1
|
Ramsay S, Allison K, Temples HS, Sarasua S, Boccuto L. Application of Genetic Testing for Anorexia Nervosa: An Ethical Analysis. Brain Behav 2025; 15:e70406. [PMID: 40059471 PMCID: PMC11891269 DOI: 10.1002/brb3.70406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/21/2025] Open
Abstract
OBJECTIVE Anorexia Nervosa (AN) is a severe, debilitating disorder with a high mortality rate. Research indicates that genetics plays a significant role in AN manifestation and persistence. Genetic testing has the potential to transform how AN is treated, however, in clinical practice, care must be taken to consider the ethical complexities involved. Our objective was to perform an ethical analysis of genetic testing in AN. METHODS We applied the principlist approach, taking into consideration the stakeholders involved and the core ethical principles of autonomy, beneficence, non-maleficence, and justice to (1) evaluate the possible ethical implications of the use of genetic testing in the treatment of patients with AN, and (2) assess whether such testing is justified and if so, under what conditions. RESULTS Potential benefits of genetic testing identified include reduction of misdiagnosis and identification of treatable concurrent genetic conditions. The identified potential risks of genetic testing for possible AN-associated risk variants outside of a research setting, especially without more effective treatment options, include a false sense of reassurance for those testing negative and a reduced emphasis on the importance of behavioral-based therapies that may be of benefit. DISCUSSION Genetic testing for complex disorders, including AN, has tremendous potential, but is still primarily research-based. Currently, for those presenting with atypical AN, and severe and enduring AN who, by definition, have not benefited from traditional treatment, genetic testing to rule out or identify other genetic conditions could be of benefit.
Collapse
Affiliation(s)
- Sarah Ramsay
- Healthcare Genetics Program, School of NursingClemson UniversityClemsonSouth CarolinaUSA
| | - Kendra Allison
- Healthcare Genetics Program, School of NursingClemson UniversityClemsonSouth CarolinaUSA
| | - Heide S. Temples
- Healthcare Genetics Program, School of NursingClemson UniversityClemsonSouth CarolinaUSA
| | - Sara Sarasua
- Healthcare Genetics Program, School of NursingClemson UniversityClemsonSouth CarolinaUSA
| | - Luigi Boccuto
- Healthcare Genetics Program, School of NursingClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
2
|
Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C. Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD. Genes (Basel) 2024; 16:11. [PMID: 39858558 PMCID: PMC11764921 DOI: 10.3390/genes16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control. METHODS We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level. We employ Cell-Specific Network Inference via Integer Value Programming and Causal Reasoning (CS-NIVaCaR) to identify core modules and Cell-Specific Probabilistic Contextualization for mRNA Regulatory Networks (CS-ProComReN) to quantitatively reveal activated sub-pathways involving MAPK1, MKNK1, RPS6KA5, and MTOR across different cell types in ASD. RESULTS The results indicate that specific pivotal molecules, such as EIF4EBP1 and EIF4E, lacking Differential Expression (DE) characteristics and responsible for protein translation with long-term potentiation (LTP) or long-term depression (LTD), are dysregulated. We further uncover distinct activation patterns causally linked to the EIF4EBP1-EIF4E module in excitatory and inhibitory neurons. CONCLUSIONS Importantly, our work introduces a methodology for leveraging extensive transcriptomics data to parse the signal transduction network, transforming it into mSiReN, and mapping it back to the protein level. These algorithms can serve as potent tools in systems biology to analyze other omics and regulatory networks. Furthermore, the biomarkers within the activated sub-pathways, revealed by identifying convergent dysregulation, illuminate potential diagnostic and prognostic factors in ASD.
