders. The main focus, however, is on telomere length seeing the highly controversial study results on this biomarker in neuropsychiatric disorders. There is no scientific consensus on the state of those factors in the mentioned neuropsychiatric disorders or on the effects of treatment on telomere length, thus further research is needed where confounding variables are controlled. Regarding telomere length, it is highly important to explore whether short telomeres lead to the development of neuropsychiatric disorders or vice versa, as it carries huge clinical potential.
Collapse
Affiliation(s)
- Tala Solh
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Şule Coşkun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
4
|
Sakrajda K, Rybakowski JK. The Mechanisms of Lithium Action: The Old and New Findings. Pharmaceuticals (Basel) 2025; 18:467. [PMID: 40283904 PMCID: PMC12030015 DOI: 10.3390/ph18040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 04/29/2025] Open
Abstract
Despite lithium's presence in modern psychiatry for three-quarters of a century, the mechanisms of its therapeutic action have not been fully elucidated. This article presents the evolution of the views on these mechanisms, and both the old and new findings are discussed. Among the old mechanisms, lithium's effect on the purinergic system; electrolyte metabolism; membrane transport; and second messenger systems, namely, cyclic nucleotide and phosphatidylinositol (PI), glycogen synthase kinase-3beta (GSK-3β), brain-derived neurotrophic factor, and neurotransmitters, are discussed. The new data were obtained from in vitro studies, molecular biology, and genetic research. They showed the effects of lithium on the immune system, biological rhythms, telomere functions, and mitochondria. In this article, each lithium mechanism is considered in the light of its association with the pathogenesis of bipolar disorder or/and as a marker of the lithium response. Although not exhaustive, this review elucidates the multiple potential mechanisms of lithium action. It was also observed that many seemingly "old" mechanisms have experienced a resurgence in research conducted during the 21st century. Additionally, many studies converged on the previously postulated mechanisms of lithium inhibiting GSK-3β and PI.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Janusz K. Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
5
|
Ormerod MBEG, Ueland T, Aas M, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Mlakar V, Andreou D, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Limited evidence of association between dysregulated immune marker levels and telomere length in severe mental disorders. Acta Neuropsychiatr 2025; 37:e4. [PMID: 39844366 DOI: 10.1017/neu.2024.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders. METHODS Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ (N = 301) or BD (N = 211) and a healthy control group (HC, N = 378). TL was analysed with linear regressions for associations with levels of 12 immune markers linked to SCZ or BD. Adjustments were made for a broad range of potential confounding variables. TL was measured by quantitative polymerase chain reaction (qPCR) and the immune markers were measured by enzyme immunoassays. RESULTS A positive association between levels of soluble tumour necrosis factor receptor 1A (sTNF-R1) and TL in SCZ (β = 0.191, p = 0.012) was observed. Plasma levels of the other immune markers were not significantly associated with TL in the BD, SCZ or HC groups. CONCLUSION There was limited evidence of association between immune markers and TL in SCZ and BD. The results provide little support for involvement of immune dysregulation, as reflected by current systemic markers, in telomere attrition-related accelerated ageing in severe mental disorders.
Collapse
Affiliation(s)
- Monica B E G Ormerod
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Monica Aas
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England, UK
- Department of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Gabriela Hjell
- Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | - Linn Rødevand
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | | | - Vid Mlakar
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dimitrios Andreou
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine V Lagerberg
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
6
|
Courtes AC, Jha R, Topolski N, Soares JC, Barichello T, Fries GR. Exploring accelerated aging as a target of bipolar disorder treatment: A systematic review. J Psychiatr Res 2024; 180:291-300. [PMID: 39476539 PMCID: PMC11793687 DOI: 10.1016/j.jpsychires.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Bipolar disorder (BD) has been linked to accelerated aging processes, with many studies suggesting that drugs used to treat BD may modulate pathways related to aging. This systematic review aimed to determine whether FDA-approved pharmacotherapies for BD have reported effects on aging biomarkers across clinical and preclinical studies. We conducted searches in PubMed and PsychINFO and followed PRISMA guidelines. Out of 6400 records identified, 19 studies met the inclusion criteria. Most preclinical studies tested the effects of BD drugs, especially lithium, on lifespan and telomere biology in cell and animal models. Clinical studies predominantly focused on lithium, evaluating aging markers like telomere length, telomerase, mitochondrial DNA copy number, and epigenetic age acceleration in individuals with BD. Findings indicate that chronic lithium treatment is associated with modulatory effects on aging biomarkers, particularly increased telomere length and telomerase activity. Conversely, some negative results were also reported. Limited evidence suggests potential aging-modulating properties of other mood stabilizers like valproic acid and lamotrigine, evidencing that further investigation is required. Despite variability across studies, the overall findings support the notion that pharmacotherapies used in BD present many effects of aging biomarkers. However, the field is still developing, with a clear emphasis on lithium and a lack of standardized methods to evaluate aging biomarkers in clinical samples. Further research exploring the anti-accelerated aging effects of BD drugs beyond lithium, their mechanisms of action, and potential synergistic effects is warranted.
Collapse
Affiliation(s)
- Alan C Courtes
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA
| | - Rohit Jha
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Jair C Soares
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Mutz J, Wong WLE, Powell TR, Young AH, Dawe GS, Lewis CM. The duration of lithium use and biological ageing: telomere length, frailty, metabolomic age and all-cause mortality. GeroScience 2024; 46:5981-5994. [PMID: 38539016 PMCID: PMC11493902 DOI: 10.1007/s11357-024-01142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/17/2024] [Indexed: 10/23/2024] Open
Abstract
Lithium is an established first-line treatment for bipolar disorder. Beyond its therapeutic effect as a mood stabiliser, lithium exhibits potential anti-ageing effects. This study aimed to examine the relationship between the duration of lithium use, biological ageing and mortality. The UK Biobank is an observational study of middle-aged and older adults. We tested associations between the duration of lithium use (number of prescriptions, total duration of use and duration of the first prescription period) and telomere length, frailty, metabolomic age (MileAge) delta, pulse rate and all-cause mortality. Five hundred ninety-one individuals (mean age = 57.49 years; 55% females) had been prescribed lithium. There was no evidence that the number of prescriptions (β = - 0.022, 95% CI - 0.081 to 0.037, p = 0.47), the total duration of use (β = - 0.005, 95% CI - 0.023 to 0.013, p = 0.57) or the duration of the first prescription period (β = - 0.018, 95% CI - 0.051 to 0.015, p = 0.29) correlated with telomere length. There was also no evidence that the duration of lithium use correlated with frailty or MileAge delta. However, a higher prescription count and a longer duration of use was associated with a lower pulse rate. The duration of lithium use did not predict all-cause mortality. We observed no evidence of associations between the duration of lithium use and biological ageing markers, including telomere length. Our findings suggest that the potential anti-ageing effects of lithium do not differ by the duration of use.
Collapse
Affiliation(s)
- Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK.
| | - Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Timothy R Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, UK
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
9
|
Packer A, Habiballa L, Tato-Barcia E, Breen G, Brooker H, Corbett A, Arathimos R, Ballard C, Hampshire A, Palmer A, Dima D, Aarsland D, Creese B, Malanchini M, Powell TR. Telomere length and cognitive changes in 7,877 older UK adults of European ancestry. FRONTIERS IN AGING 2024; 5:1480326. [PMID: 39553389 PMCID: PMC11564160 DOI: 10.3389/fragi.2024.1480326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
Background Telomere length (TL) has been linked to cognitive function, decline and dementia. This study aimed to explore whether both measured TL and genetic disposition for TL predict dimensions of cognitive performance in a longitudinal sample of older UK adults. Methods We analysed data from PROTECT study participants aged ≥50 years without a dementia diagnosis, who had completed longitudinal cognitive testing. We calculated polygenic scores for telomere length (PGS-TL) for 7,877 participants and measured relative telomere length (RTL) in a subgroup of 846 participants using DNA extracted from saliva samples collected within 6 months either side of their baseline cognitive testing. Latent growth models were used to examine whether RTL and PGS-TL predict both baseline and longitudinal changes in cognitive performance (4 time-points, annually). Results In the whole sample, we did not observe significant associations between either measure of telomere length and initial or longitudinal changes in cognitive performance. Stratifying by median age, in older adults (≥ ∼62 years), longer baseline RTL showed a nominal association with poorer baseline verbal reasoning performance (n = 423, M intercept = 47.58, B = -1.05, p = .011) and PGS-TL was associated with performance over time (n = 3,939; slope factor, M slope = 3.23, B = -0.45, p = .001; slope 2 factor, M slope 2 = 0.21, B = 0.13, p = .002). Conclusion Our findings suggest either the absence of a significant relationship between telomere length (RTL and PGS-TL) and cognitive performance (baseline and change over time), or possibly a weak age-dependent and domain-specific relationship, in older adults of European ancestry. More research is needed in representative and ancestrally diverse samples over a longer assessment period. Alternative biological ageing indicators may still provide utility in the early detection of individuals at risk for cognitive decline (e.g., pace-of ageing epigenetic clocks).
