1
|
Jiang J, Jiang T, Wang X, Zhao M, Shi H, Zhang H, Li W, Jiang S, Zhang X, Zhou J, Ren Q, Wang L, Yang S, Yao Z, Liu Y, Xu J. Malnutrition exacerbating neuropsychiatric symptoms on the Alzheimer's continuum is relevant to the cAMP signaling pathway: Human and mouse studies. Alzheimers Dement 2025; 21:e14506. [PMID: 39868480 PMCID: PMC11848410 DOI: 10.1002/alz.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear. METHODS Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice. RESULTS Poor nutritional status and increased cerebral blood flow in the midbrain and striatum were associated with severe general NPSs and subtypes, especially depression, anxiety, and apathy. APP/PS1 mice fed a malnourished diet showed poor nutritional status, depression- and anxiety-like behaviors, altered neurotransmitter levels, and downregulated c-Fos expression in the midbrain and striatum; these were associated with suppressed cyclic adenosine monophosphate (cAMP) signaling pathway. DISCUSSION Malnutrition exacerbating NPSs is relevant to suppressed cAMP pathway in the midbrain and striatum, suggesting the potential for targeted nutritional interventions to mitigate NPSs in the AD continuum. HIGHLIGHTS Poor nutritional status linked to general and specific neuropsychiatric symptom (NPS) deterioration. Malnutrition affects NPSs, usually involving the midbrain and striatum. Malnourished diet induces depression- and anxiety-like behaviors in APP/PS1 mice. Malnutrition exacerbates NPSs associated with cAMP signaling pathway in the midbrain and striatum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tianlin Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaohong Wang
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hanping Shi
- Beijing Shijitan Hospital, Capital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
| | - Huiying Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaoli Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jiawei Zhou
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zeshan Yao
- Beijing Institute of Collaborative InnovationBeijingChina
| | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
2
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. Neuropharmacology 2024; 259:110098. [PMID: 39117106 PMCID: PMC11714651 DOI: 10.1016/j.neuropharm.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) that are thought to facilitate maladaptive behaviors that interfere with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is functionally altered by chronic ethanol exposure. Our recent work identified dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE exposure significantly increased intrinsic excitability as well as spontaneous excitatory and inhibitory postsynaptic currents (sE/IPSCs) in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE exposure also increased the frequency of sEPSCs in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol exposure. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Joel E Shillinglaw
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Shannon R Wheeler
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Ding R, Tang Y, Cao G, Mai Y, Fu Y, Ren Z, Li W, Hou J, Sun S, Chen B, Han X, He Z, Ye JH, Zhou L, Fu R. Lateral habenula IL-10 controls GABA A receptor trafficking and modulates depression susceptibility after maternal separation. Brain Behav Immun 2024; 122:122-136. [PMID: 39128573 DOI: 10.1016/j.bbi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Maternal separation (MS), a form of early life adversity, increases the risk of psychiatric disorders in adulthood by intricately linking cytokines and mood-regulating brain circuits. The Lateral Habenula (LHb) encodes aversive experiences, contributes to negative moods, and is pivotal in depression development. However, the precise impact of MS on LHb cytokine signaling and synaptic plasticity remains unclear. We reported that adolescent MS offspring mice displayed susceptibility to depression behavioral phylotypes, with neuronal hyperactivity and an imbalance in pro-inflammatory and anti-inflammatory cytokines in the LHb. Moreover, the decreased IL-10 level negatively correlated with depressive-like behaviors in susceptible mice. Functionally, LHb IL-10 overexpression restored decreased levels of PI3K, phosphorylated AKT (pAKT), gephyrin, and membrane GABAA receptor proteins while reducing abnormally elevated GSK3β and Fos expression, rescuing the MS-induced depression. Conversely, LHb neuronal IL-10 receptor knockdown in naive mice increased Fos expression and elicited depression-like symptoms, potentially through impaired membrane GABAA receptor trafficking by suppressing the PI3K/pAKT/gephyrin cascades. Hence, this work establishes a mechanism by which MS promotes susceptibility to adolescent depression by impeding the critical role of IL-10 signaling on neuronal GABAA receptor function.
Collapse
Affiliation(s)
- Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Ying Tang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, PR China
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Shizhu Sun
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, PR China
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Xiaojiao Han
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Zelei He
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518106, PR China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518106, PR China.
| |
Collapse
|
4
|
Aroni S, Sagheddu C, Pistis M, Muntoni AL. Functional Adaptation in the Brain Habenulo-Mesencephalic Pathway During Cannabinoid Withdrawal. Cells 2024; 13:1809. [PMID: 39513916 PMCID: PMC11545051 DOI: 10.3390/cells13211809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The mesolimbic reward system originating from dopamine neurons in the ventral tegmental area (VTA) of the midbrain shows a profound reduction in function during cannabinoid withdrawal. This condition may underlie aversive states that lead to compulsive drug seeking and relapse. The lateral habenula (LHb) exerts negative control over the VTA via the GABA rostromedial tegmental nucleus (RMTg), representing a potential convergence point for drug-induced opponent processes. We hypothesized that the LHb-RMTg pathway might be causally involved in the hypodopaminergic state during cannabinoid withdrawal. To induce Δ9-tetrahydrocannabinol (THC) dependence, adult male Sprague-Dawley rats were treated with THC (15 mg/kg, i.p.) twice daily for 6.5-7 days. Administration of the cannabinoid antagonist rimonabant (5 mg/kg, i.p.) precipitated a robust behavioral withdrawal syndrome, while abrupt THC suspension caused milder signs of abstinence. Extracellular single unit recordings confirmed a marked decrease in the discharge frequency and burst firing of VTA dopamine neurons during THC withdrawal. The duration of RMTg-evoked inhibition was longer in THC withdrawn rats. Additionally, the spontaneous activity of RMTg neurons and of LHb neurons was strongly depressed during cannabinoid withdrawal. These findings support the hypothesis that functional changes in the habenulo-mesencephalic circuit are implicated in the mechanisms underlying substance use disorders.