Collapse
Affiliation(s)
- Chao Kong
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zigang Huang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Old Aberdeen AB24 3UE, UK
| |
Collapse
|
3
|
Manghi P, Filosi M, Zolfo M, Casten LG, Garcia-Valiente A, Mattevi S, Heidrich V, Golzato D, Perini S, Thomas AM, Montalbano S, Cancellieri S, Waldron L, Hall JB, Xu S, Volfovsky N, Green Snyder L, Feliciano P, Asnicar F, Valles-Colomer M, Michaelson JJ, Segata N, Domenici E. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders. Nat Commun 2024; 15:9743. [PMID: 39528484 PMCID: PMC11555315 DOI: 10.1038/s41467-024-53934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The link between the oral microbiome and neurodevelopmental disorders remains a compelling hypothesis, still requiring confirmation in large-scale datasets. Leveraging over 7000 whole-genome sequenced salivary samples from 2025 US families with children diagnosed with autism spectrum disorders (ASD), our cross-sectional study shows that the oral microbiome composition can discriminate ASD subjects from neurotypical siblings (NTs, AUC = 0.66), with 108 differentiating species (q < 0.005). The relative abundance of these species is highly correlated with cognitive impairment as measured by Full-Scale Intelligence Quotient (IQ). ASD children with IQ < 70 also exhibit lower microbiome strain sharing with parents (p < 10-6) with respect to NTs. A two-pronged functional enrichment analysis suggests the contribution of enzymes from the serotonin, GABA, and dopamine degradation pathways to the distinct microbial community compositions observed between ASD and NT samples. Although measures of restrictive eating diet and proxies of oral hygiene show relatively minor effects on the microbiome composition, the observed associations with ASD and IQ may still represent unaccounted-for underlying differences in lifestyle among groups. While causal relationships could not be established, our study provides substantial support to the investigation of oral microbiome biomarkers in ASD.
Collapse
Affiliation(s)
- Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy.
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098, San Michele all'Adige, Italy.
| | - Michele Filosi
- Department CIBIO, University of Trento, Trento, Italy
- EURAC Research Institute for Biomedicine BIO, Bolzano, Italy
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
- Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - Lucas G Casten
- Department of Psychiatry, University of Iowa, Iowa city, IA, USA
| | | | - Stefania Mattevi
- Department CIBIO, University of Trento, Trento, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Samuel Perini
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Simone Montalbano
- Department CIBIO, University of Trento, Trento, Italy
- Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Samuele Cancellieri
- Department CIBIO, University of Trento, Trento, Italy
- Norwegian Center of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | | | - Simon Xu
- Simons Foundation, New York, NY, USA
| | | | - LeeAnne Green Snyder
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Pamela Feliciano
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | | |
Collapse
|
4
|
Soto DC, Uribe-Salazar JM, Kaya G, Valdarrago R, Sekar A, Haghani NK, Hino K, La GN, Mariano NAF, Ingamells C, Baraban AE, Turner TN, Green ED, Simó S, Quon G, Andrés AM, Dennis MY. Gene expansions contributing to human brain evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615256. [PMID: 39386494 PMCID: PMC11463660 DOI: 10.1101/2024.09.26.615256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Genomic drivers of human-specific neurological traits remain largely undiscovered. Duplicated genes expanded uniquely in the human lineage likely contributed to brain evolution, including the increased complexity of synaptic connections between neurons and the dramatic expansion of the neocortex. Discovering duplicate genes is challenging because the similarity of paralogs makes them prone to sequence-assembly errors. To mitigate this issue, we analyzed a complete telomere-to-telomere human genome sequence (T2T-CHM13) and identified 213 duplicated gene families likely containing human-specific paralogs (>98% identity). Positing that genes important in universal human brain features should exist with at least one copy in all modern humans and exhibit expression in the brain, we narrowed in on 362 paralogs with at least one copy across thousands of ancestrally diverse genomes and present in human brain transcriptomes. Of these, 38 paralogs co-express in gene modules enriched for autism-associated genes and potentially contribute to human language and cognition. We narrowed in on 13 duplicate gene families with human-specific paralogs that are fixed among modern humans and show convincing brain expression patterns. Using long-read DNA sequencing revealed hidden variation across 200 modern humans of diverse ancestries, uncovering signatures of selection not previously identified, including possible balancing selection of CD8B. To understand the roles of duplicated genes in brain development, we generated zebrafish CRISPR "knockout" models of nine orthologs and transiently introduced mRNA-encoding paralogs, effectively "humanizing" the larvae. Morphometric, behavioral, and single-cell RNA-seq screening highlighted, for the first time, a possible role for GPR89B in dosage-mediated brain expansion and FRMPD2B function in altered synaptic signaling, both hallmark features of the human brain. Our holistic approach provides important insights into human brain evolution as well as a resource to the community for studying additional gene expansion drivers of human brain evolution.