Collapse
Affiliation(s)
- Amy Packer
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Leena Habiballa
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Esteban Tato-Barcia
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, King’s College London, London, United Kingdom
| | - Gerome Breen
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, King’s College London, London, United Kingdom
| | - Helen Brooker
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Anne Corbett
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Ryan Arathimos
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Clive Ballard
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Adam Hampshire
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Abbie Palmer
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Psychology, School of Health and Psychological Sciences, City, University of London, London, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Byron Creese
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Margherita Malanchini
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Timothy R. Powell
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Kidd E, Meimaridou E, Williams J, Metherell LA, Walley AJ, Fairbrother UL. Choice of gDNA isolation method has a significant impact on average murine Telomere Length estimates. Prep Biochem Biotechnol 2024; 54:788-795. [PMID: 38088914 DOI: 10.1080/10826068.2023.2288572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Telomere Length (TL) and integrity is significantly associated with age-related disease, multiple genetic and environmental factors. We observe mouse genomic DNA (gDNA) isolation methods to have a significant impact on average TL estimates. The canonical qPCR method does not measure TL directly but via the ratio of telomere repeats to a single copy gene (SCG) generating a T/S ratio. We use a monochromatic-multiplex-qPCR (mmqPCR) method which multiplexes the PCR and enables quantification of the target and the single copy gene within the same qPCR reaction. We demonstrate that TL measurements, from murine gDNA, isolated via Spin Columns (SC) and Magnetic Beads (MB), generate significantly smaller T/S ratios compared to gDNA isolated via traditional phenol/chloroform methods. The former methods may impede correct TL estimation by producing non representative fragment sets and reducing qPCR efficacy. This work highlights discrepancies in TL measurements due to different extraction techniques. We recommend the use of gDNA isolation methods that are shown to preserve DNA length and integrity, such as phenol/chloroform isolation. We propose that widely used high throughput DNA isolation methodologies can create spurious associations within a sample set, thus creating misleading data. We suggest that published TL associations should be revisited in the light of these data.
Collapse
Affiliation(s)
- E Kidd
- School of Human Sciences, London Metropolitan University, London, UK
| | - E Meimaridou
- School of Human Sciences, London Metropolitan University, London, UK
| | - J Williams
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - L A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A J Walley
- Section of Molecular Biology, Institute of Medical and Biomedical Education, St George's, University of London, London, UK
| | - U L Fairbrother
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
11
|
Campisi M, Cannella L, Celik D, Gabelli C, Gollin D, Simoni M, Ruaro C, Fantinato E, Pavanello S. Mitigating cellular aging and enhancing cognitive functionality: visual arts-mediated Cognitive Activation Therapy in neurocognitive disorders. Front Aging Neurosci 2024; 16:1354025. [PMID: 38524114 PMCID: PMC10957554 DOI: 10.3389/fnagi.2024.1354025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
The growing phenomenon of population aging is redefining demographic dynamics, intensifying age-related conditions, especially dementia, projected to triple by 2050 with an enormous global economic burden. This study investigates visual arts-mediated Cognitive Activation Therapy (CAT) as a non-pharmacological CAT intervention targets both biological aging [leukocyte telomere length (LTL), DNA methylation age (DNAmAge)] and cognitive functionality. Aligning with a broader trend of integrating non-pharmacological approaches into dementia care. The longitudinal study involved 20 patients with mild to moderate neurocognitive disorders. Cognitive and functional assessments, and biological aging markers -i.e., LTL and DNAmAge- were analyzed before and after CAT intervention. Change in LTL was positively correlated with days of treatment (p =0.0518). LTL significantly elongated after intervention (p =0.0269), especially in men (p =0.0142), correlating with younger age (p =0.0357), and higher education (p =0.0008). DNAmAge remained instead stable post-treatment. Cognitive and functional improvements were observed for Copy of complex geometric figure, Progressive Silhouettes, Position Discrimination, Communication Activities of Daily Living-Second edition, Direct Functional Status (p < 0.0001) and Object decision (p =0.0594), but no correlations were found between LTL and cognitive gains. Visual arts-mediated CAT effectively mitigates cellular aging, especially in men, by elongating LTL. These findings underscore the potential of non-pharmacological interventions in enhancing cognitive and functional status and general well-being in dementia care. Further research with larger and longer-term studies is essential for validation.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dilek Celik
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carlo Gabelli
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Donata Gollin
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Marco Simoni
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Cristina Ruaro
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Elena Fantinato
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
- University Hospital of Padua, Padua, Italy
| |
Collapse
|
12
|
Spano L, Marie-Claire C, Godin O, Lebras A, Courtin C, Laplanche JL, Leboyer M, Aouizerate B, Lefrere A, Belzeaux R, Courtet P, Olié E, Dubertret C, Schwan R, Aubin V, Roux P, Polosan M, Samalin L, Haffen E, Bellivier F, Etain B. Decreased telomere length in a subgroup of young individuals with bipolar disorders: replication in the FACE-BD cohort and association with the shelterin component POT1. Transl Psychiatry 2024; 14:131. [PMID: 38429270 PMCID: PMC10907586 DOI: 10.1038/s41398-024-02824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
Bipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening.
Collapse
Affiliation(s)
- Luana Spano
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Cynthia Marie-Claire
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France.
| | - Ophélia Godin
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
| | - Apolline Lebras
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Cindie Courtin
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Jean-Louis Laplanche
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Département de Biochimie et Biologie Moléculaire, DMU BioGeM, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMUIMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, France
- Centre Hospitalier Charles Perrens, Laboratoire NutriNeuro (UMR INRA 1286), Université de Bordeaux, Bordeaux, France
| | - Antoine Lefrere
- Fondation FondaMental, Créteil, France
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, France
- INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
- Université Montpellier, Montpellier, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Olié
- Fondation FondaMental, Créteil, France
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France
- Université de Paris, Inserm UMR1266, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Raymund Schwan
- Fondation FondaMental, Créteil, France
- Université de Lorraine, Centre Psychothérapique de Nancy, Inserm U1254, Nancy, France
| | - Valérie Aubin
- Fondation FondaMental, Créteil, France
- Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Paul Roux
- Fondation FondaMental, Créteil, France
- Centre Hospitalier de Versailles, Service Universitaire de Psychiatrie d'Adulte et d'Addictologie, Le Chesnay, France
- Equipe DisAP-PsyDev, CESP, Université Versailles Saint- Quentin-en-Yvelines - Paris-Saclay, Inserm, Villejuif, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, France
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Ludovic Samalin
- Fondation FondaMental, Créteil, France
- Centre Hospitalier et Universitaire, Département de Psychiatrie, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Emmanuel Haffen
- Fondation FondaMental, Créteil, France
- Service de Psychiatrie de l'Adultre, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, UFC, UBFC, Besançon, France
| | - Frank Bellivier
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Bruno Etain
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| |
Collapse
|
13
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
14
|
Ramaraj JA, Narayan S. Anti-aging Strategies and Topical Delivery of Biopolymer-based Nanocarriers for Skin Cancer Treatment. Curr Aging Sci 2024; 17:31-48. [PMID: 36941817 DOI: 10.2174/1874609816666230320122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/07/2023] [Accepted: 01/23/2023] [Indexed: 03/23/2023]
Abstract
Environmental factors like UV radiation and epigenetic changes are significant factors for skin cancer that trigger early aging. This review provides essential information on cancer development concerning aging, the receptors involved, and the therapeutic targets. Biopolymers like polysaccharide, polyphenols, proteins, and nucleic acid plays a vital role in the regulation of normal cell homeostasis. Therefore, it is pertinent to explore the role of biopolymers as antiaging formulations and the possibility of these formulations being used against cancer via topical administrations. As UV radiation is one of the predominant factors in causing skin cancer, the association of receptors between aging and cancer indicated that insulin receptor, melatonin receptor, toll-like receptor, SIRT 1 receptor, tumor-specific T cell receptor and mitochondria-based targeting could be used to direct therapeutics for suppression of cancer and prevent aging. Biopolymer-based nanoformulations have tremendously progressed by entrapment of drugs like curcumin and resveratrol which can prevent cancer and aging simultaneously. Certain protein signaling or calcium and ROS signaling pathways are different for cancer and aging. The involvement of mitochondrial DNA mutation along with telomere shortening with a change in cellular energetics leading to genomic instability in the aging process can also induce mitochondrial dysfunction and epigenetic alterations leading to skin cancer. Therefore, the use of biopolymers as a topical supplement during the aging process can result in the prevention of cancer.