Collapse
Affiliation(s)
- Sonia Aroni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, I-09123 Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
| |
Collapse
|
5
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592759. [PMID: 38766178 PMCID: PMC11100703 DOI: 10.1101/2024.05.06.592759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) which facilitate the maladaptive behaviors interfering with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is a GABAergic midbrain region involved in aversive signaling and is functionally altered by chronic ethanol exposure. Our recent work identified a dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE significantly increased intrinsic excitability as well as excitatory and inhibitory synaptic drive in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE also increased excitatory synaptic drive in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol.
Collapse
|
6
|
Wu J, Li X, Zhang Q, Li J, Cui R, Li X. Differential effects of intra-RMTg infusions of pilocarpine or 4-DAMP on regulating depression- and anxiety-like behaviors. Behav Brain Res 2024; 462:114833. [PMID: 38220059 DOI: 10.1016/j.bbr.2023.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Depression and anxiety are associated with dysfunction of the mesolimbic dopamine system. The rostromedial tegmental nucleus (RMTg) is predominantly composed of GABAergic neurons that exhibit dense projections and strongly inhibit mesolimbic dopaminergic neurons, proposed as a major "brake" for the system. Consequently, the RMTg may be a crucial brain region for regulating these emotions. The central cholinergic system, particularly the muscarinic receptors, plays an important regulatory role in depression and anxiety. M3 muscarinic receptors are distributed on GABAergic neurons in the RMTg, but their involvement in the regulation of depression and anxiety remains uncertain. This study aimed to examine the effects of RMTg M3 muscarinic receptors on regulating depression- and anxiety-like behaviors in adult male Wistar rats, as assessed through the forced swim, tail suspension, and elevated plus maze tests. The results showed that intra-RMTg injections of the M1/M3 muscarinic receptors agonist, pilocarpine (3, 10, and 30 μg/side), or the M3 muscarinic receptors antagonist, 4-DAMP (0.5, 1, and 2 μg/side), did not alter the immobility time in the forced swim and tail suspension tests. Additionally, pilocarpine (30 μg/side) decreased time spent in open arms and increased time in closed arms in the elevated plus maze; while 4-DAMP (1 and 2 μg/side) played the opposite role by increasing time spent in open arms and decreasing time in closed arms. These findings suggest that RMTg M3 muscarinic receptors have differential effects on regulating depression- and anxiety-like behaviors. Enhancing or inhibiting these receptors can produce anxiogenic or anxiolytic effects, but have no impact on depression-like behavior. Therefore, RMTg M3 muscarinic receptors are involved in regulating anxiety and may be a potential therapeutic target for anxiolytic drugs.
Collapse
Affiliation(s)
- Jing Wu
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; Faculty of Education, Henan Normal University, Xinxiang, China
| | - Xuhong Li
- Department of Education, Lyuliang University, Lyuliang, China
| | - Qi Zhang
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Jiaxiang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.
| |
Collapse
|
7
|
Fu Y, Li W, Mai Y, Guan J, Ding R, Hou J, Chen B, Cao G, Sun S, Tang Y, Fu R. Association between RMTg Neuropeptide Genes and Negative Effect during Alcohol Withdrawal in Mice. Int J Mol Sci 2024; 25:2933. [PMID: 38474180 DOI: 10.3390/ijms25052933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alcohol use disorders (AUDs) frequently co-occur with negative mood disorders, such as anxiety and depression, exacerbating relapse through dopaminergic dysfunction. Stress-related neuropeptides play a crucial role in AUD pathophysiology by modulating dopamine (DA) function. The rostromedial tegmental nucleus (RMTg), which inhibits midbrain dopamine neurons and signals aversion, has been shown to increase ethanol consumption and negative emotional states during abstinence. Despite some stress-related neuropeptides acting through the RMTg to affect addiction behaviors, their specific roles in alcohol-induced contexts remain underexplored. This study utilized an intermittent voluntary drinking model in mice to induce negative effect behavior 24 h into ethanol (EtOH) abstinence (post-EtOH). It examined changes in pro-stress (Pnoc, Oxt, Npy) and anti-stress (Crf, Pomc, Avp, Orx, Pdyn) neuropeptide-coding genes and analyzed their correlations with aversive behaviors. We observed that adult male C57BL/6J mice displayed evident anxiety, anhedonia, and depression-like symptoms at 24 h post-EtOH. The laser-capture microdissection technique, coupled with or without retrograde tracing, was used to harvest total ventral tegmental area (VTA)-projecting neurons or the intact RMTg area. The findings revealed that post-EtOH consistently reduced Pnoc and Orx levels while elevating Crf levels in these neuronal populations. Notably, RMTg Pnoc and Npy levels counteracted ethanol consumption and depression severity, while Crf levels were indicative of the mice's anxiety levels. Together, these results underscore the potential role of stress-related neuropeptides in the RMTg in regulating the negative emotions related to AUDs, offering novel insights for future research.