Collapse
Affiliation(s)
- Daniela C. Soto
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - José M. Uribe-Salazar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Gulhan Kaya
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Ricardo Valdarrago
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aarthi Sekar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Nicholas K. Haghani
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gabriana N. La
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Natasha Ann F. Mariano
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
- Postbaccalaureate Research Education Program, University of California, Davis, CA 95616, USA
| | - Cole Ingamells
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Aidan E. Baraban
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St Louis, MS, 63110, USA
| | - Eric D. Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,20892, USA
| | - Sergi Simó
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gerald Quon
- Genome Center, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aida M. Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College, London, WC1E 6BT, UK
| | - Megan Y. Dennis
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
6
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
7
|
Grice ASB, Sloofman L, Levy T, Walker H, Ganesh G, de Los Santos MR, Armini P, Buxbaum JD, Kolevzon A, Kostic A, Breen MS. Transient peripheral blood transcriptomic response to ketamine treatment in children with ADNP syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301949. [PMID: 38352457 PMCID: PMC10863029 DOI: 10.1101/2024.01.29.24301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome is a rare neurodevelopmental disorder resulting in intellectual disability, developmental delay and autism spectrum disorder (ASD) and is due to mutations in the ADNP gene. Ketamine treatment has emerged as a promising therapeutic option for ADNP syndrome, showing safety and apparent behavioral improvements in a first open label study. However, the molecular perturbations induced by ketamine remain poorly understood. Here, we investigated the longitudinal effect of ketamine on the blood transcriptome of 10 individuals with ADNP syndrome. Transcriptomic profiling was performed before and at multiple time points after a single low-dose intravenous ketamine infusion (0.5mg/kg). We show that ketamine triggers immediate and profound gene expression alterations, with specific enrichment of monocyte-related expression patterns. These acute alterations encompass diverse signaling pathways and co-expression networks, implicating up-regulation of immune and inflammatory-related processes and down-regulation of RNA processing mechanisms and metabolism. Notably, these changes exhibit a transient nature, returning to baseline levels 24 hours to 1 week after treatment. These findings enhance our understanding of ketamine's molecular effects and lay the groundwork for further research elucidating its specific cellular and molecular targets. Moreover, they contribute to the development of therapeutic strategies for ADNP syndrome and potentially, ASD more broadly.
Collapse
Affiliation(s)
- Ariela S Buxbaum Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Walker
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gauri Ganesh
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Rodriguez de Los Santos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pardis Armini
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Kostic
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Tener SJ, Lin Z, Park SJ, Oraedu K, Ulgherait M, Van Beek E, Martínez-Muñiz A, Pantalia M, Gatto JA, Volpi J, Stavropoulos N, Ja WW, Canman JC, Shirasu-Hiza M. Neuronal knockdown of Cullin3 as a Drosophila model of autism spectrum disorder. Sci Rep 2024; 14:1541. [PMID: 38233464 PMCID: PMC10794434 DOI: 10.1038/s41598-024-51657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024] Open
Abstract
Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.
Collapse
Affiliation(s)
- Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Scarlet J Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Kairaluchi Oraedu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Van Beek
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrés Martínez-Muñiz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jared A Gatto
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Wong OWH, Barzilay R, Lam AMW, Chan S, Calkins ME, Gur RE, Gur RC. Executive function as a generalized determinant of psychopathology and functional outcome in school-aged autism spectrum disorder: a case-control study. Psychol Med 2023; 53:4788-4798. [PMID: 35912846 PMCID: PMC10388326 DOI: 10.1017/s0033291722001787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) are challenged not only by the defining features of social-communication deficits and restricted repetitive behaviors, but also by a myriad of psychopathology varying in severity. Different cognitive deficits underpin these psychopathologies, which could be subjected to intervention to alter the course of the disorder. Understanding domain-specific mediating effects of cognition is essential for developing targeted intervention strategies. However, the high degree of inter-correlation among different cognitive functions hinders elucidation of individual effects. METHODS In the Philadelphia Neurodevelopmental Cohort, 218 individuals with ASD were matched with 872 non-ASD controls on sex, age, race, and socioeconomic status. Participants of this cohort were deeply and broadly phenotyped on neurocognitive abilities and dimensional psychopathology. Using structural equation modeling, inter-correlation among cognitive domains were adjusted before mediation analysis on outcomes of multi-domain psychopathology and functional level. RESULTS While social cognition, complex cognition, and memory each had a unique pattern of mediating effect on psychopathology domains in ASD, none had significant effects on the functional level. In contrast, executive function was the only cognitive domain that exerted a generalized negative impact on every psychopathology domain (p factor, anxious-misery, psychosis, fear, and externalizing), as well as functional level. CONCLUSIONS Executive function has a unique association with the severity of comorbid psychopathology in ASD, and could be a target of interventions. As executive dysfunction occurs variably in ASD, our result also supports the clinical utility of assessing executive function for prognostic purposes.
