1
|
van Oort J, Tendolkar I, Vrijsen JN, Collard R, Gardner G, Duyser FA, Fernández G, Bachi K, van Eijndhoven PFP. Transdiagnostic relationships between childhood adversity and cortical thickness of the rostral anterior cingulate cortex. J Affect Disord 2025; 381:310-320. [PMID: 40185414 DOI: 10.1016/j.jad.2025.03.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Childhood adversity (CA) is the leading preventable risk factor for mental illness. While CA can exacerbate affective symptoms across various psychiatric disorders, its impact on brain morphology, particularly the rostral anterior cingulate cortex (rACC), has mainly been studied in specific stress-related psychiatric disorders, such as depression and anxiety disorders. Therefore, we set out to disentangle the relationships between CA, psychopathology and brain structure across a broader range of psychiatric disorders. We studied 227 patients with stress-related and/or neurodevelopmental disorders and 95 healthy controls. We focused on the rACC, as this region is highly impacted by CA and has a pivotal role in affective functions across psychiatric disorders. The presence of CA was associated with decreased left rACC thickness across the whole sample, independent of psychopathology. Additionally, the contralateral right rACC was associated with psychopathology, with psychiatric patients having a thinner rACC compared to healthy controls, which was most pronounced in the stress-related disorders group. While left rACC thickness negatively correlated with social anxiety-related concerns, right rACC thickness negatively correlated with various core symptoms of stress-related and neurodevelopmental disorders. Finally, our exploratory analyses across cortical regions did not reveal any robust effects that survived multiple comparison correction. Taken together, our results suggest that within the stress-related disorders group, the CA-related thinning of the left rACC may compound the effects of the affected right rACC. This 'double hit' in stress-related disorders may contribute to the well-established phenomenon that CA leads to a worse illness trajectory in these disorders.
Collapse
Affiliation(s)
- Jasper van Oort
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands; Addiction Institute of Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA.
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janna N Vrijsen
- Pro Persona Mental Health Care, , Depression Expertise Center, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University and Radboud University Medical Center, Nijmegen, Netherlands
| | - Rose Collard
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| | - George Gardner
- Addiction Institute of Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Fleur A Duyser
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University and Radboud University Medical Center, Nijmegen, Netherlands
| | - Keren Bachi
- Addiction Institute of Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Philip F P van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Orellana SC, Bethlehem RAI, Simpson-Kent IL, van Harmelen AL, Vértes PE, Bullmore ET. Childhood maltreatment influences adult brain structure through its effects on immune, metabolic, and psychosocial factors. Proc Natl Acad Sci U S A 2024; 121:e2304704121. [PMID: 38593073 PMCID: PMC11032474 DOI: 10.1073/pnas.2304704121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.
Collapse
Affiliation(s)
- Sofia C. Orellana
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Richard A. I. Bethlehem
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Department of Psychology, University of Cambridge, CambridgeCB2 3EB, United Kingdom
| | - Ivan L. Simpson-Kent
- Institute of Psychology, Leiden University, Leiden2333AK, The Netherlands
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, CambridgeCB2 7EF, United Kingdom
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104-6241
| | - Anne-Laura van Harmelen
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden2333AK, The Netherlands
| | - Petra E. Vértes
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Cambridgeshire & Peterborough NHS Foundation Trust, CambridgeCB21 5EF, United Kingdom
| |
Collapse
|
3
|
