1
|
Brida KL, Day JJ. Molecular and genetic mechanisms of plasticity in addiction. Curr Opin Neurobiol 2025; 93:103032. [PMID: 40311544 DOI: 10.1016/j.conb.2025.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Drugs of abuse result in well-characterized changes in synapse function and number in brain reward regions such as the nucleus accumbens. However, recent reports demonstrate that only a small fraction of neurons in the nucleus accumbens are activated in response to psychostimulants such as cocaine. While these "ensemble" neurons are marked by drug-related transcriptional changes in immediate early genes, the mechanisms that ultimately link these early changes to enduring molecular alterations in the same neurons are less clear. In this review, we 1) describe potential mechanisms underlying regulation of diverse plasticity-related gene programs across drug-activated ensembles, 2) discuss factors conferring ensemble recruitment bias within seemingly homogeneous populations, and 3) speculate on the role of chromatin and epigenetic modifiers in gating metaplastic state transitions that contribute to addiction.
Collapse
Affiliation(s)
- Kasey L Brida
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Pollock TA, Margetts AV, Vilca SJ, Tuesta LM. Cocaine taking and craving produce distinct transcriptional profiles in dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617923. [PMID: 39416214 PMCID: PMC11482921 DOI: 10.1101/2024.10.11.617923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dopamine (DA) signaling plays an essential role in reward valence attribution and in encoding the reinforcing properties of natural and artificial rewards. The adaptive responses from midbrain dopamine neurons to artificial rewards such as drugs of abuse are therefore important for understanding the development of substance use disorders. Drug-induced changes in gene expression are one such adaptation that can determine the activity of dopamine signaling in projection regions of the brain reward system. One of the major challenges to obtaining this understanding involves the complex cellular makeup of the brain, where each neuron population can be defined by a distinct transcriptional profile. To bridge this gap, we have adapted a virus-based method for labeling and capture of dopamine nuclei, coupled with nuclear RNA-sequencing, to study the transcriptional adaptations, specifically, of dopamine neurons in the ventral tegmental area (VTA) during cocaine taking and cocaine craving, using a mouse model of cocaine intravenous self-administration (IVSA). Our results show significant changes in gene expression across non-drug operant training, cocaine taking, and cocaine craving, highlighted by an enrichment of repressive epigenetic modifying enzyme gene expression during cocaine craving. Immunohistochemical validation further revealed an increase of H3K9me3 deposition in DA neurons during cocaine craving. These results demonstrate that cocaine-induced transcriptional adaptations in dopamine neurons vary by phase of self-administration and underscore the utility of this approach for identifying relevant phase-specific molecular targets to study the behavioral course of substance use disorders.
Collapse
Affiliation(s)
- Tate A. Pollock
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Alexander V. Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Samara J. Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
3
|
Liu SX, Harris AC, Gewirtz JC. How life events may confer vulnerability to addiction: the role of epigenetics. Front Mol Neurosci 2024; 17:1462769. [PMID: 39359689 PMCID: PMC11446245 DOI: 10.3389/fnmol.2024.1462769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Substance use disorder (SUD) represents a large and growing global health problem. Despite the strong addictive potency of drugs of abuse, only a minority of those exposed develop SUDs. While certain life experiences (e.g., childhood trauma) may increase subsequent vulnerability to SUDs, mechanisms underlying these effects are not yet well understood. Given the chronic and relapsing nature of SUDs, and the length of time that can elapse between prior life events and subsequent drug exposure, changes in SUD vulnerability almost certainly involve long-term epigenetic dysregulation. To validate this idea, functional effects of specific epigenetic modifications in brain regions mediating reinforcement learning (e.g., nucleus accumbens, prefrontal cortex) have been investigated in a variety of animal models of SUDs. In addition, the effects of epigenetic modifications produced by prior life experiences on subsequent SUD vulnerability have been studied, but mostly in a correlational manner. Here, we review how epigenetic mechanisms impact SUD-related behavior in animal models and summarize our understanding of the relationships among life experiences, epigenetic regulation, and future vulnerability to SUDs. Despite variations in study design, epigenetic modifications that most consistently affect SUD-related behavior are those that produce predominantly unidirectional effects on gene regulation, such as DNA methylation and histone phosphorylation. Evidence explicitly linking environmentally induced epigenetic modifications to subsequent SUD-related behavior is surprisingly sparse. We conclude by offering several directions for future research to begin to address this critical research gap.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Andrew C Harris
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Blum K, Bowirrat A, Baron D, Elman I, Makale MT, Cadet JL, Thanos PK, Hanna C, Ahmed R, Gondre-Lewis MC, Dennen CA, Braverman ER, Soni D, Carney P, Khalsa J, Modestino EJ, Barh D, Bagchi D, Badgaiyan RD, McLaughlin T, Cortese R, Ceccanti M, Murphy KT, Gupta A, Makale MT, Sunder K, Gold MS. Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. GENE & PROTEIN IN DISEASE 2024; 3:10.36922/gpd.1966. [PMID: 38766604 PMCID: PMC11100097 DOI: 10.36922/gpd.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, United States of America
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH, United States of America
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, United States of America
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Igor Elman
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States of America