Collapse
Affiliation(s)
- Oscar W. H. Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| | - Ran Barzilay
- Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Angela M. W. Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| | - Monica E. Calkins
- Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Raquel E. Gur
- Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Ruben C. Gur
- Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Crawley JN. Twenty years of discoveries emerging from mouse models of autism. Neurosci Biobehav Rev 2023; 146:105053. [PMID: 36682425 DOI: 10.1016/j.neubiorev.2023.105053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
More than 100 single gene mutations and copy number variants convey risk for autism spectrum disorder. To understand the extent to which each mutation contributes to the trajectory of individual symptoms of autism, molecular genetics laboratories have introduced analogous mutations into the genomes of laboratory mice and other species. Over the past twenty years, behavioral neuroscientists discovered the consequences of mutations in many risk genes for autism in animal models, using assays with face validity to the diagnostic and associated behavioral symptoms of people with autism. Identified behavioral phenotypes complement electrophysiological, neuroanatomical, and biochemical outcome measures in mutant mouse models of autism. This review describes the history of phenotyping assays in genetic mouse models, to evaluate social and repetitive behaviors relevant to the primary diagnostic criteria for autism. Robust phenotypes are currently employed in translational investigations to discover effective therapeutic interventions, representing the future direction of an intensely challenging research field.
Collapse
|
11
|
Ryan NM, Heron EA. Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. J Appl Genet 2023; 64:303-317. [PMID: 36710277 PMCID: PMC10076404 DOI: 10.1007/s13353-022-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
Collapse
Affiliation(s)
- Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Identification of the Shared Gene Signatures between Autism Spectrum Disorder and Epilepsy via Bioinformatic Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9883537. [PMID: 36601364 PMCID: PMC9806688 DOI: 10.1155/2022/9883537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/05/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022]
Abstract
Purpose To identify gene signatures that are shared by autism spectrum disorder (ASD) and epilepsy (EP) and explore the potential molecular mechanism of the two diseases using WGCNA analysis. Additionally, to verify the effects of the shared molecular mechanism on ADHD, which is another neurological comorbidity. Methods We screened the crosstalk genes between ASD and EP based on WGCNA and differential expression analysis from GEO and DisGeNET database and analyzed the function of the genes' enrichment by GO and KEGG analyses. Then, with combination of multiple datasets and multiple bioinformatic analysis methods, the shared gene signatures were identified. Moreover, we explored whether the shared gene signature had influence on the other neurological disorder like ADHD by analyzing the difference of the relative genes' expression based on bioinformatic analysis and molecular experiment. Results By comprehensive bioinformatic analysis for multiple datasets, we found that abnormal immune response and abnormal lipid metabolic pathway played important roles in coincidence of ASD and EP. Base on the results of WGCNA, we got the hub genes in ASD and EP. In attention deficit and hyperactivity disorder (ADHD) animal model, we also found a significant difference of gene expression related to sulfatide metabolism, indicating that the abnormal sphingolipid metabolism was common in multiple neurological disorders. Conclusion This study reveals shared gene signatures between ASD and EP and identifies abnormal sphingolipid metabolism as an important participant in the development of ASD, EP, and ADHD.