Collapse
Affiliation(s)
- Jino Affrald Ramaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
15
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
16
|
Mutz J, Lewis CM. Telomere Length Associations With Clinical Diagnosis, Age, and Polygenic Risk Scores for Anxiety Disorder, Depression, and Bipolar Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1012-1020. [PMID: 37881560 PMCID: PMC10593885 DOI: 10.1016/j.bpsgos.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Accelerated biological aging might contribute to the lower life expectancy of individuals with mental disorders. The aim of this study was to characterize telomere length, a biological hallmark of aging, in individuals with mental disorders. Methods The UK Biobank is a multicenter community-based observational study that recruited >500,000 middle-aged and older adults. Average leukocyte telomere length (telomere repeat copy number/single-copy gene ratio) was measured using quantitative polymerase chain reaction. Polygenic risk scores (PRSs) were calculated for individuals of European ancestry. We estimated differences in telomere length between individuals with anxiety disorder, depression, or bipolar disorder and people without mental disorders and examined associations with psychotropic medication use, age, and PRSs for these 3 disorders. Results The analyses included up to 308,725 participants. Individuals with depression had shorter telomeres than people without mental disorders (β = -0.011, 95% CI, -0.019 to -0.004, Bonferroni-corrected p = .027). Associations between bipolar disorder and telomere length differed by lithium use. There was limited evidence that individuals with an anxiety disorder had shorter telomeres. There was no evidence that associations between age and telomere length differed between individuals with and without these disorders. PRSs for depression, but not anxiety disorder or bipolar disorder, were associated with shorter telomeres (β = -0.006, 95% CI, -0.010 to -0.003, Bonferroni-corrected p = .001). Conclusions Differences in telomere length were observed primarily for individuals with depression or bipolar disorder and in individuals with a higher PRS for depression. There was no evidence that the association between age and telomere length differed between individuals with and without an anxiety disorder, depression, or bipolar disorder.
Collapse
Affiliation(s)
- Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Sparks AM, Spurgin LG, van der Velde M, Fairfield EA, Komdeur J, Burke T, Richardson DS, Dugdale HL. Telomere heritability and parental age at conception effects in a wild avian population. Mol Ecol 2022; 31:6324-6338. [PMID: 33586226 DOI: 10.1111/mec.15804] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Individual variation in telomere length is predictive of health and mortality risk across a range of species. However, the relative influence of environmental and genetic variation on individual telomere length in wild populations remains poorly understood. Heritability of telomere length has primarily been calculated using parent-offspring regression which can be confounded by shared environments. To control for confounding variables, quantitative genetic "animal models" can be used, but few studies have applied animal models in wild populations. Furthermore, parental age at conception may also influence offspring telomere length, but most studies have been cross-sectional. We investigated within- and between-parental age at conception effects and heritability of telomere length in the Seychelles warbler using measures from birds caught over 20 years and a multigenerational pedigree. We found a weak negative within-paternal age at conception effect (as fathers aged, their offspring had shorter telomeres) and a weak positive between-maternal age at conception effect (females that survived to older ages had offspring with longer telomeres). Animal models provided evidence that heritability and evolvability of telomere length were low in this population, and that variation in telomere length was not driven by early-life effects of hatch period or parental identities. Quantitative polymerase chain reaction plate had a large influence on telomere length variation and not accounting for it in the models would have underestimated heritability. Our study illustrates the need to include and account for technical variation in order to accurately estimate heritability, as well as other environmental effects, on telomere length in natural populations.
Collapse
Affiliation(s)
- Alexandra M Sparks
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Marco van der Velde
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Jan Komdeur
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Victoria, Mahé, Republic of Seychelles
| | - Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
19
|
Squassina A, Meloni A, Congiu D, Bosganas P, Patrinos GP, Lin R, Turecki G, Severino G, Ardau R, Chillotti C, Pisanu C. Analysis on in vitro effect of lithium on telomere length in lymphoblastoid cell lines from bipolar disorder patients with different clinical response to long-term lithium treatment. Hum Genomics 2022; 16:45. [PMID: 36253798 PMCID: PMC9575289 DOI: 10.1186/s40246-022-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background It has been suggested that bipolar disorder (BD) is associated with clinical and biological features of accelerated aging. In our previous studies, we showed that long-term lithium treatment was correlated with longer leukocyte telomere length (LTL) in BD patients. A recent study explored the role of TL in BD using patients-derived lymphoblastoid cell lines (LCLs), showing that baseline TL was shorter in BD compared to controls and that lithium in vitro increased TL but only in BD. Here, we used the same cell system (LCLs) to explore if a 7-day treatment protocol with lithium chloride (LiCl) 1 mM was able to highlight differences in TL between BD patients clinically responders (Li-R; n = 15) or non-responders (Li-NR; n = 15) to lithium, and if BD differed from non-psychiatric controls (HC; n = 15).
Results There was no difference in TL between BD patients and HC. Moreover, LiCl did not influence TL in the overall sample, and there was no difference between diagnostic or clinical response groups. Likewise, LiCl did not affect TL in neural precursor cells from healthy donors. Conclusions Our findings suggest that a 7-day lithium treatment protocol and the use of LCLs might not represent a suitable approach to deepen our understanding on the role of altered telomere dynamics in BD as previously suggested by studies in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00418-8.
Collapse
Affiliation(s)
- Alessio Squassina
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy.
| | - Anna Meloni
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy
| | - Donatella Congiu
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy
| | - Panagiotis Bosganas
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece.,College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Rixing Lin
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Giovanni Severino
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy.
| |
Collapse
|
20
|
Lima CNC, Suchting R, Scaini G, Cuellar VA, Favero-Campbell AD, Walss-Bass C, Soares JC, Quevedo J, Fries GR. Epigenetic GrimAge acceleration and cognitive impairment in bipolar disorder. Eur Neuropsychopharmacol 2022; 62:10-21. [PMID: 35810614 PMCID: PMC9427697 DOI: 10.1016/j.euroneuro.2022.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/20/2022]
Abstract
Bipolar disorder (BD) has been previously associated with clinical signs of premature aging, including accelerated epigenetic aging in blood and brain, and a steeper age-related decline in cognitive function. However, the clinical drivers and cognitive correlates of epigenetic aging in BD are still unknown. We aimed to investigate the relationship between multiple measures of epigenetic aging acceleration with clinical, functioning, and cognitive outcomes in patients with BD and controls. Blood genome-wide DNA methylation levels were measured in BD patients (n = 153) and matched healthy controls (n = 50) with the Infinium MethylationEPIC BeadChip (Illumina). Epigenetic age estimates were calculated using an online tool, including the recently developed lifespan predictor GrimAge, and analyzed with generalized linear models controlling for demographic variables and blood cell proportions. BD was significantly associated with greater GrimAge acceleration (AgeAccelGrim, β=0.197, p = 0.009), and significant group-dependent interactions were found between AgeAccelGrim and blood cell proportions (CD4+ T-lymphocytes, monocytes, granulocytes, and B-cells). Within patients, higher AgeAccelGrim was associated with worse cognitive function in multiple domains (short-term affective memory (β=-0.078, p = 0.030), short-term non-affective memory (β=-0.088, p = 0.018), inhibition (β=0.064, p = 0.046), and problem solving (β=-0.067, p = 0.034)), age of first diagnosis with any mood disorder (β=-0.076, p = 0.039) or BD (β=-0.102, p = 0.016), as well as with current non-smoking status (β=-0.392, p < 0.001). Overall, our findings support the contribution of epigenetic factors to the aging-related cognitive decline and premature mortality reported in BD patients, with an important driving effect of smoking in this population.