Collapse
Affiliation(s)
- Yixin Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Junhao Guan
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Shizhu Sun
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Ying Tang
- Clinical Skills Training Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| |
Collapse
|
8
|
Esposito-Zapero C, Fernández-Rodríguez S, Sánchez-Catalán MJ, Zornoza T, Cano-Cebrián MJ, Granero L. The rostromedial tegmental nucleus RMTg is not a critical site for ethanol-induced motor activation in rats. Psychopharmacology (Berl) 2023; 240:2071-2080. [PMID: 37474756 PMCID: PMC10506920 DOI: 10.1007/s00213-023-06425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
RATIONALE Opioid drugs indirectly activate dopamine (DA) neurons in the ventral tegmental area (VTA) through a disinhibition mechanism mediated by mu opioid receptors (MORs) present both on the GABA projection neurons located in the medial tegmental nucleus/tail of the VTA (RMTg/tVTA) and on the VTA GABA interneurons. It is well demonstrated that ethanol, like opioid drugs, provokes VTA DA neuron disinhibition by interacting (through its secondary metabolite, salsolinol) with MORs present in VTA GABA interneurons, but it is not known whether ethanol could disinhibit VTA DA neurons through the MORs present in the RMTg/tVTA. OBJECTIVES The objective of the present study was to determine whether ethanol, directly microinjected into the tVTA/RMTg, is also able to induce VTA DA neurons disinhibition. METHODS Disinhibition of VTA DA neurons was indirectly assessed through the analysis of the motor activity of rats. Cannulae were placed into the tVTA/RMTg to perform microinjections of DAMGO (0.13 nmol), ethanol (150 or 300 nmol) or acetaldehyde (250 nmol) in animals pre-treated with either aCSF or the irreversible antagonist of MORs, beta-funaltrexamine (beta-FNA; 2.5 nmol). After injections, spontaneous activity was monitored for 30 min. RESULTS Neither ethanol nor acetaldehyde directly administered into the RMTg/tVTA were able to increase the locomotor activity of rats at doses that, in previous studies performed in the posterior VTA, were effective in increasing motor activities. However, microinjections of 0.13 nmol of DAMGO into the tVTA/RMTg significantly increased the locomotor activity of rats. These activating effects were reduced by local pre-treatment of rats with beta-FNA (2.5 nmol). CONCLUSIONS The tVTA/RMTg does not appear to be a key brain region for the disinhibiting action of ethanol on VTA DA neurons. The absence of dopamine in the tVTA/RMTg extracellular medium, the lack of local ethanol metabolism or both could explain the present results.
Collapse
Affiliation(s)
- Claudia Esposito-Zapero
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Sandra Fernández-Rodríguez
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - María José Sánchez-Catalán
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Teodoro Zornoza
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - María José Cano-Cebrián
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain.
| | - Luis Granero
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain.
| |
Collapse
|
9
|
Ren Z, Hou J, Li W, Tang Y, Wang M, Ding R, Liu S, Fu Y, Mai Y, Xia J, Zuo W, Zhou LH, Ye JH, Fu R. LPA1 receptors in the lateral habenula regulate negative affective states associated with alcohol withdrawal. Neuropsychopharmacology 2023; 48:1567-1578. [PMID: 37059867 PMCID: PMC10516930 DOI: 10.1038/s41386-023-01582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
The role of lysophosphatidic acid (LPA) signaling in psychiatric disorders and drug abuse is significant. LPA receptors are widely expressed in the central nervous system, including the lateral habenula (LHb). Recent studies suggest that LHb is involved in a negative emotional state during alcohol withdrawal, which can lead to relapse. The current study examines the role of LHb LPA signaling in the negative affective state associated with alcohol withdrawal. Adult male Long-Evans rats were trained to consume either alcohol or water for eight weeks. At 48 h of withdrawal, alcohol-drinking rats showed anxiety- and depression-like symptoms, along with a significant increase in LPA signaling and related neuronal activation molecules, including autotaxin (ATX, Enpp2), LPA receptor 1/3 (LPA1/3), βCaMKII, and c-Fos. However, there was a decrease in lipid phosphate phosphatase-related protein type 4 (LPPR4) in the LHb. Intra-LHb infusion of the LPA1/3 receptor antagonist ki-16425 or PKC-γ inhibitor Go-6983 reduced the abnormal behaviors and elevated relapse-like ethanol drinking. It also normalized high LPA1/3 receptors and enhanced AMPA GluA1 phosphorylation in Ser831 and GluA1/GluA2 ratio. Conversely, selective activation of LPA1/3 receptors by intra-LHb infusion of 18:1 LPA induced negative affective states and upregulated βCaMKII-AMPA receptor phosphorylation in Naive rats, which were reversed by pretreatment with intra-LHb Go-6983. Our findings suggest that disturbances in LPA signaling contribute to adverse affective disorders during alcohol withdrawal, likely through PKC-γ/βCaMKII-linked glutamate signaling. Targeting LPA may therefore be beneficial for individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Molin Wang
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518100, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Songlin Liu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong, 510970, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518106, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518106, China.
| |
Collapse
|
10
|
Chao YS, Parrilla-Carrero J, Eid M, Culver OP, Jackson TB, Lipat R, Taniguchi M, Jhou TC. Innate cocaine-seeking vulnerability arising from loss of serotonin-mediated aversive effects of cocaine in rats. Cell Rep 2023; 42:112404. [PMID: 37083325 PMCID: PMC12035767 DOI: 10.1016/j.celrep.2023.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
Cocaine blocks dopamine reuptake, thereby producing rewarding effects that are widely studied. However, cocaine also blocks serotonin uptake, which we show drives, in rats, individually variable aversive effects that depend on serotonin 2C receptors (5-HT2CRs) in the rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons. 5-HT2CRs produce depolarizing effects in RMTg neurons that are particularly strong in some rats, leading to aversive effects that reduce acquisition of and relapse to cocaine seeking. In contrast, 5-HT2CR signaling is largely lost after cocaine exposure in other rats, leading to reduced aversive effects and increased cocaine seeking. These results suggest a serotonergic biological marker of cocaine-seeking vulnerability that can be targeted to modulate drug seeking.