Collapse
|
13
|
Arslan A. Systematic Inspection of Genomic Tandem Repeats and Rearrangements in Autism Model. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Pinzón-Espinosa J, van der Horst M, Zinkstok J, Austin J, Aalfs C, Batalla A, Sullivan P, Vorstman J, Luykx JJ. Barriers to genetic testing in clinical psychiatry and ways to overcome them: from clinicians' attitudes to sociocultural differences between patients across the globe. Transl Psychiatry 2022; 12:442. [PMID: 36220808 PMCID: PMC9553897 DOI: 10.1038/s41398-022-02203-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Genetic testing has evolved rapidly over recent years and new developments have the potential to provide insights that could improve the ability to diagnose, treat, and prevent diseases. Information obtained through genetic testing has proven useful in other specialties, such as cardiology and oncology. Nonetheless, a range of barriers impedes techniques, such as whole-exome or whole-genome sequencing, pharmacogenomics, and polygenic risk scoring, from being implemented in psychiatric practice. These barriers may be procedural (e.g., limitations in extrapolating results to the individual level), economic (e.g., perceived relatively elevated costs precluding insurance coverage), or related to clinicians' knowledge, attitudes, and practices (e.g., perceived unfavorable cost-effectiveness, insufficient understanding of probability statistics, and concerns regarding genetic counseling). Additionally, several ethical concerns may arise (e.g., increased stigma and discrimination through exclusion from health insurance). Here, we provide an overview of potential barriers for the implementation of genetic testing in psychiatry, as well as an in-depth discussion of strategies to address these challenges.
Collapse
Affiliation(s)
- Justo Pinzón-Espinosa
- Sant Pau Mental Health Group, Institut d'Investigació Biomèdica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Department of Clinical Psychiatry, School of Medicine, University of Panama, Panama City, Panama
- Department of Mental Health, Parc Tauli University Hospital, Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Barcelona, Spain
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marte van der Horst
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Janneke Zinkstok
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
| | - Jehannine Austin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry and Medical Genetics, Genetic Counselling Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Cora Aalfs
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Batalla
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Patrick Sullivan
- Center for Psychiatric Genomics, Department of Genetics and Psychiatric, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Karolinska Institute, Stockholm, Sweden
| | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands.
| |
Collapse
|
15
|
Perfilyeva A, Bespalova K, Perfilyeva Y, Skvortsova L, Musralina L, Zhunussova G, Khussainova E, Iskakova U, Bekmanov B, Djansugurova L. Integrative Functional Genomic Analysis in Multiplex Autism Families from Kazakhstan. DISEASE MARKERS 2022; 2022:1509994. [PMID: 36199823 PMCID: PMC9529466 DOI: 10.1155/2022/1509994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
The study of extended pedigrees containing autism spectrum disorder- (ASD-) related broader autism phenotypes (BAP) offers a promising approach to the search for ASD candidate variants. Here, a total of 650,000 genetic markers were tested in four Kazakhstani multiplex families with ASD and BAP to obtain data on de novo mutations (DNMs), common, and rare inherited variants that may contribute to the genetic risk for developing autistic traits. The variants were analyzed in the context of gene networks and pathways. Several previously well-described enriched pathways were identified, including ion channel activity, regulation of synaptic function, and membrane depolarization. Perhaps these pathways are crucial not only for the development of ASD but also for ВАР. The results also point to several additional biological pathways (circadian entrainment, NCAM and BTN family interactions, and interaction between L1 and Ankyrins) and hub genes (CFTR, NOD2, PPP2R2B, and TTR). The obtained results suggest that further exploration of PPI networks combining ASD and BAP risk genes can be used to identify novel or overlooked ASD molecular mechanisms.