Collapse
Affiliation(s)
- Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Robert Suchting
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Valeria A Cuellar
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Alexandra Del Favero-Campbell
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Jair C Soares
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX.
| |
Collapse
|
21
|
Rodríguez-Fernández B, Gispert JD, Guigo R, Navarro A, Vilor-Tejedor N, Crous-Bou M. Genetically predicted telomere length and its relationship with neurodegenerative diseases and life expectancy. Comput Struct Biotechnol J 2022; 20:4251-4256. [PMID: 36051868 PMCID: PMC9399257 DOI: 10.1016/j.csbj.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2022] Open
Abstract
Telomere length (TL) is a biomarker of biological aging. Shorter telomeres have been associated with mortality and increased rates of age-related diseases. However, observational studies are unable to conclude whether TL is causally associated with those outcomes. Mendelian randomization (MR) was developed for assessing causality using genetic variants in epidemiological research. The objective of this study was to test the potential causal role of TL in neurodegenerative disorders and life expectancy through MR analysis. Summary level data were extracted from the most recent genome-wide association studies for TL, Alzheimer's disease (AD), Parkinson's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, Progressive Supranuclear Palsy and life expectancy. MR estimates revealed that longer telomeres inferred a protective effect on risk of AD (OR = 0.964; adjusted p-value = 0.039). Moreover, longer telomeres were significantly associated with increased life expectancy (βIVW = 0.011; adjusted p-value = 0.039). Sensitivity analyses suggested evidence for directional pleiotropy in AD analyses. Our results showed that genetically predicted longer TL may increase life expectancy and play a protective causal effect on AD. We did not observe significant causal relationships between longer TL and other neurodegenerative diseases. This suggests that the involvement of TL on specific biological mechanisms might differ between AD and life expectancy, with respect to that in other neurodegenerative diseases. Moreover, the presence of pleiotropy may reflect the complex interplay between TL homeostasis and AD pathophysiology. Further observational studies are needed to confirm these results.
Collapse
Key Words
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- Alzheimer’s disease
- CI, Confidence Interval
- FTD, Frontotemporal dementia
- GWAS, Genome-wide association study
- IV, Instrumental Variable
- IVW, Inverse-Variance Weighted
- LRRC34, Leucine Rich Repeat Containing 34
- Life expectancy
- MR, Mendelian Randomization
- MR-PRESSO, MR-Pleiotropy RESidual Sum and Outlier
- Mendelian randomization
- Neurodegenerative diseases
- OR, Odds ratio
- PD, Parkinson’s disease
- PSP, Progressive Supranuclear Palsy
- SE, Standard Error
- SNP, Single Nucleotide Polymorphism
- TL, Telomere length
- Telomere length
Collapse
Affiliation(s)
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO)-Bellvitge Biomedical Research Center (IDIBELL), Hospitalet del Llobregat, Spain
| |
Collapse
|
22
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
23
|
Spano L, Hennion V, Marie-Claire C, Bellivier F, Scott J, Etain B. Associations between circadian misalignment and telomere length in BD: an actigraphy study. Int J Bipolar Disord 2022; 10:14. [PMID: 35619042 PMCID: PMC9135941 DOI: 10.1186/s40345-022-00260-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Life expectancy is significantly decreased in bipolar disorder (BD). This is associated with accelerated cellular aging which can be estimated by telomere length (TL). However, specific determinants of shorter TL in BD are under-explored. This study examines whether circadian misalignment (i.e. mismatch between preferred and actual phase of circadian activity rhythms) is associated with shorter TL in BD. METHODS Euthymic individuals with BD (n = 101) undertook 21 consecutive days of actigraphy recording and completed the Composite Scale of Morningness (CSM) to assess phase preference for activities (chronotype). Polymerase chain reaction was used to measure TL in blood. Cluster analysis identified circadian aligned/misaligned subgroups as defined by preferred (CSM score) and actual phases of activity (actigraphically determined onset of active and inactive periods). We tested for any associations between TL and clusters, with adjustments for between-cluster differences in socio-demographic and illness factors. RESULTS We identified three clusters: an "Aligned Morning" cluster (n = 31) with preferred and actual timing of activity in the morning, an "Aligned Evening" cluster (n = 37) with preferred and actual timing of activity in the evening and a "Misaligned" cluster (n = 32) with an evening chronotype, but an earlier objective onset of active periods. After adjustment for confounders, we found that TL was significantly associated with circadian misalignment and older age. CONCLUSIONS Circadian misalignment may partly explain shorter TL in BD and could contribute to accelerated aging in these individuals.
Collapse
Affiliation(s)
- Luana Spano
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France
| | - Vincent Hennion
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France.,Université de Paris, Paris, France.,DMU Neurosciences, Département de Psychiatrie Et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, Paris, France
| | - Cynthia Marie-Claire
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France
| | - Frank Bellivier
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France.,Université de Paris, Paris, France.,DMU Neurosciences, Département de Psychiatrie Et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, Paris, France
| | - Jan Scott
- Université de Paris, Paris, France.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Bruno Etain
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France. .,Université de Paris, Paris, France. .,DMU Neurosciences, Département de Psychiatrie Et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, Paris, France. .,Département de Psychiatrie et de Médecine Addictologique, Centre Expert Troubles Bipolaires, Hôpital Fernand Widal, 200, rue du Faubourg Saint Denis, 75010, Paris Cedex, France.
| |
Collapse
|
24
|
Fang Y, Chen B, Liu Z, Gong AY, Gunning WT, Ge Y, Malhotra D, Gohara AF, Dworkin LD, Gong R. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J Clin Invest 2022; 132:141848. [PMID: 35166234 PMCID: PMC8843754 DOI: 10.1172/jci141848] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
As life expectancy continues to increase, clinicians are challenged by age-related renal impairment that involves podocyte senescence and glomerulosclerosis. There is now compelling evidence that lithium has a potent antiaging activity that ameliorates brain aging and increases longevity in Drosophila and Caenorhabditis elegans. As the major molecular target of lithium action and a multitasking protein kinase recently implicated in a variety of renal diseases, glycogen synthase kinase 3β (GSK3β) is overexpressed and hyperactive with age in glomerular podocytes, correlating with functional and histological signs of kidney aging. Moreover, podocyte-specific ablation of GSK3β substantially attenuated podocyte senescence and glomerular aging in mice. Mechanistically, key mediators of senescence signaling, such as p16INK4A and p53, contain high numbers of GSK3β consensus motifs, physically interact with GSK3β, and act as its putative substrates. In addition, therapeutic targeting of GSK3β by microdose lithium later in life reduced senescence signaling and delayed kidney aging in mice. Furthermore, in psychiatric patients, lithium carbonate therapy inhibited GSK3β activity and mitigated senescence signaling in urinary exfoliated podocytes and was associated with preservation of kidney function. Thus, GSK3β appears to play a key role in podocyte senescence by modulating senescence signaling and may be an actionable senostatic target to delay kidney aging.
Collapse
Affiliation(s)
- Yudong Fang
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Chen
- Division of Nephrology, Department of Medicine and.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Yan Ge
- Division of Nephrology, Department of Medicine and
| | | | | | - Lance D Dworkin
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
25
|
Decreased leucocyte telomere length in male patients with chronic bipolar disorder: lack of effect of long-term lithium treatment. Acta Neuropsychiatr 2021; 33:299-306. [PMID: 34369336 DOI: 10.1017/neu.2021.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) may be connected with accelerated aging, the marker of this can be shorter telomere length (TL). Some data suggest that lithium may exert a protective effect against telomere shortening. The study aimed to compare the TL between patients with BD and control subjects. The effect of long-term lithium treatment was also assessed. METHODS The study group comprised 41 patients with BD, including 29 patients treated longitudinally with lithium (mean 16.5 years) and 20 healthy people. TL was assessed by the quantitative polymerase chain reaction (qPCR). RESULTS In the control group, the TL was significantly longer in males than in females. Male bipolar patients had significantly shorter TL compared with the control male group. In bipolar patients, there was no correlation between TL and duration of treatment. The TL was negatively correlated with age in male bipolar patients. CONCLUSIONS The study did not confirm the lithium effect on TL in bipolar patients. TL showed gender differences, being shorter in BD males, compared to control males, and longer in healthy males, compared to control females.
Collapse
|
26
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Lithium treatment and human hippocampal neurogenesis. Transl Psychiatry 2021; 11:555. [PMID: 34718328 PMCID: PMC8557207 DOI: 10.1038/s41398-021-01695-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Lithium is a first-line treatment for bipolar disorder, where it acts as a mood-stabilizing agent. Although its precise mechanism remains unclear, neuroimaging studies have shown that lithium accumulates in the hippocampus and that chronic use amongst bipolar disorder patients is associated with larger hippocampal volumes. Here, we tested the chronic effects of low (0.75 mM) and high (2.25 mM) doses of lithium on human hippocampal progenitor cells and used immunocytochemistry to investigate the effects of lithium on cell parameters implicated in neurogenesis. Corresponding RNA-sequencing and gene-set enrichment analyses were used to evaluate whether genes affected by lithium in our model overlap with those regulating the volume of specific layers of the dentate gyrus. We observed that high-dose lithium treatment in human hippocampal progenitors increased the generation of neuroblasts (P ≤ 0.01), neurons (P ≤ 0.01), and glia (P ≤ 0.001), alongside the expression of genes, which regulate the volume of the molecular layer of the dentate gyrus. This study provides empirical support that adult hippocampal neurogenesis and gliogenesis are mechanisms that could contribute to the effects of lithium on human hippocampal volume.