Collapse
Affiliation(s)
- Ying S Chao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Maya Eid
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oliver P Culver
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tyler B Jackson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel Lipat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas C Jhou
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Sun F, Yang J, Liu X, Huang G, Kong Z, Liu Y, Zhu Y, Peng Y, Yang M, Jia X. Characteristics of amplitude of low-frequency fluctuations in the resting-state functional magnetic resonance imaging of alcohol-dependent patients with depression. Cereb Cortex 2023:7169130. [PMID: 37197790 DOI: 10.1093/cercor/bhad184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The high comorbidity of alcohol use disorder and depressive disorder is associated with poor patient prognosis. The mechanisms underlying this comorbidity, however, are largely unknown. By applying the amplitude of low-frequency fluctuations parameter in resting-state functional magnetic resonance imaging, this study investigated changes in the brain functioning of alcohol-dependent patients with and without depression. Alcohol-dependent patients (n = 48) and healthy controls (n = 31) were recruited. The alcohol-dependent patients were divided into those with and without depression, according to Patients Health Questionnaire-9 scores. Amplitude of low-frequency fluctuations in resting-state brain images were compared among the alcohol-dependent patients with depression, alcohol-dependent patients without depression, and healthy controls groups. We further examined associations between amplitude of low-frequency fluctuations alterations, alcohol-dependence severity, and depressive levels (assessed with scales). Compared with the healthy controls group, both alcohol groups showed amplitude of low-frequency fluctuations enhancement in the right cerebellum and amplitude of low-frequency fluctuations abatement in the posterior central gyrus. The alcohol-dependent patients with depression group had higher amplitude of low-frequency fluctuations in the right cerebellum than the alcohol-dependent patients without depression group. Additionally, we observed a positive correlation between amplitude of low-frequency fluctuations value and Patients Health Questionnaire-9 score in the right superior temporal gyrus in the alcohol-dependent patients with depression group. Alcohol-dependent subjects showed abnormally increased spontaneous neural activity in the right cerebellum, which was more significant in alcohol-dependent patients with depression. These findings may support a targeted intervention in this brain location for alcohol and depressive disorder comorbidity.
Collapse
Affiliation(s)
- Fengwei Sun
- School of Mental Health, Jining Medical University, Jining 272067, China
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Jihui Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Xiaoying Liu
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Gengdi Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Zhi Kong
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Yu Liu
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Yingmei Zhu
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Mei Yang
- School of Mental Health, Jining Medical University, Jining 272067, China
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| |
Collapse
|
12
|
Li W, Ren Z, Tang Y, Fu Y, Sun S, Ding R, Hou J, Mai Y, Zhan B, Zhu Y, Zuo W, Ye JH, Fu R. Rostromedial tegmental nucleus nociceptin/orphanin FQ (N/OFQ) signaling regulates anxiety- and depression-like behaviors in alcohol withdrawn rats. Neuropsychopharmacology 2023; 48:908-919. [PMID: 36329156 PMCID: PMC10156713 DOI: 10.1038/s41386-022-01482-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Recent studies indicate that stimulation of the rostromedial tegmental nucleus (RMTg) can drive a negative affective state and that nociceptin/orphanin FQ (N/OFQ) may play a role in affective disorders and drug addiction. The N/OFQ precursor prepronociceptin encoding genes Pnoc are situated in RMTg neurons. To determine whether N/OFQ signaling contributes to the changes in both behavior phenotypes and RMTg activity of alcohol withdrawn (Post-EtOH) rats, we trained adult male Long-Evans rats, randomly assigned into the ethanol and Naïve groups to consume either 20% ethanol or water-only under an intermittent-access procedure. Using the fluorescence in situ hybridization technique combined with retrograde tracing, we show that the ventral tegmental area projecting RMTg neurons express Pnoc and nociceptin opioid peptide (NOP) receptors encoding gene Oprl1. Also, using the laser capture microdissection technique combined with RT-qPCR, we detected a substantial decrease in Pnoc but an increase in Oprl1 mRNA levels in the RMTg of Post-EtOH rats. Moreover, RMTg cFos expression is increased in Post-EtOH rats, which display anxiety- and depression-like behaviors. Intra-RMTg infusion of the endogenous NOP agonist nociceptin attenuates the aversive behaviors in Post-EtOH rats without causing any notable change in Naïve rats. Conversely, intra-RMTg infusion of the NOP selective antagonist [Nphe1]nociceptin(1-13)NH2 elicits anxiety- and depression-like behaviors in Naïve but not Post-EtOH rats. Furthermore, intra-RMTg infusion of nociceptin significantly reduces alcohol consumption. Thus, our results show that the deficiency of RMTg NOP signaling during alcohol withdrawal mediates anxiety- and depression-like behaviors. The intervention of NOP may help those individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shizhu Sun
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
13
|
Zhan B, Zhu Y, Xia J, Li W, Tang Y, Beesetty A, Ye JH, Fu R. Comorbidity of Post-Traumatic Stress Disorder and Alcohol Use Disorder: Animal Models and Associated Neurocircuitry. Int J Mol Sci 2022; 24:ijms24010388. [PMID: 36613829 PMCID: PMC9820348 DOI: 10.3390/ijms24010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalent neuropsychiatric disorders and frequently co-occur concomitantly. Individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Lacking standard preclinical models limited the exploration of neurobiological mechanisms underlying PTSD and AUD comorbidity. In this review, we summarize well-accepted preclinical model paradigms and criteria for developing successful models of comorbidity. We also outline how PTSD and AUD affect each other bidirectionally in the nervous nuclei have been heatedly discussed recently. We hope to provide potential recommendations for future research.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anju Beesetty
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
- Correspondence: (J.-H.Y.); (R.F.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (J.-H.Y.); (R.F.)