Collapse
Affiliation(s)
| | - Kira Bespalova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Yuliya Perfilyeva
- M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
- Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Lyazzat Musralina
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Elmira Khussainova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Ulzhan Iskakova
- Kazakh National Medical University, 94 Tole Bi St., Almaty 050000, Kazakhstan
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| |
Collapse
|
16
|
Arslan A. Compendious survey of protein tandem repeats in inbred mouse strains. BMC Genom Data 2022; 23:62. [PMID: 35931961 PMCID: PMC9354378 DOI: 10.1186/s12863-022-01079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Short tandem repeats (STRs) play a crucial role in genetic diseases. However, classic disease models such as inbred mice lack such genome wide data in public domain. The examination of STR alleles present in the protein coding regions (are known as protein tandem repeats or PTR) can provide additional functional layer of phenotype regulars. Motivated with this, we analysed the whole genome sequencing data from 71 different mouse strains and identified STR alleles present within the coding regions of 562 genes. Taking advantage of recently formulated protein models, we also showed that the presence of these alleles within protein 3-dimensional space, could impact the protein folding. Overall, we identified novel alleles from a large number of mouse strains and demonstrated that these alleles are of interest considering protein structure integrity and functionality within the mouse genomes. We conclude that PTR alleles have potential to influence protein functions through impacting protein structural folding and integrity.
Collapse
|
17
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
19
|
Passos-Bueno MR, Costa CIS, Zatz M. Dystrophin genetic variants and autism. DISCOVER MENTAL HEALTH 2022; 2:4. [PMID: 37861890 PMCID: PMC10501027 DOI: 10.1007/s44192-022-00008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 10/21/2023]
Abstract
Loss-of-function variants in the dystrophin gene, a well-known cause of muscular dystrophies, have emerged as a mutational risk mechanism for autism spectrum disorder (ASD), which in turn is a highly prevalent (~ 1%) genetically heterogeneous neurodevelopmental disorder. Although the association of intellectual disability with the dystrophinopathies Duchenne (DMD) and Becker muscular dystrophy (BMD) has been long established, their association with ASD is more recent, and the dystrophin genotype-ASD phenotype correlation is unclear. We therefore present a review of the literature focused on the ASD prevalence among dystrophinopathies, the relevance of the dystrophin isoforms, and most particularly the relevance of the genetic background to the etiology of ASD in these patients. Four families with ASD-DMD/BMD patients are also reported here for the first time. These include a single ASD individual, ASD-discordant and ASD-concordant monozygotic twins, and non-identical ASD triplets. Notably, two unrelated individuals, which were first ascertained because of the ASD phenotype at ages 15 and 5 years respectively, present rare dystrophin variants still poorly characterized, suggesting that some dystrophin variants may compromise the brain more prominently. Whole exome sequencing in these ASD-DMD/BMD individuals together with the literature suggest, although based on preliminary data, a complex and heterogeneous genetic architecture underlying ASD in dystrophinopathies, that include rare variants of large and medium effect. The need for the establishment of a consortia for genomic investigation of ASD-DMD/BMD patients, which may shed light on the genetic architecture of ASD, is discussed.
Collapse
Affiliation(s)
- Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Claudia Ismania Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mayana Zatz
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Abstract
In the last 40 years, there has been a huge increase in autism genetics research and a rapidly growing number of discoveries. We now know autism is one of the most highly heritable disorders with negligible shared environmental contributions. Recent discoveries also show that rare variants of large effect size as well as small effect common gene variants all contribute to autism risk. These discoveries challenge traditional diagnostic boundaries and highlight huge heterogeneity in autism. In this review, we consider some of the key findings that are shaping current understanding of autism and what these discoveries mean for clinicians.
Collapse
Affiliation(s)
- Anita Thapar
- Division of Psychological Medicine and Clinical Neurosciences and MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Cardiff, Maindy Road, Wales, CF24 4HQ, UK.
| | - Michael Rutter
- Social, Genetic and Developmental Psychiatry Centre, Kings College London, London, UK
| |
Collapse
|
21
|
Yang K, Shi Y, Du X, Wang J, Zhang Y, Shan S, Yuan Y, Wang R, Zhou C, Liu Y, Cai Z, Wang Y, Fan L, Xu H, Yu J, Cheng J, Li F, Qiu Z. SENP1 in the retrosplenial agranular cortex regulates core autistic-like symptoms in mice. Cell Rep 2021; 37:109939. [PMID: 34731627 DOI: 10.1016/j.celrep.2021.109939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder, causing defects of social interaction and repetitive behaviors. Here, we identify a de novo heterozygous gene-truncating mutation of the Sentrin-specific peptidase1 (SENP1) gene in people with ASD without neurodevelopmental delay. We find that Senp1+/- mice exhibit core autistic-like symptoms such as social deficits and repetitive behaviors but normal learning and memory ability. Moreover, we find that inhibitory and excitatory synaptic functions are severely affected in the retrosplenial agranular (RSA) cortex of Senp1+/- mice. Lack of Senp1 leads to increased SUMOylation and degradation of fragile X mental retardation protein (FMRP), also implicated in syndromic ASD. Importantly, re-introducing SENP1 or FMRP specifically in RSA fully rescues the defects of synaptic function and autistic-like symptoms of Senp1+/- mice. Together, these results demonstrate that disruption of the SENP1-FMRP regulatory axis in the RSA causes autistic symptoms, providing a candidate region for ASD pathophysiology.