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., United States of America
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University College of Medicine, and Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, United States of America
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Diwanshu Soni
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., United States of America
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Edward J. Modestino
- Department of Psychology, Curry College, Milton, MA., United States of America
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland OH., 44106, USA and Department of Psychiatry, Mt. Sinai School of Medicine, New York, NY, United States of America
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO, United States of America
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, Italy
| | - Kevin T. Murphy
- Division of Personalized Neuromodulation and Patient Care, PeakLogic, LLC, Del Mar, CA, United States of America
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, 30043, United States of America
| | - Miles T. Makale
- Department of Psychology, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Keerthy Sunder
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Department of Psychiatry, UC Riverside School of Medicine, Riverside, CA, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
5
|
Bergin CJ, Zouggar A, Mendes da Silva A, Fenouil T, Haebe JR, Masibag AN, Agrawal G, Shah MS, Sandouka T, Tiberi M, Auer RC, Ardolino M, Benoit YD. The dopamine transporter antagonist vanoxerine inhibits G9a and suppresses cancer stem cell functions in colon tumors. NATURE CANCER 2024; 5:463-480. [PMID: 38351181 DOI: 10.1038/s43018-024-00727-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/11/2024] [Indexed: 03/28/2024]
Abstract
Cancer stem cells (CSCs), functionally characterized by self-renewal and tumor-initiating activity, contribute to decreased tumor immunogenicity, while fostering tumor growth and metastasis. Targeting G9a histone methyltransferase (HMTase) effectively blocks CSC functions in colorectal tumors by altering pluripotent-like molecular networks; however, existing molecules directly targeting G9a HMTase activity failed to reach clinical stages due to safety concerns. Using a stem cell-based phenotypic drug-screening pipeline, we identified the dopamine transporter (DAT) antagonist vanoxerine, a compound with previously demonstrated clinical safety, as a cancer-specific downregulator of G9a expression. Here we show that gene silencing and chemical antagonism of DAT impede colorectal CSC functions by repressing G9a expression. Antagonizing DAT also enhanced tumor lymphocytic infiltration by activating endogenous transposable elements and type-I interferon response. Our study unveils the direct implication of the DAT-G9a axis in the maintenance of CSC populations and an approach to improve antitumor immune response in colon tumors.
Collapse
Affiliation(s)
- Christopher J Bergin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aïcha Zouggar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tanguy Fenouil
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Institut de Pathologie Multisite des Hospices Civils de Lyon, Site Est, Groupement Hospitalier Est, Bron, France
| | - Joshua R Haebe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelique N Masibag
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Gautam Agrawal
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Muhammad S Shah
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tamara Sandouka
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mario Tiberi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rebecca C Auer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Centre for Infection, Inflammation and Immunity, University of Ottawa, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Centre for Infection, Inflammation and Immunity, University of Ottawa, Ottawa, Ontario, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Ell MA, Schiele MA, Iovino N, Domschke K. Epigenetics of Fear, Anxiety and Stress - Focus on Histone Modifications. Curr Neuropharmacol 2024; 22:843-865. [PMID: 36946487 PMCID: PMC10845084 DOI: 10.2174/1570159x21666230322154158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 03/23/2023] Open
Abstract
Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.
Collapse
Affiliation(s)
- Marco A. Ell
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicola Iovino
- Department of Chromation Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Rich MT, Swinford-Jackson SE, Pierce RC. Epigenetic inheritance of phenotypes associated with parental exposure to cocaine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:169-216. [PMID: 38467481 DOI: 10.1016/bs.apha.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Parental exposure to drugs of abuse induces changes in the germline that can be transmitted across subsequent generations, resulting in enduring effects on gene expression and behavior. This transgenerational inheritance involves a dynamic interplay of environmental, genetic, and epigenetic factors that impact an individual's vulnerability to neuropsychiatric disorders. This chapter aims to summarize recent research into the mechanisms underlying the inheritance of gene expression and phenotypic patterns associated with exposure to drugs of abuse, with an emphasis on cocaine. We will first define the epigenetic modifications such as DNA methylation, histone post-translational modifications, and expression of non-coding RNAs that are impacted by parental cocaine use. We will then explore how parental cocaine use induces heritable epigenetic changes that are linked to alterations in neural circuitry and synaptic plasticity within reward-related circuits, ultimately giving rise to potential behavioral vulnerabilities. This discussion will consider phenotypic differences associated with gestational as well as both maternal and paternal preconception drug exposure and will emphasize differences based on offspring sex. In this context, we explore the complex interactions between genetics, epigenetics, environment, and biological sex. Overall, this chapter consolidates the latest developments in the multigenerational effects and long-term consequences of parental substance abuse.