Collapse
|
28
|
Nolte J. Lrrc34 Interacts with Oct4 and Has an Impact on Telomere Length in Mouse Embryonic Stem Cells. Stem Cells Dev 2021; 30:1093-1102. [PMID: 34549596 DOI: 10.1089/scd.2021.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomere length maintenance in pluripotent stem cells (PSCs) is a main characteristic and a major premise for their undifferentiated long-term survival. However, little is known about the factors that control telomere length and elongation in these cells. Here, I describe Lrrc34 (leucine-rich repeat 34) as a novel telomere length regulating gene in murine embryonic stem cells. Downregulation of Lrrc34 results in significant reduction of telomerase activity and telomere length over time while also influencing the expression of known telomere length-associated genes. Generating induced PSCs (iPSCs) with Lrrc34 as a fifth factor in classical Yamanaka reprogramming increases the efficiency but did not have an impact on telomere length in the resulting iPSCs. Moreover, Lrrc34 was found to interact with Oct4, connecting the pluripotency network to telomere length regulation.
Collapse
Affiliation(s)
- Jessica Nolte
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Peña E, León-Mengíbar J, Powell TR, Caixàs A, Cardoner N, Rosa A. Telomere length in patients with obesity submitted to bariatric surgery: A systematic review. EUROPEAN EATING DISORDERS REVIEW 2021; 29:842-853. [PMID: 34545641 DOI: 10.1002/erv.2865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Patients with obesity show evidence of increased levels of inflammation, oxidative stress and premature ageing. Telomere length (TL) is a key marker of cellular ageing, and patients with obesity often present shorter TL. Bariatric surgery (BS) is currently the most effective treatment for severe obesity. The aim of this systematic review was to explore whether the beneficial health effects observed after surgery in obese patients correspond to a restoration in TL or slower rates of shortening. As a secondary aim, we evaluated, at baseline and post-surgery, the relationship between TL and different factors that could play a role in TL changes along time. METHODS Searches for relevant articles were performed in MEDLINE, Web of Knowledge and SCOPUS. Prospective longitudinal studies that evaluated leukocyte TL in adult patients who had undergone BS were included. Data were extracted and evaluated by two independent researchers. The protocol was registered in PROSPERO with the number CRD42020197711. RESULTS Seven studies based on independent samples that fulfilled our inclusion criteria were included. Obese patients showed shorter telomeres compared to healthy individuals. Long-term studies (>2 years) seem to suggest an improvement in TL after surgery presumably due to the improvement of the inflammatory and oxidative levels of the patients induced by weight loss. CONCLUSION Studies seem to point towards a beneficial long-term effect of BS on TL recovery. However, the scarce number of studies and the heterogeneity in the variables analysed in the different cohorts make it difficult to draw a firm conclusion. More studies are needed to evaluate long-term changes to TL following BS.
Collapse
Affiliation(s)
- Eleonora Peña
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.,Institut de Biomedicina, Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep León-Mengíbar
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Corporacio Sanitària Parc taulí, Sabadell, Spain.,Endocrinology and Nutrition Department, Hospital Universitari Parc Tauli, Sabadell, Spain.,Medicine Department, Universitat Autònoma de Barcelona (UAB), Sabadell, Spain
| | - Timothy R Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Assumpta Caixàs
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Corporacio Sanitària Parc taulí, Sabadell, Spain.,Endocrinology and Nutrition Department, Hospital Universitari Parc Tauli, Sabadell, Spain
| | - Narcís Cardoner
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Corporacio Sanitària Parc taulí, Sabadell, Spain.,Mental Health Department, Corporació Sanitària Parc Taulí Sabadell, Barcelona, Spain.,Depression and Anxiety Program, Department of Mental Health, Parc Tauli Sabadell, Hospital Universitari, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network on Mental Health (CIBERSAM), Instituto Salud Carlos III, Barcelona, Spain
| | - Araceli Rosa
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.,Institut de Biomedicina, Universitat de Barcelona (UB), Barcelona, Spain.,Centre for Biomedical Network on Mental Health (CIBERSAM), Instituto Salud Carlos III, Barcelona, Spain
| |
Collapse
|
30
|
Mini-review: The anti-aging effects of lithium in bipolar disorder. Neurosci Lett 2021; 759:136051. [PMID: 34139318 DOI: 10.1016/j.neulet.2021.136051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The medical use of lithium has grown since its initial introduction in the 1800s as a treatment for gout. Today, the divalent cation remains as the pharmacological gold standard in treatment of bipolar disorder (BD) with strong mood stabilizing effects. Lithium has demonstrated efficacy in the treatment of acute affective episodes, in the reduction of affective episode recurrence, and in significantly decreasing the risk of suicide in patients. BD has been consistently associated with clinical signs of accelerated aging, including increased rates of age-related diseases such as cardiovascular diseases, malignancies, and diabetes mellitus. This clinical scenario parallels accelerated aging mechanisms observed on a molecular basis, with studies reporting shortened telomeres, increased oxidative stress, and accelerated epigenetic aging in patients with BD compared to controls. Lithium has proved useful as a potential agent in slowing down this accelerated aging process in BD, potentially reversing effects induced by the disorder. This mini-review summarizes findings of anti-aging mechanisms associated with lithium use and provides a discussion of the clinical implications and perspectives of this evolving field. Despite many promising results, more studies are warranted in order to elucidate the exact mechanism by which lithium may act as an anti-aging agent and the extent to which these mechanisms are relevant to its mood stabilizing properties in BD.
Collapse
|
31
|
Raj SD, Fann DY, Wong E, Kennedy BK. Natural products as geroprotectors: An autophagy perspective. Med Res Rev 2021; 41:3118-3155. [PMID: 33973253 DOI: 10.1002/med.21815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past decade, significant attention has been given to repurposing Food and Drug Administration approved drugs to treat age-related diseases. In contrast, less consideration has been given to natural bioactive compounds. Consequently, there have been limited attempts to translate these compounds. Autophagy is a fundamental biological pathway linked to aging, and numerous strategies to enhance autophagy have been shown to extend lifespan. Interestingly, there are a number of natural products that are reported to modulate autophagy, and here we describe a number of them that activate autophagy through diverse molecular and cellular mechanisms. Among these, Urolithin A, Spermidine, Resveratrol, Fatty Acids and Phospholipids, Trehalose and Lithium are featured in detail. Finally, we outline possible strategies to optimise and increase the translatability of natural products, with the overall aim of delaying the ageing process and improving human healthspan.
Collapse
Affiliation(s)
- Stephen D Raj
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
32
|
Giaccherini M, Macauda A, Orciuolo E, Rymko M, Gruenpeter K, Dumontet C, Raźny M, Moreno V, Buda G, Beider K, Varkonyi J, Avet-Loiseau H, Martinez-Lopez J, Marques H, Watek M, Sarasquete ME, Andersen V, Karlin L, Suska A, Kruszewski M, Abildgaard N, Dudziński M, Butrym A, Nagler A, Vangsted AJ, Kadar K, Waldemar T, Jamroziak K, Jacobsen SEH, Ebbesen LH, Taszner M, Mazur G, Lesueur F, Pelosini M, Garcia-Sanz R, Jurczyszyn A, Demangel D, Reis RM, Iskierka-Jażdżewska E, Markiewicz M, Gemignani F, Subocz E, Zawirska D, Druzd-Sitek A, Stępień A, Alonso MH, Sainz J, Canzian F, Campa D. Genetically determined telomere length and multiple myeloma risk and outcome. Blood Cancer J 2021; 11:74. [PMID: 33854038 PMCID: PMC8046773 DOI: 10.1038/s41408-021-00462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Telomeres are involved in processes like cellular growth, chromosomal stability, and proper segregation to daughter cells. Telomere length measured in leukocytes (LTL) has been investigated in different cancer types, including multiple myeloma (MM). However, LTL measurement is prone to heterogeneity due to sample handling and study design (retrospective vs. prospective). LTL is genetically determined; genome-wide association studies identified 11 SNPs that, combined in a score, can be used as a genetic instrument to measure LTL and evaluate its association with MM risk. This approach has been already successfully attempted in various cancer types but never in MM. We tested the "teloscore" in 2407 MM patients and 1741 controls from the International Multiple Myeloma rESEarch (IMMeNSE) consortium. We observed an increased risk for longer genetically determined telomere length (gdTL) (OR = 1.69; 95% CI 1.36-2.11; P = 2.97 × 10-6 for highest vs. lowest quintile of the score). Furthermore, in a subset of 1376 MM patients we tested the relationship between the teloscore and MM patients survival, observing a better prognosis for longer gdTL compared with shorter gdTL (HR = 0.93; 95% CI 0.86-0.99; P = 0.049). In conclusion, we report convincing evidence that longer gdTL is a risk marker for MM risk, and that it is potentially involved in increasing MM survival.