Collapse
Affiliation(s)
- Kan Yang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yuhan Shi
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiujuan Du
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200049, China
| | - Jincheng Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuefang Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shifang Shan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiting Yuan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruoqing Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhiyuan College, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenhuan Zhou
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Liu
- Zhiyuan College, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zilin Cai
- Zhiyuan College, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanzhi Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Fan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huatai Xu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Juehua Yu
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200049, China; NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinke Cheng
- Department of Molecular Cellular Biology, College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200049, China.
| | - Zilong Qiu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
22
|
Havdahl A, Niarchou M, Starnawska A, Uddin M, van der Merwe C, Warrier V. Genetic contributions to autism spectrum disorder. Psychol Med 2021; 51:2260-2273. [PMID: 33634770 PMCID: PMC8477228 DOI: 10.1017/s0033291721000192] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (autism) is a heterogeneous group of neurodevelopmental conditions characterized by early childhood-onset impairments in communication and social interaction alongside restricted and repetitive behaviors and interests. This review summarizes recent developments in human genetics research in autism, complemented by epigenetic and transcriptomic findings. The clinical heterogeneity of autism is mirrored by a complex genetic architecture involving several types of common and rare variants, ranging from point mutations to large copy number variants, and either inherited or spontaneous (de novo). More than 100 risk genes have been implicated by rare, often de novo, potentially damaging mutations in highly constrained genes. These account for substantial individual risk but a small proportion of the population risk. In contrast, most of the genetic risk is attributable to common inherited variants acting en masse, each individually with small effects. Studies have identified a handful of robustly associated common variants. Different risk genes converge on the same mechanisms, such as gene regulation and synaptic connectivity. These mechanisms are also implicated by genes that are epigenetically and transcriptionally dysregulated in autism. Major challenges to understanding the biological mechanisms include substantial phenotypic heterogeneity, large locus heterogeneity, variable penetrance, and widespread pleiotropy. Considerable increases in sample sizes are needed to better understand the hundreds or thousands of common and rare genetic variants involved. Future research should integrate common and rare variant research, multi-omics data including genomics, epigenomics, and transcriptomics, and refined phenotype assessment with multidimensional and longitudinal measures.
Collapse
Affiliation(s)
- A. Havdahl
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - M. Niarchou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, TN, USA
| | - A. Starnawska
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Department of Biomedicine, Aarhus University, Denmark
- Center for Genomics for Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - M. Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - C. van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, MA, USA
| | - V. Warrier
- Department of Psychiatry, Autism Research Centre, University of Cambridge, UK
| |
Collapse
|
23
|
Ma X, Wei J, Cui Y, Xia B, Zhang L, Nehme A, Zuo Y, Ferguson D, Levitt P, Qiu S. Disrupted Timing of MET Signaling Derails the Developmental Maturation of Cortical Circuits and Leads to Altered Behavior in Mice. Cereb Cortex 2021; 32:1769-1786. [PMID: 34470051 PMCID: PMC9016286 DOI: 10.1093/cercor/bhab323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
The molecular regulation of the temporal dynamics of circuit maturation is a key contributor to the emergence of normal structure-function relations. Developmental control of cortical MET receptor tyrosine kinase, expressed early postnatally in subpopulations of excitatory neurons, has a pronounced impact on the timing of glutamatergic synapse maturation and critical period plasticity. Here, we show that using a controllable overexpression (cto-Met) transgenic mouse, extending the duration of MET signaling after endogenous Met is switched off leads to altered molecular constitution of synaptic proteins, persistent activation of small GTPases Cdc42 and Rac1, and sustained inhibitory phosphorylation of cofilin. These molecular changes are accompanied by an increase in the density of immature dendritic spines, impaired cortical circuit maturation of prefrontal cortex layer 5 projection neurons, and altered laminar excitatory connectivity. Two photon in vivo imaging of dendritic spines reveals that cto-Met enhances de novo spine formation while inhibiting spine elimination. Extending MET signaling for two weeks in developing cortical circuits leads to pronounced repetitive activity and impaired social interactions in adult mice. Collectively, our data revealed that temporally controlled MET signaling as a critical mechanism for controlling cortical circuit development and emergence of normal behavior.