Collapse
Affiliation(s)
- Matthew T Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States.
| | - Sarah E Swinford-Jackson
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
8
|
Azargoonjahromi A. The role of epigenetics in anxiety disorders. Mol Biol Rep 2023; 50:9625-9636. [PMID: 37804465 DOI: 10.1007/s11033-023-08787-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anxiety disorders (ADs) are extremely common psychiatric conditions that frequently co-occur with other physical and mental disorders. The pathophysiology of ADs is multifaceted and involves intricate connections among biological elements, environmental stimuli, and psychological mechanisms. Recent discoveries have highlighted the significance of epigenetics in bridging the gap between multiple risk factors that contribute to ADs and expanding our understanding of the pathomechanisms underlying ADs. Epigenetics is the study of how changes in the environment and behavior can have an impact on gene function. Indeed, researchers have found that epigenetic mechanisms can affect how genes are activated or inactivated, as well as whether they are expressed. Such mechanisms may also affect how ADs form and are protected. That is, the bulk of pharmacological trials evaluating epigenetic treatments for the treatment of ADs have used histone deacetylase inhibitors (HDACi), yielding promising outcomes in both preclinical and clinical studies. This review will provide an outline of how epigenetic pathways can be used to treat ADs or lessen their risk. It will also present the findings from preclinical and clinical trials that are currently available on the use of epigenetic drugs to treat ADs.
Collapse
|
9
|
Pryce KD, Serafini RA, Ramakrishnan A, Nicolais A, Giosan IM, Polizu C, Torres-Berrío A, Vuppala S, Kronman H, Ruiz A, Gaspari S, Peña CJ, Sakloth F, Mitsi V, van Duzer J, Mazitschek R, Jarpe M, Shen L, Nestler EJ, Zachariou V. Oxycodone withdrawal induces HDAC1/HDAC2-dependent transcriptional maladaptations in the reward pathway in a mouse model of peripheral nerve injury. Nat Neurosci 2023; 26:1229-1244. [PMID: 37291337 PMCID: PMC10752505 DOI: 10.1038/s41593-023-01350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The development of physical dependence and addiction disorders due to misuse of opioid analgesics is a major concern with pain therapeutics. We developed a mouse model of oxycodone exposure and subsequent withdrawal in the presence or absence of chronic neuropathic pain. Oxycodone withdrawal alone triggered robust gene expression adaptations in the nucleus accumbens, medial prefrontal cortex and ventral tegmental area, with numerous genes and pathways selectively affected by oxycodone withdrawal in mice with peripheral nerve injury. Pathway analysis predicted that histone deacetylase (HDAC) 1 is a top upstream regulator in opioid withdrawal in nucleus accumbens and medial prefrontal cortex. The novel HDAC1/HDAC2 inhibitor, Regenacy Brain Class I HDAC Inhibitor (RBC1HI), attenuated behavioral manifestations of oxycodone withdrawal, especially in mice with neuropathic pain. These findings suggest that inhibition of HDAC1/HDAC2 may provide an avenue for patients with chronic pain who are dependent on opioids to transition to non-opioid analgesics.
Collapse
Affiliation(s)
- Kerri D Pryce
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilinca M Giosan
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Claire Polizu
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sreeya Vuppala
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Ruiz
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sevasti Gaspari
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Farhana Sakloth
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Li Shen
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
10
|
Zhang M, Luo Y, Wang J, Sun Y, Xie B, Zhang L, Cong B, Ma C, Wen D. Roles of nucleus accumbens shell small-conductance calcium-activated potassium channels in the conditioned fear freezing. J Psychiatr Res 2023; 163:180-194. [PMID: 37216772 DOI: 10.1016/j.jpsychires.2023.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.
Collapse
Affiliation(s)
- Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yixiao Luo
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
11
|
Winter JJ, Rodríguez-Acevedo KL, Dittrich M, Heller EA. Early life adversity: Epigenetic regulation underlying drug addiction susceptibility. Mol Cell Neurosci 2023; 125:103825. [PMID: 36842544 PMCID: PMC10247461 DOI: 10.1016/j.mcn.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Drug addiction is a leading cause of disability worldwide, with more than 70,000 Americans dying from drug overdose in 2019 alone. While only a small percentage of chronic drug users escalate to drug addiction, little is understood on the precise mechanisms of this susceptibility. Early life adversity is causally relevant to adult psychiatric disease and may contribute to the risk of addiction. Here we review recent pre-clinical evidence showing that early life exposure to stress and/or drugs regulates changes in behavior, gene expression, and the epigenome that persist into adulthood. We summarize the major findings and gaps in the preclinical literature, highlighting studies that demonstrate the often profound differences between female and male subjects.