Bittencourt AML, da Silveira BLB, Tondo LP, Rothmann LM, Franco AR, Ferreira PEMS, Viola TW, Grassi-Oliveira R. Cingulate cortical thickness in cocaine use disorder: mediation effect between early life stress and cocaine consumption. Acta Neuropsychiatr 2024; 36:78-86. [PMID: 36416534 PMCID: PMC10203054 DOI: 10.1017/neu.2022.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The cingulate gyrus is implicated in the neurobiology of addiction, such as chronic cocaine consumption. Early life stress (ELS) is an important moderator of cocaine use disorder (CUD). Therefore, we investigated the effect of CUD on cingulate cortical thickness and tested whether a history of ELS could influence the effects of CUD. METHODS Participants aged 18-50 years (78 with CUD due to crack cocaine consumption and 53 healthy controls) underwent magnetic resonance imaging and the cingulate thickness (rostral anterior, caudal anterior, posterior, and isthmus regions) was analysed. The clinical assessment comprised the Childhood Trauma Questionnaire (CTQ) and the Addiction Severity Index. Group comparisons adjusting by sex, age, and education were performed. Mediation models were generated where lifetime cocaine use, CTQ score, and cortical thickness corresponded to the independent variable, intermediary variable, and outcome, respectively. RESULTS Group comparisons revealed significant differences in six out of eight cingulate cortices, showing lower thickness in the CUD group. Furthermore, years of regular cocaine use was the variable most associated with cingulate thickness. Negative correlations were found between CTQ scores and the isthmus cingulate (right hemisphere), as well as with the rostral anterior cingulate (left hemisphere). In the mediation analysis, we observed a significant negative direct effect of lifetime cocaine use on the isthmus cingulate and an indirect effect of cocaine use mediated by CTQ score. CONCLUSION Our findings suggest that a history of ELS could aggravate the negative effects of chronic cocaine use on the cingulate gyrus, particularly in the right isthmus cingulate cortex.
Collapse
Affiliation(s)
- Augusto Martins Lucas Bittencourt
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
- School of Medicine, Catholic University of Pelotas (UCPel), 96015560, Pelotas, Brazil
| | | | - Lucca Pizzato Tondo
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
| | - Leonardo Melo Rothmann
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
| | - Alexandre Rosa Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Thiago Wendt Viola
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Brain Institute (InsCer/BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619900, Porto Alegre, Brazil
- Department of Clinical Medicine – Translational Neuropsychiatry Unit, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
4
|
Pebole MM, Singleton CR, Hall KS, Petruzzello SJ, Reginald A, Smith BN, Whitworth JW, Gobin RL. Sex-specific associations between self-reported physical activity and PTSD among survivors of sexual violence. J Behav Med 2024; 47:220-231. [PMID: 37698803 DOI: 10.1007/s10865-023-00434-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/28/2023] [Indexed: 09/13/2023]
Abstract
This study examined sex-specific associations between sexual violence (SV) type and physical activity, and identified associations between PTSD symptoms and physical activity, all among cisgender men and women survivors of SV. Cross-sectional data from men (n = 197) and women (n = 356) survivors of SV were analyzed with stratified (men; women) hierarchical logistic regressions. Additionally, fully adjusted models for the total sample included interaction terms to further assess whether associations between SV type as well as PTSD symptoms (sum, clusters) and physical activity differed significantly by sex. Sexual assault was negatively associated with physical activity in the crude model among women (ORs: 0.58; p < 0.05). Harassment was positively associated with physical activity in the crude and adjusted models (ORs:1.92-2.16; ps<0.05) among women. Among men, there were no significant relationships. Regarding PTSD symptoms among women, crude and adjusted stratified models identified significant positive relationships with intrusion (ORs: 1.18-1.22; ps<0.05). Crude and adjusted models revealed significant positive relationships between avoidance and activity (ORs:1.38-1.41; ps<0.05) among men but not women. The interaction term for this difference in the association between avoidance and physical activity by sex was significant (OR: 0.65; 95%CI: 0.48-0.88; p < 0.01). Overall, findings provide evidence for sex-specific associations between SV and physical activity.
Collapse
Affiliation(s)
- Michelle M Pebole
- The Translational Research Center for TBI and Stress Disorders (TRACTS), Veterans Affairs Boston Healthcare System, 150 S Huntington Ave, Boston, MA, 02130, USA.