Collapse
Affiliation(s)
| | - Angelica Macauda
- Department of Biology, University of Pisa, Pisa, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marcin Rymko
- Department of Hematology, Copernicus Hospital, Torun, Poland
| | - Karolina Gruenpeter
- Department of Haematology and Bone Marrow Transplantation, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Malgorzata Raźny
- Department of Hematology, Rydygier Specialistic Hospital, Cracow, Poland
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL, CIBERESP and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | - Hervé Avet-Loiseau
- Laboratory for Genomics in Myeloma, Institut Universitaire du Cancer and University Hospital, Centre de Recherche en Cancerologie de Toulouse, Toulouse, France
| | | | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marzena Watek
- Department of Hematology, Holy Cross Cancer Center, Kielce, Poland.,Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Vibeke Andersen
- Department of Biochemistry, University Hospital of Southern Jutland, Sønderborg, Denmark.,IRS-Center Soenderjylland, University Hospital of Southern Jutland, Aabenraa, Denmark
| | | | - Anna Suska
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2 in Bydgoszcz, Bydgoszcz, Poland
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Marek Dudziński
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | - Aleksandra Butrym
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Arnold Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | - Tomczak Waldemar
- Department of Haemato-oncology and Bone Marrow Transplantation and Department of Internal Medicine in Nursing, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | - Michał Taszner
- Department of Hematology and Transplantology Medical University of Gdansk, Gdańsk, Poland
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, Livorno, Italy, currently Ospedale Santa Chiara, Pisa, Italy
| | - Ramon Garcia-Sanz
- Hematology Department, University Hospital of Salamanca, CIBERONC, Salamanca, Spain
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | | | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Daria Zawirska
- Department of Haematology, University Hospital in Cracow, Cracow, Poland
| | - Agnieszka Druzd-Sitek
- Department of Lymphoid Malignancies, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stępień
- Laboratory of Clinical and Transplant Immunology and Genetics, Copernicus Memorial Hospital, Łódź, Poland
| | - M Henar Alonso
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL, CIBERESP and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Pathak GA, Wendt FR, Levey DF, Mecca AP, van Dyck CH, Gelernter J, Polimanti R. Pleiotropic effects of telomere length loci with brain morphology and brain tissue expression. Hum Mol Genet 2021; 30:1360-1370. [PMID: 33831179 PMCID: PMC8255129 DOI: 10.1093/hmg/ddab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have reported association between leukocyte telomere length (LTL) and neuropsychiatric disorders. Although telomere length is affected by environmental factors, genetic variants in certain loci are strongly associated with LTL. Thus, we aimed to identify the genomic relationship between genetic variants of LTL with brain-based regulatory changes and brain volume. We tested genetic colocalization of seven and nine LTL loci in two ancestry groups, European (EUR) and East-Asian (EAS), respectively, with brain morphology measures for 101 T1-magnetic resonance imaging-based region of interests (n = 21 821). The posterior probability (>90%) was observed for 'fourth ventricle', 'gray matter' and 'cerebellar vermal lobules I-IV' volumes. We then tested causal relationship using LTL loci for gene and methylation expression. We found causal pleiotropy for gene (EAS = four genes; EUR = five genes) and methylation expression (EUR = 17 probes; EAS = 4 probes) of brain tissues (P ≤ 2.47 × 10-6). Integrating chromatin profiles with LTL-single nucleotide polymorphisms identified 45 genes (EUR) and 79 genes (EAS) (P ≤ 9.78×10-7). We found additional 38 LTL-genes using chromatin-based gene mapping for EUR ancestry population. Gene variants in three LTL-genes-GPR37, OBFC1 and RTEL1/RTEL1-TNFRSF6B-show convergent evidence of pleiotropy with brain morphology, gene and methylation expression and chromatin association. Mapping gene functions to drug-gene interactions, we identified process 'transmission across chemical synapses' (P < 2.78 × 10-4). This study provides evidence that genetic variants of LTL have pleiotropic roles with brain-based effects that could explain the phenotypic association of LTL with several neuropsychiatric traits.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Renato Polimanti
- To whom correspondence should be addressed at: VA CT 116A2, 950 Campbell Avenue, West Haven, CT 06516, USA. Tel: +1 2039375711 ext. 5745; Fax: +1 2039373897;
| |
Collapse
|
34
|
Kroupa M, Rachakonda S, Vymetalkova V, Tomasova K, Liska V, Vodenkova S, Cumova A, Rossnerova A, Vodickova L, Hemminki K, Soucek P, Kumar R, Vodicka P. Telomere length in peripheral blood lymphocytes related to genetic variation in telomerase, prognosis and clinicopathological features in breast cancer patients. Mutagenesis 2020; 35:491-497. [PMID: 33367858 DOI: 10.1093/mutage/geaa030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/06/2020] [Indexed: 11/15/2022] Open
Abstract
Disruption of telomere length (TL) homeostasis in peripheral blood lymphocytes has been previously assessed as a potential biomarker of breast cancer (BC) risk. The present study addressed the relationship between lymphocyte TL (LTL), prognosis and clinicopathological features in the BC patients since these associations are insufficiently explored at present. LTL was measured in 611 BC patients and 154 healthy controls using the monochrome multiplex quantitative Polymerase Chain Reaction assay. In addition, we genotyped nine TL-associated single-nucleotide polymorphisms that had been identified through genome-wide association studies. Our results showed that the patients had significantly (P = 0.001, Mann-Whitney U-test) longer LTL [median (interquartile range); 1.48 (1.22-1.78)] than the healthy controls [1.27 (0.97-1.82)]. Patients homozygous (CC) for the common allele of hTERT rs2736108 or the variant allele (CC) of hTERC rs16847897 had longer LTL. The latter association remained statistically significant in the recessive genetic model after the Bonferroni correction (P = 0.004, Wilcoxon two-sample test). We observed no association between LTL and overall survival or relapse-free survival of the patients. LTL did not correlate with cancer staging based on Union for International Cancer Control (UICC), The tumor node metastasis (TNM) staging system classification, tumour grade or molecular BC subtypes. Overall, we observed an association between long LTL and BC disease and an association of the hTERC rs16847897 CC genotype with increased LTL. However, no association between LTL, clinicopathological features and survival of the patients was found.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Sivaramakrishna Rachakonda
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| | - Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Vaclav Liska
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska, Prague, Czech Republic
| | - Andrea Cumova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| | - Kari Hemminki
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Pavel Soucek
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| |
Collapse
|
35
|
Palmos AB, Duarte RRR, Smeeth DM, Hedges EC, Nixon DF, Thuret S, Powell TR. Telomere length and human hippocampal neurogenesis. Neuropsychopharmacology 2020; 45:2239-2247. [PMID: 32920596 PMCID: PMC7784985 DOI: 10.1038/s41386-020-00863-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Short telomere length is a risk factor for age-related disease, but it is also associated with reduced hippocampal volumes, age-related cognitive decline and psychiatric disorder risk. The current study explored whether telomere shortening might have an influence on cognitive function and psychiatric disorder pathophysiology, via its hypothesised effects on adult hippocampal neurogenesis. We modelled telomere shortening in human hippocampal progenitor cells in vitro using a serial passaging protocol that mimics the end-replication problem. Serially passaged progenitors demonstrated shorter telomeres (P ≤ 0.05), and reduced rates of cell proliferation (P ≤ 0.001), with no changes in the ability of cells to differentiate into neurons or glia. RNA-sequencing and gene-set enrichment analyses revealed an effect of cell ageing on gene networks related to neurogenesis, telomere maintenance, cell senescence and cytokine production. Downregulated transcripts in our model showed a significant overlap with genes regulating cognitive function (P ≤ 1 × 10-5), and risk for schizophrenia (P ≤ 1 × 10-10) and bipolar disorder (P ≤ 0.005). Collectively, our results suggest that telomere shortening could represent a mechanism that moderates the proliferative capacity of human hippocampal progenitors, which may subsequently impact on human cognitive function and psychiatric disorder pathophysiology.