Collapse
Affiliation(s)
| | | | - Mia Dittrich
- University of Pennsylvania, Philadelphia, PA 19106, USA
| | | |
Collapse
|
12
|
Issler O, van der Zee YY, Ramakrishnan A, Xia S, Zinsmaier AK, Tan C, Li W, Browne CJ, Walker DM, Salery M, Torres-Berrío A, Futamura R, Duffy JE, Labonte B, Girgenti MJ, Tamminga CA, Dupree JL, Dong Y, Murrough JW, Shen L, Nestler EJ. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. SCIENCE ADVANCES 2022; 8:eabn9494. [PMID: 36449610 PMCID: PMC9710883 DOI: 10.1126/sciadv.abn9494] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2023]
Abstract
Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify marked baseline sex differences in the expression of long noncoding RNAs (lncRNAs), a class of regulatory transcripts, in human postmortem brain tissue that are profoundly lost in depression. One such human lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and up-regulated in the prefrontal cortex (PFC) of depressed females only. We found that virally expressing FEDORA selectively either in neurons or in oligodendrocytes of PFC promoted depression-like behavioral abnormalities in female mice only, changes associated with cell type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic implications for depressed women and are associated with clinical response to ketamine. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y. van der Zee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunhui Xia
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chunfeng Tan
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Wei Li
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M. Walker
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia E. Duffy
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Labonte
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Girgenti
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jeffrey L. Dupree
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - James W. Murrough
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Anderson EM, Taniguchi M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front Mol Neurosci 2022; 15:828055. [PMID: 35813068 PMCID: PMC9260254 DOI: 10.3389/fnmol.2022.828055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Substance use induces long-lasting behavioral changes and drug craving. Increasing evidence suggests that epigenetic gene regulation contributes to the development and expression of these long-lasting behavioral alterations. Here we systematically review extensive evidence from rodent models of drug-induced changes in epigenetic regulation and epigenetic regulator proteins. We focus on histone acetylation and histone methylation in a brain region important for drug-related behaviors: the nucleus accumbens. We also discuss how experimentally altering these epigenetic regulators via systemically administered compounds or nucleus accumbens-specific manipulations demonstrate the importance of these proteins in the behavioral effects of drugs and suggest potential therapeutic value to treat people with substance use disorder. Finally, we discuss limitations and future directions for the field of epigenetic studies in the behavioral effects of addictive drugs and suggest how to use these insights to develop efficacious treatments.
Collapse
|
14
|
Barbee BR, Gourley SL. Brain systems in cocaine abstinence-induced anxiety-like behavior in rodents: A review. ADDICTION NEUROSCIENCE 2022; 2:100012. [PMID: 37485439 PMCID: PMC10361393 DOI: 10.1016/j.addicn.2022.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood. This review summarizes investigations regarding anxiety-like behavior in mice and rats undergoing cocaine abstinence, as assessed using four of the most common anxiety-related assays: the elevated plus (or its derivative, the elevated zero) maze, open field test, light-dark transition test, and defensive burying task. We first summarize available evidence that cocaine abstinence generates anxiety-like behavior that persists throughout protracted abstinence. Then, we examine investigations concerning neuropeptide, neurotransmitter, and neuromodulator systems in cocaine abstinence-induced anxiety-like behavior. Throughout, we discuss how differences in sex, rodent strain, cocaine dose and dosing strategy and abstinence duration interact to generate anxiety-like behavior.
Collapse
Affiliation(s)
- Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| | - Shannon L. Gourley
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| |
Collapse
|
15
|
Li H, Zhao D, Liu Y, Xv J, Huang H, Jin Y, Lu Y, Qi Y, Zhou Q. Are There Neural Overlaps of Reactivity to Illegal Drugs, Tobacco, and Alcohol Cues? With Evidence From ALE and CMA. Front Psychiatry 2022; 13:779239. [PMID: 35463497 PMCID: PMC9019580 DOI: 10.3389/fpsyt.2022.779239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abuses of most illegal drugs, including methamphetamine, marijuana, cocaine, heroin, and polydrug, are usually in conjunction with alcohol and tobacco. There are similarities and associations between the behavior, gene, and neurophysiology of such abusers, but the neural overlaps of their cue-reactivity and the correlation of neural overlap with drug craving still needs to be further explored. In this study, an Activation Likelihood Estimation (ALE) was performed on brain activation under legal (tobacco, alcohol) and illegal drug cues, for identifying the similarities in brain functions between different craving states. A Comprehensive meta-analysis (CMA) on the correlation coefficient between brain activation and craving scores in the selected literatures with subjective craving reports explained the degree of the craving via brain imaging results. In ALE, co-activation areas of the three cue-reactivity (posterior cingulate, caudate, and thalamus) suggest that the three cue-reactivity may all arouse drug-use identity which is a predictor of relapse and generation of conditioned reflexes under reward memory, thus leading to illegal drug relapses. In CMA, the brain activation was significantly correlated with subjective craving, with a correlation coefficient of 0.222. The neural overlap of tobacco, alcohol and most of the prevalent illegal drug cues not only further helps us understand the neural mechanism of substance co-abuse and relapse, but also provides implications to detoxification. Furthermore, the correlation between brain activation and craving is low, suggesting the accuracy of craving-based quantitative evaluation by neuroimaging remains unclear.