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, 505 E Armory Ave, Champaign, IL, 61280, USA.
| | - Chelsea R Singleton
- Department of Social, Behavioral, and Population Sciences, Tulane School of Public Health & Tropical Medicine, 1440 Canal Street, New Orleans, LA, 70112, USA
| | - Katherine S Hall
- Geriatric Research, Education, and Clinical Center, Durham VA Healthcare System, 508 Fulton St, Durham, NC, 27705, USA
- Department of Medicine, Duke University, 2301 Erwin Road, Durham, NC, 27710, USA
| | - Steven J Petruzzello
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, 505 E Armory Ave, Champaign, IL, 61280, USA
| | - Alston Reginald
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, 505 E Armory Ave, Champaign, IL, 61280, USA
| | - Brian N Smith
- National Center for PTSD Women's Health Sciences Division, VA Boston Healthcare System, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, 720 Harrison Avenue, Boston, MA, 02118, USA
| | - James W Whitworth
- National Center for PTSD Behavioral Science Division at VA Boston Healthcare System, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, 720 Harrison Avenue, Boston, MA, 02118, USA
| | - Robyn L Gobin
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, 505 E Armory Ave, Champaign, IL, 61280, USA
| |
Collapse
|
5
|
Yang J, Huggins AA, Sun D, Baird CL, Haswell CC, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawijn L, Veltman DJ, Suarez-Jimenez B, Zhu X, Neria Y, Hudson AR, Mueller SC, Baker JT, Lebois LAM, Kaufman ML, Qi R, Lu GM, Říha P, Rektor I, Dennis EL, Ching CRK, Thomopoulos SI, Salminen LE, Jahanshad N, Thompson PM, Stein DJ, Koopowitz SM, Ipser JC, Seedat S, du Plessis S, van den Heuvel LL, Wang L, Zhu Y, Li G, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Liberzon I, King A, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Blackford JU, Olatunji BO, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Morey RA, Sotiras A. Examining the association between posttraumatic stress disorder and disruptions in cortical networks identified using data-driven methods. Neuropsychopharmacology 2024; 49:609-619. [PMID: 38017161 PMCID: PMC10789873 DOI: 10.1038/s41386-023-01763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.
Collapse
Affiliation(s)
- Jin Yang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ashley A Huggins
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - C Lexi Baird
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Courtney C Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benjamin Suarez-Jimenez
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sheri M Koopowitz
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan C Ipser
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | | | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University, College Station, TX, USA
| | - Anthony King
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer U Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry of Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ifat Levy
- Department of Comparative Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA.
| | - Aristeidis Sotiras
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Etami Y, Lildharrie C, Manza P, Wang GJ, Volkow ND. Neuroimaging in Adolescents: Post-Traumatic Stress Disorder and Risk for Substance Use Disorders. Genes (Basel) 2023; 14:2113. [PMID: 38136935 PMCID: PMC10743116 DOI: 10.3390/genes14122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Trauma in childhood and adolescence has long-term negative consequences in brain development and behavior and increases the risk for psychiatric disorders. Among them, post-traumatic stress disorder (PTSD) during adolescence illustrates the connection between trauma and substance misuse, as adolescents may utilize substances to cope with PTSD. Drug misuse may in turn lead to neuroadaptations in learning processes that facilitate the consolidation of traumatic memories that perpetuate PTSD. This reflects, apart from common genetic and epigenetic modifications, overlapping neurocircuitry engagement triggered by stress and drug misuse that includes structural and functional changes in limbic brain regions and the salience, default-mode, and frontoparietal networks. Effective strategies to prevent PTSD are needed to limit the negative consequences associated with the later development of a substance use disorder (SUD). In this review, we will examine the link between PTSD and SUDs, along with the resulting effects on memory, focusing on the connection between the development of an SUD in individuals who struggled with PTSD in adolescence. Neuroimaging has emerged as a powerful tool to provide insight into the brain mechanisms underlying the connection of PTSD in adolescence and the development of SUDs.