Collapse
Affiliation(s)
- Alish B. Palmos
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Rodrigo R. R. Duarte
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Demelza M. Smeeth
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Erin C. Hedges
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Douglas F. Nixon
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| | - Sandrine Thuret
- grid.13097.3c0000 0001 2322 6764Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy R. Powell
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY USA
| |
Collapse
|
36
|
Squassina A, Manchia M, Pisanu C, Ardau R, Arzedi C, Bocchetta A, Caria P, Cocco C, Congiu D, Cossu E, Dettori T, Frau DV, Garzilli M, Manca E, Meloni A, Montis MA, Mura A, Nieddu M, Noli B, Paribello P, Pinna F, Robledo R, Severino G, Sogos V, Del Zompo M, Ferri GL, Chillotti C, Vanni R, Carpiniello B. Telomere attrition and inflammatory load in severe psychiatric disorders and in response to psychotropic medications. Neuropsychopharmacology 2020; 45:2229-2238. [PMID: 32919410 PMCID: PMC7784910 DOI: 10.1038/s41386-020-00844-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Individuals with severe psychiatric disorders have a reduced life expectancy compared to the general population. At the biological level, patients with these disorders present features that suggest the involvement of accelerated aging, such as increased circulating inflammatory markers and shorter telomere length (TL). To date, the role of the interplay between inflammation and telomere dynamics in the pathophysiology of severe psychiatric disorders has been scarcely investigated. In this study we measured T-lymphocytes TL with quantitative fluorescent in situ hybridization (Q-FISH) and plasma levels of inflammatory markers in a cohort comprised of 40 patients with bipolar disorder (BD), 41 with schizophrenia (SZ), 37 with major depressive disorder (MDD), and 36 non-psychiatric controls (NPC). TL was shorter in SZ and in MDD compared to NPC, while it was longer in BD (model F6, 137 = 20.128, p = 8.73 × 10-17, effect of diagnosis, F3 = 31.870; p = 1.08 × 10-15). There was no effect of the different classes of psychotropic medications, while duration of treatment with mood stabilizers was associated with longer TL (Partial correlation controlled for age and BMI: correlation coefficient = 0.451; p = 0.001). Levels of high-sensitivity C-Reactive Protein (hsCRP) were higher in SZ compared to NPC (adjusted p = 0.027), and inversely correlated with TL in the whole sample (r = -0.180; p = 0.042). Compared to NPC, patients with treatment resistant (TR) SZ had shorter TL (p = 0.001), while patients with TR MDD had higher levels of tumor necrosis factor-α (TNFα) compared to NPC (p = 0.028) and to non-TR (p = 0.039). Comorbidity with cardio-metabolic disorders did not influence the observed differences in TL, hsCRP, and TNFα among the diagnostic groups. Our study suggests that patients with severe psychiatric disorders present reduced TL and increased inflammation.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| | - Mirko Manchia
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Carlo Arzedi
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Alberto Bocchetta
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Eleonora Cossu
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Daniela Virginia Frau
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mario Garzilli
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Elias Manca
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Maria Antonietta Montis
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Andrea Mura
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Roberta Vanni
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| |
Collapse
|
37
|
Hachmo Y, Hadanny A, Abu Hamed R, Daniel-Kotovsky M, Catalogna M, Fishlev G, Lang E, Polak N, Doenyas K, Friedman M, Zemel Y, Bechor Y, Efrati S. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging (Albany NY) 2020; 12:22445-22456. [PMID: 33206062 PMCID: PMC7746357 DOI: 10.18632/aging.202188] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Aging is characterized by the progressive loss of physiological capacity. At the cellular level, two key hallmarks of the aging process include telomere length (TL) shortening and cellular senescence. Repeated intermittent hyperoxic exposures, using certain hyperbaric oxygen therapy (HBOT) protocols, can induce regenerative effects which normally occur during hypoxia. The aim of the current study was to evaluate whether HBOT affects TL and senescent cell concentrations in a normal, non-pathological, aging adult population. METHODS Thirty-five healthy independently living adults, aged 64 and older, were enrolled to receive 60 daily HBOT exposures. Whole blood samples were collected at baseline, at the 30th and 60th session, and 1-2 weeks following the last HBOT session. Peripheral blood mononuclear cells (PBMCs) telomeres length and senescence were assessed. RESULTS Telomeres length of T helper, T cytotoxic, natural killer and B cells increased significantly by over 20% following HBOT. The most significant change was noticed in B cells which increased at the 30th session, 60th session and post HBOT by 25.68%±40.42 (p=0.007), 29.39%±23.39 (p=0.0001) and 37.63%±52.73 (p=0.007), respectively. There was a significant decrease in the number of senescent T helpers by -37.30%±33.04 post-HBOT (P<0.0001). T-cytotoxic senescent cell percentages decreased significantly by -10.96%±12.59 (p=0.0004) post-HBOT. In conclusion, the study indicates that HBOT may induce significant senolytic effects including significantly increasing telomere length and clearance of senescent cells in the aging populations.
Collapse
Affiliation(s)
- Yafit Hachmo
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Bar Ilan University, Ramat-Gan, Israel
| | - Ramzia Abu Hamed
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Malka Daniel-Kotovsky
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Merav Catalogna
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Gregory Fishlev
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Erez Lang
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Nir Polak
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Keren Doenyas
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Mony Friedman
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yonatan Zemel
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yair Bechor
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Shai Efrati
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel.,The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
38
|
Fries GR, Zamzow MJ, Colpo GD, Monroy-Jaramillo N, Quevedo J, Arnold JG, Bowden CL, Walss-Bass C. The anti-aging effects of lithium in lymphoblastoid cell lines from patients with bipolar disorder and controls. J Psychiatr Res 2020; 128:38-42. [PMID: 32516629 PMCID: PMC7484018 DOI: 10.1016/j.jpsychires.2020.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Bipolar disorder (BD) has been previously associated with accelerated aging, and recent investigations have started to explore the potential anti-aging effects of BD treatments. Lithium, the most commonly used mood stabilizer, has been suggested to impact telomere length in specific populations, although its effects on other aging biomarkers, such as epigenetic aging, have never been investigated. We assessed the in vitro effects of lithium on telomere length and epigenetic aging in lymphoblastoid cell lines (LCLs) from 14 patients with BD and 14 controls, all matched for age, sex, and ethnicity. Our results showed that telomere length significantly correlated with chronological age in LCLs in both groups and that BD patients have shorter telomere lengths compared to controls at baseline (vehicle treatment), confirming previous in vivo findings. Moreover, lithium treatment significantly increased telomere length in LCLs from patients, but not in controls. On the other hand, epigenetic age did not correlate with chronological age and was not shown to differ between patients and controls. In addition, lithium did not induce any changes in epigenetic age in cells from either patients or controls. Overall, our results support previous reports of an anti-aging effect of lithium based on its modulation of telomere length and suggest a different lithium effect in cells from patients and controls. Finally, we also discuss the limitations of using transformed LCLs for the study of DNA methylation mechanisms.