Collapse
Affiliation(s)
- HuiLing Li
- Department of Psychology, Wenzhou Medical University, Wenzhou, China
| | - Dong Zhao
- Department of Psychology, Wenzhou Medical University, Wenzhou, China
| | - YuQing Liu
- Department of Psychology, Wenzhou Medical University, Wenzhou, China
| | - JingWen Xv
- Department of Psychology, Wenzhou Medical University, Wenzhou, China
| | - HanZhi Huang
- Department of Psychology, Wenzhou Medical University, Wenzhou, China
| | - Yutong Jin
- Department of Psychology, Wenzhou Medical University, Wenzhou, China
| | - Yiying Lu
- Mental Health Education and Counseling Center, Lingnan Normal University, Zhanjiang, China
| | - YuanYuan Qi
- Zhejiang Moganshan Female Drug Detoxification Center, Huzhou, China
| | - Qiang Zhou
- Department of Psychology, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Teague CD, Nestler EJ. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry 2022; 27:687-709. [PMID: 34079067 PMCID: PMC8636523 DOI: 10.1038/s41380-021-01163-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
Repeated cocaine use induces coordinated changes in gene expression that drive plasticity in the nucleus accumbens (NAc), an important component of the brain's reward circuitry, and promote the development of maladaptive, addiction-like behaviors. Studies on the molecular basis of cocaine action identify transcription factors, a class of proteins that bind to specific DNA sequences and regulate transcription, as critical mediators of this cocaine-induced plasticity. Early methods to identify and study transcription factors involved in addiction pathophysiology primarily relied on quantifying the expression of candidate genes in bulk brain tissue after chronic cocaine treatment, as well as conventional overexpression and knockdown techniques. More recently, advances in next generation sequencing, bioinformatics, cell-type-specific targeting, and locus-specific neuroepigenomic editing offer a more powerful, unbiased toolbox to identify the most important transcription factors that drive drug-induced plasticity and to causally define their downstream molecular mechanisms. Here, we synthesize the literature on transcription factors mediating cocaine action in the NAc, discuss the advancements and remaining limitations of current experimental approaches, and emphasize recent work leveraging bioinformatic tools and neuroepigenomic editing to study transcription factors involved in cocaine addiction.
Collapse
|
17
|
Anderson EM, Lopez MF, Kastner A, Mulholland PJ, Becker HC, Cowan CW. The histone methyltransferase G9a mediates stress-regulated alcohol drinking. Addict Biol 2022; 27:e13060. [PMID: 34013595 PMCID: PMC8602448 DOI: 10.1111/adb.13060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023]
Abstract
The epigenetic enzyme G9a is a histone methyltransferase that dimethylates lysine 9 on histone H3 (H3K9me2), and in the adult nucleus accumbens (NAc), G9a regulates multiple behaviors associated with substance use disorder. We show here that chronic intermittent ethanol (CIE) exposure in male mice reduced both G9a and H3K9me2 levels in the adult NAc, but not dorsal striatum. Viral-mediated reduction of G9a in the NAc had no effects on baseline volitional ethanol drinking or escalated alcohol drinking produced by CIE exposure; however, NAc G9a was required for stress-regulated changes in ethanol drinking, including potentiated alcohol drinking produced by activation of the kappa-opioid receptor. In addition, we observed that chronic systemic administration of a G9a inhibitor, UNC0642, also blocked stress-potentiated alcohol drinking. Together, our findings suggest that chronic alcohol use, similar to other abused substances, produces a NAc-selective reduction in G9a levels that serves to limit stress-regulated alcohol drinking. Moreover, our findings suggest that pharmacological inhibition of G9a might provide a novel therapeutic approach to treat stress-induced alcohol drinking, which is a major trigger of relapse in individuals suffering from AUD.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Marcelo F. Lopez
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Abigail Kastner
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Patrick J. Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Howard C. Becker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
18
|
Gerra MC, Dallabona C, Arendt-Nielsen L. Epigenetic Alterations in Prescription Opioid Misuse: New Strategies for Precision Pain Management. Genes (Basel) 2021; 12:genes12081226. [PMID: 34440400 PMCID: PMC8392465 DOI: 10.3390/genes12081226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Prescription opioids are used for some chronic pain conditions. However, generally, long-term therapy has unwanted side effects which may trigger addiction, overdose, and eventually cause deaths. Opioid addiction and chronic pain conditions have both been associated with evidence of genetic and epigenetic alterations. Despite intense research interest, many questions about the contribution of epigenetic changes to this typology of addiction vulnerability and development remain unanswered. The aim of this review was to summarize the epigenetic modifications detected in specific tissues or brain areas and associated with opioid prescription and misuse in patients who have initiated prescribed opioid management for chronic non-cancer pain. The review considers the effects of opioid exposure on the epigenome in central and peripheral tissues in animal models and human subjects and highlights the mechanisms in which opioid epigenetics may be involved. This will improve our current understanding, provide the basis for targeted, personalized pain management, and thus balance opioid risks and benefits in managing chronic pain.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Correspondence:
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43123 Parma, Italy;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| |
Collapse
|
19
|
Kim YG, Bak MS, Kim A, Kim Y, Chae YC, Kim YL, Chun YS, An JY, Seo SB, Kim SJ, Lee YS. Kdm3b haploinsufficiency impairs the consolidation of cerebellum-dependent motor memory in mice. Mol Brain 2021; 14:106. [PMID: 34217333 PMCID: PMC8254933 DOI: 10.1186/s13041-021-00815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
Histone modifications are a key mechanism underlying the epigenetic regulation of gene expression, which is critically involved in the consolidation of multiple forms of memory. However, the roles of histone modifications in cerebellum-dependent motor learning and memory are not well understood. To test whether changes in histone methylation are involved in cerebellar learning, we used heterozygous Kdm3b knockout (Kdm3b+/-) mice, which show reduced lysine 9 on histone 3 (H3K9) demethylase activity. H3K9 di-methylation is significantly increased selectively in the granule cell layer of the cerebellum of Kdm3b+/- mice. In the cerebellum-dependent optokinetic response (OKR) learning, Kdm3b+/- mice show deficits in memory consolidation, whereas they are normal in basal oculomotor performance and OKR acquisition. In addition, RNA-seq analyses revealed that the expression levels of several plasticity-related genes were altered in the mutant cerebellum. Our study suggests that active regulation of histone methylation is critical for the consolidation of cerebellar motor memory.
Collapse
Affiliation(s)
- Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myeong Seong Bak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ahbin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yujin Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, Korea
| | - Yun-Cheol Chae
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Korea
| | - Ye Lee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yang-Sook Chun
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Joon-Yong An
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
20
|
Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021; 15:627633. [PMID: 33732118 PMCID: PMC7959748 DOI: 10.3389/fnbeh.2021.627633] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
The brain anxiety network is composed of a number of interconnected cortical regions that detect threats and execute appropriate defensive responses via projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL). The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate threat- and arousal-related signals from cortex and hypothalamus and then relay these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive responses. This review describes the anatomical connections of the PVT that support the view that the PVT may be a critical node in the brain anxiety network. Experimental findings are reviewed showing that the arousal peptides orexins (hypocretins) act at the PVT to promote avoidance of potential threats especially following exposure of rats to a single episode of footshocks. Recent anatomical and experimental findings are discussed which show that neurons in the PVT provide divergent projections to subcortical regions that mediate defensive behaviors and that the projection to the NAcSh is critical for the enhanced social avoidance displayed in rats exposed to footshocks. A theoretical model is proposed for how the PVT integrates cortical and hypothalamic signals to modulate the behavioral responses associated with anxiety and other challenging situations.
Collapse
Affiliation(s)
- Gilbert J. Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Abstract
A growing body of evidence from the past 15 years implicates epigenetic mechanisms in the behavioral effects of addictive drugs. The main focus of these studies has been epigenetic mechanisms of psychomotor sensitization and drug reinforcement, as assessed by the conditioned place preference and drug self-administration procedures. Some of these studies have documented long-lasting changes in the expression of epigenetic enzymes and molecules that persist for weeks after the last drug exposure. These observations have inspired more recent investigations on the epigenetic mechanisms of relapse to drug seeking after prolonged abstinence. Here, we review studies that have examined epigenetic mechanisms (e.g., histone modifications, chromatin remodeler-associated modifications, and DNA methylation) that contribute to relapse to cocaine, amphetamine, methamphetamine, morphine, heroin, nicotine, or alcohol seeking, as assessed in rodent models. We first provide a brief overview of studies that have examined persistent epigenetic changes in the brain after prolonged abstinence from noncontingent drug exposure or drug self-administration. Next, we review studies on the effect of either systemic or brain site-specific epigenetic manipulations on the reinstatement of drug-conditioned place preference after extinction of the learned preference, the reinstatement of drug seeking after operant drug self-administration and extinction of the drug-reinforced responding, and the incubation of drug craving (the time-dependent increase in drug seeking after cessation of drug self-administration). We conclude by discussing the implications of these studies for understanding mechanisms contributing to persistent relapse vulnerability after prolonged abstinence. We also discuss the implications of these results for translational research on the potential use of systemically administered epigenetic enzyme inhibitors for relapse prevention in human drug users.