Collapse
Affiliation(s)
| | | | | | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.E.); (C.L.); (P.M.); (N.D.V.)
| | | |
Collapse
|
7
|
Sequeira S, Carmel T, Tervo-Clemmens B, Edmiston EK. Future Directions in the Mental Health of Transgender Youth: Towards a Social-Affective Developmental Model of Health Disparity. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2023; 52:866-876. [PMID: 37910433 DOI: 10.1080/15374416.2023.2272972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Mental health disparities in transgender and gender diverse (TGD) youth are well-documented. These disparities are often studied in the context of minority stress theory, and most of this research focuses on experiences of trauma and discrimination TGD youth experience after coming out. However, TGD youth may be targets of violence and victimization due to perceived gender nonconformity before coming out. In this Future Directions, we integrate research on attachment, developmental trauma, and effects of racism and homophobia on mental health to propose a social-affective developmental framework for TGD youth. We provide a clinical vignette to highlight limitations in current approaches to mental health assessment in TGD youth and to illustrate how using a social-affective developmental framework can improve clinical assessment and treatment approaches and deepen our understanding of mental health disparities in TGD people.
Collapse
Affiliation(s)
| | - Tamar Carmel
- Department of Psychiatry, Veterans Affairs Richmond
| | | | - E Kale Edmiston
- Department of Psychiatry, University of Massachusetts Chan School of Medicine
| |
Collapse
|
8
|
Garrett AS, Zhang W, Price LR, Cross J, Gomez-Giuliani N, van Hoof MJ, Carrion V, Cohen JA. Structural equation modeling of treatment-related changes in neural connectivity for youth with PTSD. J Affect Disord 2023; 334:50-59. [PMID: 37127117 PMCID: PMC11727885 DOI: 10.1016/j.jad.2023.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Previous studies suggest that improvement in symptoms of posttraumatic stress disorder (PTSD) is accompanied by changes in neural connectivity, however, few studies have investigated directional (effective) connectivity. The current study assesses treatment-related changes in effective connectivity in youth with PTSD undergoing Trauma-Focused Cognitive Behavioral Therapy (TF-CBT). METHODS Functional MRI scans before and after 16 weeks of TF-CBT for 20 youth with PTSD, or the same time interval for 20 healthy controls (HC) were included in the analysis. Structural equation modeling was used to model group differences in directional connectivity at baseline, and changes in connectivity from pre- to post-treatment. RESULTS At baseline, the PTSD group, relative to the HC group, had significantly greater connectivity in the path from dorsal cingulate to anterior cingulate and from dorsal cingulate to posterior cingulate corticies. From pre- to post-treatment, connectivity in these paths decreased significantly in the PTSD group, as did connectivity from right hippocampus to left superior temporal gyrus. Connectivity from the left amygdala to the lateral orbital frontal cortex was significantly lower in PTSD vs HC at baseline, but did not change from pre- to post-treatment. CONCLUSION Although based on a small sample, these results converge with previous studies in suggesting a central role for the dorsal cingulate cortex in PTSD symptoms. The direction of this connectivity suggests that the dorsal cingulate is the source of modulation of anterior and posterior cingulate cortex during trauma-focused cognitive behavioral therapy.
Collapse
Affiliation(s)
- Amy S Garrett
- Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center San Antonio, United States of America; Research Imaging Institute, University of Texas Health Science Center San Antonio, United States of America.