| |
Collapse
|
14
|
Xu C, Xiong Q, Tian X, Liu W, Sun B, Ru Q, Shu X. Alcohol Exposure Induces Depressive and Anxiety-like Behaviors via Activating Ferroptosis in Mice. Int J Mol Sci 2022; 23:ijms232213828. [PMID: 36430312 PMCID: PMC9698590 DOI: 10.3390/ijms232213828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a global public health problem and is frequently comorbid with mental disorders, including anxiety and depression. Ferroptosis is an iron-dependent cell death, which is involved in the pathological process of various diseases such as neurodegenerative diseases, but the role of ferroptosis in the mediation of AUD and its induced mental disorders is unclear. In this study, we aimed to investigate whether ferroptosis was involved in alcohol-induced depressive and anxiety-like behaviors in mice. Following an 8-week period of intermittent alcohol exposure, the alcohol group showed noticeable depressive and anxiety-like behaviors. In addition, nissl staining revealed that alcohol exposure induced neuron damage in the hippocampus (Hip) and prefrontal cortex (PFC) of mice. The levels of synapse-related proteins were significantly reduced in the alcohol group. Iron staining demonstrated that alcohol increased the number of iron-positive staining cells. The protein expression of the transferrin receptor (TFRC) was increased, and the expression of glutathione peroxidase 4 (GPX4) was decreased, respectively, in the alcohol group. Furthermore, the ferroptosis inhibitor ferrostatin-1 significantly prevented alcohol-induced neuron damage and enhanced the expression of N-methyl-d-aspartic acid (NMDA) receptor 2B (NR2B), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor 1 (GluA1) and GPX4 in vitro. These results indicated that alcohol exposure could induce depressive and anxiety-like behaviors, and that this effect may occur via activating ferroptosis.
Collapse
Affiliation(s)
- Congyue Xu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Wei Liu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Binlian Sun
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430000, China
- Correspondence: (Q.R.); (X.S.); Tel.: +86-27-84225807 (X.S.)
| | - Xiji Shu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
- Correspondence: (Q.R.); (X.S.); Tel.: +86-27-84225807 (X.S.)
| |
Collapse
|
15
|
Zhao YN, Zhang Y, Tao SY, Huang ZL, Qu WM, Yang SR. Whole-Brain Monosynaptic Afferents to Rostromedial Tegmental Nucleus Gamma-Aminobutyric Acid-Releasing Neurons in Mice. Front Neurosci 2022; 16:914300. [PMID: 35733933 PMCID: PMC9207306 DOI: 10.3389/fnins.2022.914300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Increasing evidence has revealed that the rostromedial tegmental area (RMTg) mediates many behaviors, including sleep and addiction. However, presynaptic patterns governing the activity of γ-aminobutyric acid-releasing (GABAergic) neurons, the main neuronal type in the RMTg, have not been defined. Here, we used cell-type-specific retrograde trans-synaptic rabies viruses to map and quantify the monosynaptic afferents to RMTg GABAergic neurons in mouse whole brains. We identified 71 ascending projection brain regions. Sixty-eight percent of the input neurons arise from the ipsilateral and 32% from the contralateral areas of the brain. The first three strongest projection regions were the ipsilateral lateral hypothalamus, zone incerta, and contralateral pontine reticular nucleus. Immunohistochemistry imaging showed that the input neurons in the dorsal raphe, laterodorsal tegmentum, and dorsal part of zone incerta were colocalized with serotoninergic, cholinergic, and neuronal nitric oxide synthetase-expressing neurons, respectively. However, in the lateral hypothalamus, a few input neurons innervating RMTg GABAergic neurons colocalized orexinergic neurons but lacked colocalization of melanin-concentrating hormone neurons. Our findings provide anatomical evidence to understand how RMTg GABAergic neurons integrate diverse information to exert varied functions.