Collapse
|
22
|
Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 2021; 20:265-286. [PMID: 33469207 DOI: 10.1038/s41573-020-00108-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Protein lysine methylation is a crucial post-translational modification that regulates the functions of both histone and non-histone proteins. Deregulation of the enzymes or 'writers' of protein lysine methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, including cancer, mental health disorders and developmental disorders. Over the past decade, significant advances have been made in developing drugs to target KMTs that are involved in histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate protein synthesis and other fundamental biological processes are emerging as promising new targets for drug development to treat diverse diseases.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biology, Stanford University, Stanford, CA, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Kang K, Liao X, Li Q, Chen J, Niu Y, Zeng Y, Xia S, Zeng L, Liu S, Gou D. A novel tonicity-responsive microRNA miR-23a-5p modulates renal cell survival under osmotic stress through targeting heat shock protein 70 HSPA1B. Am J Physiol Cell Physiol 2020; 320:C225-C239. [PMID: 33206547 DOI: 10.1152/ajpcell.00441.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing evidence that microRNAs (miRNAs) are implicated in cellular adaptation to osmotic stress, but the underlying osmosignaling pathways are still not completely understood. In this study, we found that a passenger strand miRNA, miR-23a-5p, was significantly downregulated in response to high NaCl treatment in mouse inner medullary collecting duct cells (mIMCD3) through an miRNA profiling assay. The decrease of miR-23a-5p is hypertonicity-dependent and osmotolerant cell type-specific. Knockdown of miR-23a-5p increased cellular survival and proliferation in mIMCD3. In contrast, miR-23a-5p overexpression repressed cell viability and proliferation under hypertonic stress. RNA deep-sequencing revealed that a heat shock protein 70 (HSP70) isoform, HSP70 member 1B (HSPA1B), was significantly increased under hypertonic treatment. Based on the prediction analysis by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and TargetScan, and a further validation via a dual-luciferase assay, HSPA1B was identified as a potential target of miR-23a-5p. Overexpressed miR-23a-5p suppressed HSPA1B, whereas downregulated miR-23a-5p promoted HSPA1B expression in mIMCD3. In addition, an in vivo study demonstrated that there is a reverse correlation between the levels of miR-23a-5p and HSPA1B in mouse renal inner medulla (papilla) that is exposed to extremely high osmolality. In summary, this study elucidates that passenger strand miR-23a-5p is a novel tonicity-responsive miRNA. The downregulation of miR-23a-5p facilitates cellular adaptation to hypertonic stress in mammalian renal cells through modulating HSPA1B.
Collapse
Affiliation(s)
- Kang Kang
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - Xiaoyun Liao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Qing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Yan Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Sijian Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Le Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Shide Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Deming Gou
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China.,Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
24
|
López AJ, Hecking JK, White AO. The Emerging Role of ATP-Dependent Chromatin Remodeling in Memory and Substance Use Disorders. Int J Mol Sci 2020; 21:E6816. [PMID: 32957495 PMCID: PMC7555352 DOI: 10.3390/ijms21186816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term memory formation requires coordinated regulation of gene expression and persistent changes in cell function. For decades, research has implicated histone modifications in regulating chromatin compaction necessary for experience-dependent changes to gene expression and cell function during memory formation. Recent evidence suggests that another epigenetic mechanism, ATP-dependent chromatin remodeling, works in concert with the histone-modifying enzymes to produce large-scale changes to chromatin structure. This review examines how histone-modifying enzymes and chromatin remodelers restructure chromatin to facilitate memory formation. We highlight the emerging evidence implicating ATP-dependent chromatin remodeling as an essential mechanism that mediates activity-dependent gene expression, plasticity, and cell function in developing and adult brains. Finally, we discuss how studies that target chromatin remodelers have expanded our understanding of the role that these complexes play in substance use disorders.