| | - Wei Zhang
- Research Imaging Institute, University of Texas Health Science Center San Antonio, United States of America
| | - Larry R Price
- Department of Methodology, Measurement & Statistical Analysis, Texas State University, United States of America
| | - Jeremyra Cross
- Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center San Antonio, United States of America
| | - Natalia Gomez-Giuliani
- Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center San Antonio, United States of America
| | - Marie-Jose van Hoof
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center, the Netherlands; Department of Developmental and Educational Psychology, Leiden University, the Netherlands
| | - Victor Carrion
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, United States of America
| | - Judith A Cohen
- Department of Psychiatry, Drexel University College of Medicine, Allegheny Health Network, United States of America
| |
Collapse
|
9
|
Rosada C, Bauer M, Golde S, Metz S, Roepke S, Otte C, Buss C, Wingenfeld K. Childhood trauma and cortical thickness in healthy women, women with post-traumatic stress disorder, and women with borderline personality disorder. Psychoneuroendocrinology 2023; 153:106118. [PMID: 37137210 DOI: 10.1016/j.psyneuen.2023.106118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Structural brain changes have been associated with childhood trauma (CT) and several trauma-associated mental disorders. It is not known whether specific brain alterations are rather associated with CT as such or with disorders that are common sequelae of CT. In this study, we characterized cortical thickness in three distinct groups with CT: healthy women (HC/CT), women with posttraumatic stress disorder (PTSD/CT) and women with borderline personality disorder (BPD/CT). These three CT-exposed groups were compared with healthy controls not exposed to CT (HC). METHODS We recruited 129 women (n = 70 HC, n = 25 HC/CT, n = 14 PTSD/CT, and n = 20 BPD/CT) and acquired T1-weighted anatomical images. FreeSurfer was used for conducting whole-brain cortical thickness between-group comparisons, applying separate generalized linear models to compare cortical thickness of each CT-exposed group with HC. RESULTS The HC/CT group had lower cortical thickness in occipital lobe areas (right lingual gyrus, left lateral occipital lobe) than the HC group. The BPD/CT group showed a broader pattern of reduced cortical thickness compared to the HC group, including the bilateral superior frontal gyrus, and bilateral isthmus, the right posterior, and left caudal anterior of the cingulate cortex as well as the right lingual gyrus of the occipital lobe. We found no differences between PTSD/CT and HC. CONCLUSIONS Cortical thickness reduction in the right lingual gyrus of the occipital lobe seem to be related to CT but is also present in BPD patients even after adjusting for severity of CT. Possibly, reduced cortical thickness in the lingual gyrus presents a CT-related vulnerability factor for CT-related adult psychopathologies such as BPD. Reduced cortical thickness in the frontal and cingulate cortex may represent unique neuroanatomical markers of BPD possibly related to difficulties in emotion regulation.
Collapse
Affiliation(s)
- Catarina Rosada
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, 12203 Berlin, Germany.
| | - Martin Bauer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, 10117 Berlin, Germany
| | - Sabrina Golde
- Clinical Psychology and Psychotherapy, Department of Education and Psychology, Freie Universität, 14195 Berlin, Germany
| | - Sophie Metz
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, 12203 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, 10117 Berlin, Germany
| | - Stefan Roepke
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Psychology, 10117 Berlin, Germany; Development, Health and Disease Research Program, University of California, Irvine, CA 92617, USA; Department of Pediatrics, University of California, Irvine, CA 92617, USA
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
10
|
Yang W, Jin S, Duan W, Yu H, Ping L, Shen Z, Cheng Y, Xu X, Zhou C. The effects of childhood maltreatment on cortical thickness and gray matter volume: a coordinate-based meta-analysis. Psychol Med 2023; 53:1681-1699. [PMID: 36946124 DOI: 10.1017/s0033291723000661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Childhood maltreatment has been suggested to have an adverse impact on neurodevelopment, including microstructural brain abnormalities. Existing neuroimaging findings remain inconsistent and heterogeneous. We aim to explore the most prominent and robust cortical thickness (CTh) and gray matter volume (GMV) alterations associated with childhood maltreatment. A systematic search on relevant studies was conducted through September 2022. The whole-brain coordinate-based meta-analysis (CBMA) on CTh and GMV studies were conducted using the seed-based d mapping (SDM) software. Meta-regression analysis was subsequently applied to investigate potential associations between clinical variables and structural changes. A total of 45 studies were eligible for inclusion, including 11 datasets on CTh and 39 datasets on GMV, consisting of 2550 participants exposed to childhood maltreatment and 3739 unexposed comparison subjects. Individuals with childhood maltreatment exhibited overlapped deficits in the median cingulate/paracingulate gyri simultaneously revealed by both CTh and GM studies. Regional cortical thinning in the right anterior cingulate/paracingulate gyri and the left middle frontal gyrus, as well as GMV reductions in the left supplementary motor area (SMA) was also identified. No greater regions were found for either CTh or GMV. In addition, several neural morphology changes were associated with the average age of the maltreated individuals. The median cingulate/paracingulate gyri morphology might serve as the most robust neuroimaging feature of childhood maltreatment. The effects of early-life trauma on the human brain predominantly involved in cognitive functions, socio-affective functioning and stress regulation. This current meta-analysis enhanced the understanding of neuropathological changes induced by childhood maltreatment.