Collapse
Affiliation(s)
- Gabriel R. Fries
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston. 7000 Fannin St, 77030 Houston, TX.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Madeline J. Zamzow
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX
| | - Gabriela D. Colpo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez. Insurgentes Sur 3877 Col. La Fama, Tlalpan, C. P. 14269, Mexico city, Mexico
| | - Joao Quevedo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil,Center of Excellence in Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX
| | - Jodi G. Arnold
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Charles L. Bowden
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston. 1941 East Rd, 77054 Houston, TX.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
39
|
Yang Y, Badeti S, Tseng HC, Ma MT, Liu T, Jiang JG, Liu C, Liu D. Superior Expansion and Cytotoxicity of Human Primary NK and CAR-NK Cells from Various Sources via Enriched Metabolic Pathways. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:428-445. [PMID: 32695845 PMCID: PMC7364029 DOI: 10.1016/j.omtm.2020.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Clinical success of chimeric antigen receptor (CAR) T cell immunotherapy requires the engineering of autologous T cells, which limits the broader implementation of CAR cell therapy. The development of allogeneic and universal cell products will significantly broaden their application and reduce costs. Allogeneic natural killer (NK) cells can be used for universal CAR immunotherapy. Here, we develop an alternative approach for the rapid expansion of primary NK and CAR-NK cells with superior expansion capability and in vivo cytotoxicity from various sources (including peripheral blood, cord blood, and tumor tissue). We apply a human B-lymphoblastoid cell-line 721.221 (hereinafter, 221)-based artificial feeder cell system with membrane-bound interleukin 21 (mIL-21) to propagate NK and CAR-NK cells. The expansion capability, purity, and cytotoxicity of NK cells expanded with 221-mIL-21 feeder cells are superior to that of conventional K562-mIL-21 feeder cells. RNA sequencing (RNA-seq) data show that 221-mIL-21 feeder cell-expanded NK cells display a less differentiated, non-exhausted, limited fratricidal, memory-like phenotype correlated with enriched metabolic pathways, which explains underlying mechanisms. Thus, “off-the-shelf” NK and CAR-NK cells with superior functionalities and expansion using a genetically modified 221-mIL-21 feeder cell expansion system will greatly support clinical use of NK immunotherapy.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hsiang-Chi Tseng
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Minh Tuyet Ma
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Ting Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, 205 South Orange Avenue, Newark, NJ 07101, USA
| |
Collapse
|
40
|
Pisanu C, Congiu D, Manchia M, Caria P, Cocco C, Dettori T, Frau DV, Manca E, Meloni A, Nieddu M, Noli B, Pinna F, Robledo R, Sogos V, Ferri GL, Carpiniello B, Vanni R, Bocchetta A, Severino G, Ardau R, Chillotti C, Zompo MD, Squassina A. Differences in telomere length between patients with bipolar disorder and controls are influenced by lithium treatment. Pharmacogenomics 2020; 21:533-540. [DOI: 10.2217/pgs-2020-0028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To assess the role of lithium treatment in the relationship between bipolar disorder (BD) and leukocyte telomere length (LTL). Materials & methods: We compared LTL between 131 patients with BD, with or without a history of lithium treatment, and 336 controls. We tested the association between genetically determined LTL and BD in two large genome-wide association datasets. Results: Patients with BD with a history lithium treatment showed longer LTL compared with never-treated patients (p = 0.015), and similar LTL compared with controls. Patients never treated with lithium showed shorter LTL compared with controls (p = 0.029). Mendelian randomization analysis showed no association between BD and genetically determined LTL. Conclusion: Our data support previous findings showing that long-term lithium treatment might protect against telomere shortening.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Science, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Donatella Congiu
- Department of Biomedical Science, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Mirko Manchia
- Unit of Psychiatry, Department of Public Health, Clinical & Molecular Medicine, University of Cagliari, Cagliari, 09100, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, 09100, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Paola Caria
- Department of Biomedical Sciences, Unit of Biology & Genetics, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Unit of Biology & Genetics, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Daniela Virginia Frau
- Department of Biomedical Sciences, Unit of Biology & Genetics, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Elias Manca
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Anna Meloni
- Department of Biomedical Science, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, Unit of Biology & Genetics, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Federica Pinna
- Unit of Psychiatry, Department of Public Health, Clinical & Molecular Medicine, University of Cagliari, Cagliari, 09100, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, 09100, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, Unit of Biology & Genetics, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Public Health, Clinical & Molecular Medicine, University of Cagliari, Cagliari, 09100, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, 09100, Italy
| | - Roberta Vanni
- Department of Biomedical Sciences, Unit of Biology & Genetics, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Alberto Bocchetta
- Department of Biomedical Science, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, 09100, Italy
| | - Giovanni Severino
- Department of Biomedical Science, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, 09100, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, 09100, Italy
| | - Maria Del Zompo
- Department of Biomedical Science, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, 09100, Italy
| | - Alessio Squassina
- Department of Biomedical Science, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Monserrato, Cagliari, 09042, Italy
| |
Collapse
|
41
|
Lundberg M, Millischer V, Backlund L, Martinsson L, Stenvinkel P, Sellgren CM, Lavebratt C, Schalling M. Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Front Psychiatry 2020; 11:586083. [PMID: 33132941 PMCID: PMC7553080 DOI: 10.3389/fpsyt.2020.586083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Bipolar disorder is a severe psychiatric disorder which affects more than 1% of the world's population and is a leading cause of disability among young people. For the past 50 years, lithium has been the drug of choice for maintenance treatment of bipolar disorder due to its potent ability to prevent both manic and depressive episodes as well as suicide. However, though lithium has been associated with a multitude of effects within different cellular pathways and biological systems, its specific mechanism of action in stabilizing mood remains largely elusive. Mitochondrial dysfunction and telomere shortening have been implicated in both the pathophysiology of bipolar disorder and as targets of lithium treatment. Interestingly, it has in recent years become clear that these phenomena are intimately linked, partly through reactive oxygen species signaling and the subcellular translocation and non-canonical actions of telomerase reverse transcriptase. In this review, we integrate the current understanding of mitochondrial dysfunction, oxidative stress and telomere shortening in bipolar disorder with documented effects of lithium. Moreover, we propose that lithium's mechanism of action is intimately connected with the interdependent regulation of mitochondrial bioenergetics and telomere maintenance.
Collapse
Affiliation(s)
- Martin Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Martinsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Healthcare Services, Region Stockholm, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Healthcare Services, Region Stockholm, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Pisanu C, Tsermpini EE, Skokou M, Kordou Z, Gourzis P, Assimakopoulos K, Congiu D, Meloni A, Balasopoulos D, Patrinos GP, Squassina A. Leukocyte telomere length is reduced in patients with major depressive disorder. Drug Dev Res 2019; 81:268-273. [DOI: 10.1002/ddr.21612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari Cagliari Italy
| | | | - Maria Skokou
- Psychiatric Clinic, Patras General Hospital Patras Greece
| | - Zoe Kordou
- Department of PharmacyUniversity of Patras School of Health Sciences Patras Greece
| | - Philippos Gourzis
- Department of MedicineUniversity of Patras School of Health Sciences Patras Greece
| | | | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari Cagliari Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari Cagliari Italy
| | | | - George P. Patrinos
- Department of PharmacyUniversity of Patras School of Health Sciences Patras Greece
- Department of PathologyUnited Arab Emirates University, College of Medicine and Health Sciences Al‐Ain UAE
- Zayed Center of Health SciencesUnited Arab Emirates University Al‐Ain UAE
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari Cagliari Italy
| |
Collapse
|
43
|
Multidimensional informatic deconvolution defines gender-specific roles of hypothalamic GIT2 in aging trajectories. Mech Ageing Dev 2019; 184:111150. [PMID: 31574270 DOI: 10.1016/j.mad.2019.111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
In most species, females live longer than males. An understanding of this female longevity advantage will likely uncover novel anti-aging therapeutic targets. Here we investigated the transcriptomic responses in the hypothalamus - a key organ for somatic aging control - to the introduction of a simple aging-related molecular perturbation, i.e. GIT2 heterozygosity. Our previous work has demonstrated that GIT2 acts as a network controller of aging. A similar number of both total (1079-female, 1006-male) and gender-unique (577-female, 527-male) transcripts were significantly altered in response to GIT2 heterozygosity in early life-stage (2 month-old) mice. Despite a similar volume of transcriptomic disruption in females and males, a considerably stronger dataset coherency and functional annotation representation was observed for females. It was also evident that female mice possessed a greater resilience to pro-aging signaling pathways compared to males. Using a highly data-dependent natural language processing informatics pipeline, we identified novel functional data clusters that were connected by a coherent group of multifunctional transcripts. From these it was clear that females prioritized metabolic activity preservation compared to males to mitigate this pro-aging perturbation. These findings were corroborated by somatic metabolism analyses of living animals, demonstrating the efficacy of our new informatics pipeline.
Collapse
|
44
|
Squassina A, Pisanu C, Vanni R. Mood Disorders, Accelerated Aging, and Inflammation: Is the Link Hidden in Telomeres? Cells 2019; 8:cells8010052. [PMID: 30650526 PMCID: PMC6356466 DOI: 10.3390/cells8010052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/26/2022] Open
Abstract
Mood disorders are associated with an increased risk of aging-related diseases, which greatly contribute to the excess morbidity and mortality observed in affected individuals. Clinical and molecular findings also suggest that mood disorders might be characterized by a permanent state of low-grade inflammation. At the cellular level, aging translates into telomeres shortening. Intriguingly, inflammation and telomere shortening show a bidirectional association: a pro-inflammatory state seems to contribute to aging and telomere dysfunction, and telomere attrition is able to induce low-grade inflammation. Several independent studies have reported shorter telomere length and increased levels of circulating inflammatory cytokines in mood disorders, suggesting a complex interplay between altered inflammatory–immune responses and telomere dynamics in the etiopathogenesis of these disorders. In this review, we critically discuss studies investigating the role of telomere attrition and inflammation in the pathogenesis and course of mood disorders, and in pharmacological treatments with psychotropic medications.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato Cagliari, Italy.
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2, Canada.
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato Cagliari, Italy.
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, 752 39 Uppsala, Sweden.
| | - Roberta Vanni
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Monserrato Cagliari, Italy.
| |
Collapse
|