Collapse
Affiliation(s)
- Alberto J. López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Julia K. Hecking
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - André O. White
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| |
Collapse
|
25
|
Issler O, van der Zee YY, Ramakrishnan A, Wang J, Tan C, Loh YHE, Purushothaman I, Walker DM, Lorsch ZS, Hamilton PJ, Peña CJ, Flaherty E, Hartley BJ, Torres-Berrío A, Parise EM, Kronman H, Duffy JE, Estill MS, Calipari ES, Labonté B, Neve RL, Tamminga CA, Brennand KJ, Dong Y, Shen L, Nestler EJ. Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron 2020; 106:912-926.e5. [PMID: 32304628 PMCID: PMC7305959 DOI: 10.1016/j.neuron.2020.03.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Behavior, Animal
- Depression/genetics
- Depression/metabolism
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Down-Regulation
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Neurons/metabolism
- Prefrontal Cortex/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Seq
- Resilience, Psychological
- Sex Factors
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Young Adult
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chunfeng Tan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong-Hwee E Loh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigham J Hartley
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia E Duffy
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin S Calipari
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Labonté
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M, Bernal-Vega S, Maldonado-Ruiz R, Reséndez-Pérez D, Rodríguez-Ríos D, Lund G, Garza-Ocañas L, Camacho-Morales A. Fetal Programming by Methyl Donors Modulates Central Inflammation and Prevents Food Addiction-Like Behavior in Rats. Front Neurosci 2020; 14:452. [PMID: 32581665 PMCID: PMC7283929 DOI: 10.3389/fnins.2020.00452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor’s diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting–refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1β, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 μM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor’s diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1β, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marcela Cárdenas-Tueme
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Sofia Bernal-Vega
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
27
|
González B, Gancedo SN, Garazatua SAJ, Roldán E, Vitullo AD, González CR. Dopamine Receptor D1 Contributes to Cocaine Epigenetic Reprogramming of Histone Modifications in Male Germ Cells. Front Cell Dev Biol 2020; 8:216. [PMID: 32318569 PMCID: PMC7146055 DOI: 10.3389/fcell.2020.00216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
Paternal environmental perturbations, including cocaine intake, can affect the development and behavior of the offspring through epigenetic inheritance. However, the mechanism by which cocaine alters the male germ cells epigenome is almost unexplored. Here, we report that cocaine-treated male mice showed alterations on specific histone post-translational modifications (PTMs) including increased silent chromatin marks H3K9me3 and H3K27me3 and decreased active enhancer and promoter marks H3K27ac and H3K4me3 in isolated germ cells. Also, cocaine increased H3K9ac and H4K16ac levels, involved in the replacement of histones by protamines that take place at round spermatid stage. Cocaine also altered histones H3/H4 epigenetic enzymes by increasing acetyltransferase KAT8/MOF, deacetylase SIRT1 and methyltransferase KMT1C/G9A, and decreasing deacetylases HDAC1/2 and demethylase KDM1A/LSD1 protein levels. Moreover, a pre-treatment with dopamine receptor 1 (DRD1) antagonist SCH23390 (SCH) blocked cocaine effects on H3K4me3, H3K27me3, and H4K16ac epigenetic marks. Interestingly, treatment with SCH-only was able to modify most of the histone marks tested here, pointing to a dopamine role in controlling histone PTMs in germ cells. Taken together, our data suggest a key role for DRD1 in mediating cocaine-triggered epigenetic modifications related to the silencing of gene transcription and the histone-to-protamine replacement that controls chromatin architecture of maturing sperm cells, and pinpoints a novel role of the dopaminergic system in the regulation of male germ cells reprogramming.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Samanta N Gancedo
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sahira A Janeir Garazatua
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| | - Eduardo Roldán
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| | - Candela R González
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| |
Collapse
|
28
|
Bavley CC, Rajadhyaksha AM. Anxiety, the chicken or the egg of addiction: targeting G9a for the treatment of comorbid anxiety and cocaine addiction. Neuropsychopharmacology 2019; 44:1345-1346. [PMID: 30760826 PMCID: PMC6785016 DOI: 10.1038/s41386-019-0329-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/11/2022]
Abstract
Treating cocaine addiction is a major challenge and currently no FDA approved pharmacotherapies exist. One complicating factor is a high rate of comorbidity between cocaine and neuropsychiatric conditions such as anxiety. The relationship between anxiety symptoms and cocaine addiction is complicated; anxiety can be both a predisposing factor and a consequence of cocaine use as anxiety symptoms often emerge during drug use and withdrawal. Identifying and understanding the shared biological mechanisms that lead to comorbid anxiety and cocaine addiction, irrespective of which comes first, is critical for the identification of new treatments.
Collapse
Affiliation(s)
- Charlotte C. Bavley
- 000000041936877Xgrid.5386.8Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY 10065 USA ,000000041936877Xgrid.5386.8Feil Family Brain and Mind and Research Institute, Weill Cornell Medicine, New York, NY 10065 USA
| | - Anjali M. Rajadhyaksha
- 000000041936877Xgrid.5386.8Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY 10065 USA ,000000041936877Xgrid.5386.8Feil Family Brain and Mind and Research Institute, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|