Collapse
Affiliation(s)
- Wei Yang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Shushu Jin
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Weiwei Duan
- School of Mental Health, Jining Medical University, Jining, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cong Zhou
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
- School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
11
|
Shymanskaya A, Kohn N, Habel U, Wagels L. Brain network changes in adult victims of violence. Front Psychiatry 2023; 14:1040861. [PMID: 36816407 PMCID: PMC9931748 DOI: 10.3389/fpsyt.2023.1040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Stressful experiences such as violence can affect mental health severely. The effects are associated with changes in structural and functional brain networks. The current study aimed to investigate brain network changes in four large-scale brain networks, the default mode network, the salience network, the fronto-parietal network, and the dorsal attention network in self-identified victims of violence and controls who did not identify themselves as victims. Materials and methods The control group (n = 32) was matched to the victim group (n = 32) by age, gender, and primary psychiatric disorder. Sparse inverse covariance maps were derived from functional resting-state measurements and from T1 weighted structural data for both groups. Results Our data underlined that mostly the salience network was affected in the sample of self-identified victims. In self-identified victims with a current psychiatric diagnosis, the dorsal attention network was mostly affected underlining the potential role of psychopathological alterations on attention-related processes. Conclusion The results showed that individuals who identify themselves as victim demonstrated significant differences in all considered networks, both within- and between-network.
Collapse
Affiliation(s)
- Aliaksandra Shymanskaya
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure and Function, INM-10, Institute of Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany
| | - Nils Kohn
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmengen, Netherlands
| | - Ute Habel
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure and Function, INM-10, Institute of Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure and Function, INM-10, Institute of Neuroscience and Medicine, Jülich Research Centre, Jülich, Germany
| |
Collapse
|
12
|
Botsford C, Brellenthin AG, Cisler JM, Hillard CJ, Koltyn KF, Crombie KM. Circulating endocannabinoids and psychological outcomes in women with PTSD. J Anxiety Disord 2023; 93:102656. [PMID: 36469982 PMCID: PMC9839585 DOI: 10.1016/j.janxdis.2022.102656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent research has attempted to elucidate the relationship between blood-based biomarkers (e.g., endocannabinoids; eCBs: including N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and mental health outcomes in psychiatric populations such as posttraumatic stress disorder (PTSD). Prior research suggests that adults with PTSD may have altered circulating eCB tone and a blunted mobilization of eCBs (particularly 2-AG) in response to stress (e.g., aerobic exercise), although our understanding has been limited in part due to heterogenous samples and small sample sizes. METHODS A subset of data was pooled from five studies in which women with and without PTSD (N = 98) completed questionnaires related to mood states and a blood draw prior to and following a bout of moderate-intensity aerobic exercise in order to determine: 1) whether circulating eCBs differ between groups and whether depressive and PTSD symptom severity are associated with baseline eCBs, 2) whether a bout of aerobic exercise increases circulating eCBs in adult women with PTSD, and 3) whether circulating eCBs are associated with overall mood states and exercise-induced improvements in mood states in women with and without PTSD. RESULTS PTSD diagnoses were not associated with baseline concentrations of eCBs. Greater depressive symptom severity and PTSD symptom severity within the negative alteration in cognition and mood cluster were associated with lower circulating AEA. Circulating AEA significantly increased following aerobic exercise for both groups, whereas circulating 2-AG only increased in women without PTSD. Greater circulating AEA within the PTSD group was associated with lower depressive mood, confusion, and total mood disturbance. CONCLUSIONS These findings suggest that greater circulating AEA is associated with better overall mood and lower depressive and PTSD symptom severity, and that an acute bout of moderate-intensity aerobic exercise increases circulating AEA (but not 2-AG) in adult women with PTSD. These findings are consistent with the idea that greater eCB tone (particularly AEA) following pharmacological and/or non-pharmacological manipulations may be beneficial for improving psychological outcomes (e.g., mood, cognition) among PTSD, and possibly other psychiatric populations.