Collapse
|
16
|
Ilari A, Curti L, Petrella M, Cannella N, La Rocca A, Ranieri G, Gerace E, Iezzi D, Silvestri L, Mannaioni G, Ciccocioppo R, Masi A. Moderate ethanol drinking is sufficient to alter Ventral Tegmental Area dopamine neurons activity via functional and structural remodeling of GABAergic transmission. Neuropharmacology 2022; 203:108883. [PMID: 34785165 DOI: 10.1016/j.neuropharm.2021.108883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Earlier studies have shown a major involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons in mediating the rewarding effects of ethanol (EtOH). Much less is known on the role of this system in mediating the transition from moderate to excessive drinking and abuse. Here we sought to explore the hypothesis that early stage drinking in rodents, resembling recreational EtOH use in humans, is sufficient to dysregulate VTA DA transmission thus increasing the propensity to use over time. To this purpose, midbrain slice recordings in mice previously exposed to an escalating (3, 6 and 12%) 18-day voluntary EtOH drinking paradigm was used. By recording from DA and γ-aminobutyric acid (GABA) VTA neurons in midbrain slices, we found that moderate EtOH drinking leads to a significant suppression of the spontaneous activity of VTA DA neurons, while increasing their response to acute EtOH application. We also found that chronic EtOH leads to the enhancement of GABA input frequency onto a subset of DA neurons. Structurally, chronic EtOH induced a significant increase in the number of GABA axonal boutons contacting DA neurons, suggesting deep rewiring of the GABA network. This scenario is consistent with a downmodulation of the reward DA system induced by moderate EtOH drinking, a neurochemical state defined as "hypodopaminergic" and previously associated with advanced stages of drug use in humans. In this context, increased sensitivity of DA neurons towards acute EtOH may represent the neurophysiological correlate of increased unitary rewarding value, possibly driving progression to addiction.
Collapse
Affiliation(s)
- A Ilari
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy
| | - L Curti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy
| | - M Petrella
- Scuola di Scienze del Farmaco e dei Prodotti della salute, Università di Camerino, Italy
| | - N Cannella
- Scuola di Scienze del Farmaco e dei Prodotti della salute, Università di Camerino, Italy
| | - A La Rocca
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy
| | - G Ranieri
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy
| | - E Gerace
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy
| | - D Iezzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy
| | - L Silvestri
- Dipartimento di Fisica ed Astronomia, Università di Firenze, Italy; European Laboratory for Non-linear Spectroscopy, Italy
| | - G Mannaioni
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy
| | - R Ciccocioppo
- Scuola di Scienze del Farmaco e dei Prodotti della salute, Università di Camerino, Italy.
| | - A Masi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, NEUROFARBA, Università di Firenze, Italy.
| |
Collapse
|
17
|
Jhou TC. The rostromedial tegmental (RMTg) "brake" on dopamine and behavior: A decade of progress but also much unfinished work. Neuropharmacology 2021; 198:108763. [PMID: 34433088 PMCID: PMC8593889 DOI: 10.1016/j.neuropharm.2021.108763] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
Between 2005 and 2009, several research groups identified a strikingly dense inhibitory input to midbrain dopamine neurons arising from a previously uncharted region posterior to the ventral tegmental area (VTA). This region is now denoted as either the rostromedial tegmental nucleus (RMTg) or the "tail of the VTA" (tVTA), and is recognized to express distinct genetic markers, encode negative "prediction errors" (inverse to dopamine neurons), and play critical roles in behavioral inhibition and punishment learning. RMTg neurons are also influenced by many categories of abused drugs, and may drive some aversive responses to such drugs, particularly cocaine and alcohol. However, despite much progress, many important questions remain about RMTg molecular/genetic properties, diversity of projection targets, and applications to addiction, depression, and other neuropsychiatric disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
18
|
Wu G, Xu X, Ye F, Shu H. Effects of processed Aconiti tuber on the extinction and reinstatement of morphine-induced conditioned place preference in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113524. [PMID: 33129945 DOI: 10.1016/j.jep.2020.113524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
AIM OF THE STUDY To investigate the effect of processed Aconiti tuber (PAT) administered during or after the time of conditioned place preference (CPP) training on the extinction and reinstatement of morphine-priming CPP in rats. The dynorphin level in rats' nucleus accumbens (NAc) is detected as a target of the Dynorphin/Kappa Opioid Receptor (KOR) system for the possible mechanism. MATERIALS AND METHODS Eight groups of rats were subcutaneously (s.c.) injected with morphine (10mg/kg) (on days 2,4,6,8) or saline (1ml/kg) (on days 3,5,7,9) alternately for 8 days. Five groups, including groups (Mor + Water, Mor + PAT (1.0/3.0g/kg) (S) and Sal + PAT(1.0/3.0g/kg)), were orally given distilled water or PAT 1.0 or 3.0 g/kg daily on days 1-8 during CPP training while other three groups, including groups (Sal + Water and Mor + PAT (1.0/3.0g/kg)(P), were given distilled water or PAT daily from day 10 until CPP was extinct. Morphine 1mg/kg (s.c.) was used to reinstate the extinct CPP and the CPP scores were recorded. The dynorphin concentration in nucleus accumbens (NAc) was assayed by radioimmunoassay after the last CPP measurement. RESULTS 1) The CPP extinction shortened in Mor + PAT (1.0/3.0 g/kg) (S) groups but extended in Mor + PAT (1.0/3.0 g/kg)(P) groups. 2) Morphine-priming CPP did not change either in Mor + PAT (1.0/3.0 g/kg) (S) or Mor + PAT (1.0/3.0 g/kg)(P) groups. 3) The dynorphin concentration in NAc increased either in Mor + PAT (1.0/3.0 g/kg)(S) or Mor + PAT (1.0/3.0 g/kg)(P) groups. CONCLUSIONS 1) PAT shortened the extinction from morphine induced CPP when administrated before CPP acquisition, whereas it extended the extinction when administrated after CPP formation. 2) PAT administrated during or after CPP training did not affect morphine-priming reinstatement of morphine induced CPP. 3) Dynorphin/KOR system might be a target to regulate morphine-induced CPP extinction but not reinstatement.