Collapse
Affiliation(s)
- Chloe Botsford
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719, United States.
| | - Angelique G Brellenthin
- Iowa State University, Department of Kinesiology, Forker Building, 534 Wallace Road, Ames, IA 50011, United States.
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School & Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States.
| | - Cecilia J Hillard
- Medical College of Wisconsin, Neuroscience Research Center, Department of Pharmacology and Toxicology, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Kelli F Koltyn
- University of Wisconsin - Madison, Department of Kinesiology, 1300 University Avenue, Madison, WI 53706, United States.
| | - Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States.
| |
Collapse
|
13
|
Study on the changes of Structural Covariance Network in post-traumatic stress disorder. Brain Imaging Behav 2022; 16:1992-2000. [DOI: 10.1007/s11682-022-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
|
14
|
Li L, Zhang Y, Zhao Y, Li Z, Kemp GJ, Wu M, Gong Q. Cortical thickness abnormalities in patients with post-traumatic stress disorder: A vertex-based meta-analysis. Neurosci Biobehav Rev 2022; 134:104519. [PMID: 34979190 DOI: 10.1016/j.neubiorev.2021.104519] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023]
Abstract
Neuroimaging studies report altered cortical thickness in patients with post-traumatic stress disorder (PTSD), but the results are inconsistent. Using anisotropic effect-size seed-based d mapping (AES-SDM) software with its recently-developed meta-analytic thickness mask, we conducted a meta-analysis of published studies which used whole-brain surface-based morphometry, in order to define consistent cortical thickness alterations in PTSD patients. Eleven studies with 438 patients and 396 controls were included. Compared with all controls, patients with PTSD showed increased cortical thickness in right superior temporal gyrus, and in left and right superior frontal gyrus; the former survived in subgroup analysis of adult patients, and in subgroup comparison with only non-PTSD trauma-exposed controls, the latter in subgroup comparison with only non-trauma-exposed healthy controls. Cortical thickness in right superior frontal gyrus was positively associated with percentage of female patients, and cortical thickness in left superior frontal gyrus was positively associated with symptom severity measured by the clinician-administered PTSD scale. These robust results may help to elucidate the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
15
|
Eder-Moreau E, Zhu X, Fisch CT, Bergman M, Neria Y, Helpman L. Neurobiological Alterations in Females With PTSD: A Systematic Review. Front Psychiatry 2022; 13:862476. [PMID: 35770056 PMCID: PMC9234306 DOI: 10.3389/fpsyt.2022.862476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Most females experience at least one traumatic event in their lives, but not all develop PTSD. Despite considerable research, our understanding of the key factors that constitute risk for PTSD among females is limited. Previous research has largely focused on sex differences, neglecting within group comparisons, thereby obviating differences between females who do and do not develop PTSD following exposure to trauma. In this systematic review, we conducted a search for the extent of existing research utilizing magnetic resonance imaging (MRI) to examine neurobiological differences among females of all ages, with and without PTSD. Only studies of females who met full diagnostic criteria for PTSD were included. Fifty-six studies were selected and reviewed. We synthesized here findings from structural MRI (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and resting state functional connectivity (rs-FC MRI) studies, comparing females with and without PTSD. A range of biopsychosocial constructs that may leave females vulnerable to PTSD were discussed. First, the ways timing and type of exposure to trauma may impact PTSD risk were discussed. Second, the key role that cognitive and behavioral mechanisms may play in PTSD was described, including rumination, and deficient fear extinction. Third, the role of specific symptom patterns and common comorbidities in female-specific PTSD was described, as well as sex-specific implications on treatment and parenting outcomes. We concluded by identifying areas for future research, to address the need to better understand developmental aspects of brain alterations, the differential impact of trauma types and timing, the putative role of neuroendocrine system in neurobiology of PTSD among females, and the impact of social and cultural factors on neurobiology in females with PTSD.
Collapse
Affiliation(s)
- Elizabeth Eder-Moreau
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States
| | - Xi Zhu
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Chana T Fisch
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States
| | - Maja Bergman
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States
| | - Yuval Neria
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Liat Helpman
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel.,Psychiatric Research Unit, Tel Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|