Collapse
Affiliation(s)
- Guiyun Wu
- Department of Anesthesiology, Affiliated Sun Yat-sen Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Xu
- Department of Anesthesiology, Affiliated Sun Yat-sen Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang Ye
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haihua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
19
|
Tapocik JD, Schank JR, Mitchell JR, Damazdic R, Mayo CL, Brady D, Pincus AB, King CE, Heilig M, Elmer GI. Live predator stress in adolescence results in distinct adult behavioral consequences and dorsal diencephalic brain activation patterns. Behav Brain Res 2021; 400:113028. [PMID: 33309751 PMCID: PMC8056471 DOI: 10.1016/j.bbr.2020.113028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Exposure to traumatic events during childhood increases the risk of adult psychopathology, including anxiety, depression, alcohol use disorders and their co-morbidity. Early life trauma also results in increased symptom complexity, treatment resistance and poor treatment outcomes. The purpose of this study was to establish a novel rodent model of adolescent stress, based on an ethologically relevant life-threatening event, live predator exposure. Rats were exposed to a live predator for 10 min. at three different time points (postnatal day (PND)31, 46 and 61). Adult depression-, anxiety-like behaviors and ethanol consumption were characterized well past the last acute stress event (two weeks). Behavioral profiles across assessments were developed to characterize individual response to adolescent stress. CNS activation patterns in separate groups of subjects were characterized after the early (PND31) and last predator exposure (PND61). Subjects exposed to live-predator adolescent stress generally exhibited less exploratory behavior, less propensity to venture into open spaces, a decreased preference for sweet solutions and decreased ethanol consumption in a two-bottle preference test. Additional studies demonstrated blunted cortisol response and CNS activation patterns suggestive of habenula, rostromedial tegmental (RMTg), dorsal raphe and central amygdala involvement in mediating the adult consequences of adolescent stress. Thus, adolescent stress in the form of live-predator exposure results in significant adult behavioral and neurobiological disturbances. Childhood trauma, its impact on neurodevelopment and the subsequent development of mood disorders is a pervasive theme in mental illness. Improving animal models and our neurobiological understanding of the symptom domains impacted by trauma could significantly improve treatment strategies.
Collapse
Affiliation(s)
- J D Tapocik
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - J R Schank
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - J R Mitchell
- Department of Psychology, Colby College, Waterville, ME, 04901, United States
| | - R Damazdic
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - C L Mayo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - D Brady
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - A B Pincus
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - C E King
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - M Heilig
- Lab. of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, 20817, United States
| | - G I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
20
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
The Emerging Role of LHb CaMKII in the Comorbidity of Depressive and Alcohol Use Disorders. Int J Mol Sci 2020; 21:ijms21218123. [PMID: 33143210 PMCID: PMC7663385 DOI: 10.3390/ijms21218123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.
Collapse
|
22
|
Sun Y, Cao J, Xu C, Liu X, Wang Z, Zhao H. Rostromedial tegmental nucleus-substantia nigra pars compacta circuit mediates aversive and despair behavior in mice. Exp Neurol 2020; 333:113433. [PMID: 32791155 DOI: 10.1016/j.expneurol.2020.113433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022]
Abstract
GABAergic neurons in the rostromedial tegmental nucleus (RMTg) receive major input from the lateral habenula (LHb), which conveys negative reward and motivation related information, and project intensively to midbrain dopamine neurons, including those in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). The RMTg-VTA circuit has been shown to be linked to the affective behavior, but the role of the RMTg-SNc circuit in aversion and depression has not been well understood. This study demonstrated that exciting or inhibiting VgatRMTg-SNc neurons was sufficient to increase or decrease immobility time in the forced swim test (FST), respectively. Furthermore, exciting the VgatRMTg-SNc pathway caused aversive behavior. Ninety percent of the SNc putative dopamine neurons were inhibited in extracellular recordings. Furthermore, inhibiting the VgatRMTg-SNc pathway reversed behavioral despair in chronic restraint stress (CRS) depression model mice. Manipulations of the pathway did not affect the hedonic value of the reward in the sucrose-preference test (SPT) or general motor function. In conclusion, these results indicate that the VgatRMTg-SNc pathway regulates aversive and despair behavior, which suggests that the RMTg may mediate the role of LHb in negative behaviors through regulating the activity of SNc neurons.
Collapse
Affiliation(s)
- Yanfei Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Jing Cao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Chunpeng Xu
- Shijiazhuang Fifth Hospital, Shijiazhuang 050000, PR China
| | - Xiaofeng Liu
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China
| | - Zicheng Wang
- Norman Bethune Health Science Center of Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
23
|
Fu R, Mei Q, Shiwalkar N, Zuo W, Zhang H, Gregor D, Patel S, Ye JH. Anxiety during alcohol withdrawal involves 5-HT2C receptors and M-channels in the lateral habenula. Neuropharmacology 2019; 163:107863. [PMID: 31778691 DOI: 10.1016/j.neuropharm.2019.107863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Anxiety disorders often co-occur with alcohol use disorders, but the mechanisms underlying this comorbidity remain elusive. Previously, we reported that rats withdrawn from chronic alcohol consumption (Post-EtOH rats) exhibited robust anxiety-like behaviors (AB), which were accompanied by neuronal hyperexcitability, and the downregulation of M-type potassium channels (M-channels) in the lateral habenula (LHb); and that serotonin (5-HT) stimulated LHb neurons via type 2C receptors (5-HT2CRs). Also, 5-HT2CR activation is known to inhibit M-current in mouse hypothalamic neurons. The present study investigated whether LHb 5-HT2CRs and M-channels contribute to AB in adult male Long-Evans rats. We used the intermittent-access to 20% ethanol two-bottle free-choice drinking paradigm to induce dependence. We measured AB with the elevated plus-maze, open-field, and marble-burying tests at 24 h withdrawal. We found that intra-LHb infusion of SB242084, a selective 5-HT2CR antagonist alleviated AB and reduced the elevated c-Fos expression in the LHb of Post-EtOH rats. By contrast, intra-LHb infusion of the selective 5-HT2CR agonist WAY161503 induced AB and increased c-Fos expression in the LHb in alcohol-naive but not Post-EtOH rats. Also, intra-LHb SB242084 significantly reduced self-administration of alcohol intake in the operant chambers. Furthermore, both 5-HT2CR protein levels and 5-HIAA/5-HT ratio was increased in the LHb of Post-EtOH rats. Finally, intra-LHb SB242084 increased LHb KCNQ2/3 membrane protein expression in Post-EtOH rats. Collectively, these results suggest that enhanced LHb 5-HT2CR signaling that interacted with M-channels triggers AB in Post-EtOH rats and that 5-HT2CRs may be a promising target for treating comorbid anxiety disorders in alcoholics.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Nimisha Shiwalkar
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Shivani Patel
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
24
|
Li W, Zuo W, Wu W, Zuo QK, Fu R, Wu L, Zhang H, Ndukwe M, Ye JH. Activation of glycine receptors in the lateral habenula rescues anxiety- and depression-like behaviors associated with alcohol withdrawal and reduces alcohol intake in rats. Neuropharmacology 2019; 157:107688. [PMID: 31254534 PMCID: PMC6677595 DOI: 10.1016/j.neuropharm.2019.107688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
The lateral habenula (LHb) is activated by a range of aversive states including those related to alcohol withdrawal and has glycine receptors (GlyRs), a sensitive target of alcohol. However, whether GlyRs in the LHb contribute to alcohol-related behaviors is unknown. Here, we report that rats experiencing withdrawal from chronic alcohol consumption showed higher anxiety and sensitivity to stress compared to their alcohol-naïve counterparts. Intra-LHb injection of glycine attenuated these aberrant behaviors and reduced alcohol intake upon alcohol re-access. Glycine's effect was blocked by strychnine, a GlyR antagonist, indicating that it was mediated by strychnine-sensitive GlyRs. Conversely, intra-LHb strychnine elicited anxiety- and depression-like behaviors in Naïve rats but not in withdrawal rats. Additionally, both the frequency and the amplitude of the spontaneous IPSCs were lower in LHb neurons in slices of withdrawal rats compared to naïve rats. Also, there were sporadic strychnine-sensitive synaptic events in some LHb neurons. Bath perfusion of strychnine induced a depolarizing inward current and increased action potential firings in LHb neurons. By contrast, bath perfusion of glycine or sarcosine, a glycine transporter subtype 1 inhibitor, inhibited LHb activity. Collectively, these data reveal that LHb neurons are under the tonic glycine inhibition both in physiological and pathological conditions. Activation of GlyRs reverses LHb hyperactivity, alleviates aberrant behaviors, and reduces alcohol intake, thus highlighting the GlyRs in the LHb as a potential therapeutic target for alcohol-use disorders.
Collapse
Affiliation(s)
- Wenting Li
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wei Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Michael Ndukwe
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
25
|
Li J, Chen P, Han X, Zuo W, Mei Q, Bian EY, Umeugo J, Ye J. Differences between male and female rats in alcohol drinking, negative affects and neuronal activity after acute and prolonged abstinence. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:163-176. [PMID: 31523363 PMCID: PMC6737432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Alcohol consumption afflicts men and women differently. However, the underlying neuronal mechanisms that contribute to the difference are mostly unexplored. Although more men suffer from alcohol use disorders (AUD), women more frequently accelerate to dependence and develop adverse consequences of alcoholism sooner than men. Women also exhibit more significant negative emotions that cues more reactivity and alcohol-craving than men. Despite ample evidence that women are vulnerable to AUD, results of preclinical studies on sex differences in alcohol consumption and withdrawal-related behaviors are inconclusive. In this study, we trained adult male and female Sprague-Dawley rats to drink alcohol in the intermittent access to 20% ethanol two-bottle free-choice paradigm for two months. Their behaviors and Fos expression in related brain regions were measured at acute (24 h) and after prolonged (28 days) abstinence. We found that female rats drank more alcohol than males. After acute abstinence, rats of both sexes showed higher sensitivity to depressive, thermal, and mechanical stimuli. Females also displayed higher anxiety levels. After prolonged abstinence, rats of both sexes displayed depressive-like behaviors; the males displayed allodynia; the females showed higher anxiety levels and drank more alcohol upon reaccess to alcohol. Furthermore, during acute withdrawal, Fos-positive nuclei were increased in the prefrontal cortex, anterior cingulate cortex (ACC), nucleus accumbens (NAc), amygdala and lateral habenula (LHb) in the females, versus only in the ACC, amygdala, and LHb in the males. Conversely, after prolonged abstinence, Fos-positive nuclei were decreased in the prefrontal cortex, ACC, and NAc in the females, but fell in the ACC, NAc, and LHb of the males. Thus, adaptations in diverse brain regions may contribute to the sex differences in behaviors in ethanol-withdrawn rats.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| | - Pei Chen
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| | - Xiao Han
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| | - Emily Yao Bian
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| | - Jennifer Umeugo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| | - Jianghong Ye
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ 07103, USA
| |
Collapse
|