Collapse
Affiliation(s)
- Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Baomei Xia
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Le Zhang
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Antoine Nehme
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Yi Zuo
- Department of Molecular, Cellular and Developmental Neurobiology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Pat Levitt
- Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute and Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
24
|
Fombonne E, Coppola L, Mastel S, O'Roak BJ. Validation of Autism Diagnosis and Clinical Data in the SPARK Cohort. J Autism Dev Disord 2021; 52:3383-3398. [PMID: 34328611 DOI: 10.1007/s10803-021-05218-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 01/24/2023]
Abstract
The SPARK cohort was established to facilitate recruitment in studies of large numbers of participants with autism spectrum disorder (ASD). Online registration requires participants to have received a lifetime professional diagnosis by health or school providers although diagnoses are not independently verified. This study was set to examine the validity of self- and caregiver-reported autism diagnoses. Electronic medical records (EMR) of 254 SPARK participants (77.6% male, age 10.7 years) were abstracted. Using two different methods, confirmation of ASD diagnosis in EMRs was obtained in 98.8% of cases. Core clinical features recorded in EMRs were typical of autism samples and showed very good agreement with SPARK cohort data, providing further evidence of the validity of clinical information in the SPARK database.
Collapse
Affiliation(s)
- Eric Fombonne
- Department of Psychiatry, Oregon Health & Science University, Mail code: GH254, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA. .,Department of Pediatrics, Oregon Health & Science University, Portland, USA.
| | - Leigh Coppola
- Department of Psychiatry, Oregon Health & Science University, Mail code: GH254, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Sarah Mastel
- Department of Psychiatry, Oregon Health & Science University, Mail code: GH254, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| |
Collapse
|
25
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|
26
|
Toraman B, Bilginer SÇ, Hesapçıoğlu ST, Göker Z, Soykam HO, Ergüner B, Dinçer T, Yıldız G, Ünsal S, Kasap BK, Kandil S, Kalay E. Finding underlying genetic mechanisms of two patients with autism spectrum disorder carrying familial apparently balanced chromosomal translocations. J Gene Med 2021; 23:e3322. [PMID: 33591602 DOI: 10.1002/jgm.3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Genetic etiologies of autism spectrum disorders (ASD) are complex, and the genetic factors identified so far are very diverse. In complex genetic diseases such as ASD, de novo or inherited chromosomal abnormalities are valuable findings for researchers with respect to identifying the underlying genetic risk factors. With gene mapping studies on these chromosomal abnormalities, dozens of genes have been associated with ASD and other neurodevelopmental genetic diseases. In the present study, we aimed to idenitfy the causative genetic factors in patients with ASD who have an apparently balanced chromosomal translocation in their karyotypes. METHODS For mapping the broken genes as a result of chromosomal translocations, we performed whole genome DNA sequencing. Chromosomal breakpoints and large DNA copy number variations (CNV) were determined after genome alignment. Identified CNVs and single nucleotide variations (SNV) were evaluated with VCF-BED intersect and Gemini tools, respectively. A targeted resequencing approach was performed on the JMJD1C gene in all of the ASD cohorts (220 patients). For molecular modeling, we used a homology modeling approach via the SWISS-MODEL. RESULTS We found that there was no contribution of the broken genes or regulator DNA sequences to ASD, whereas the SNVs on the JMJD1C, CNKSR2 and DDX11 genes were the most convincing genetic risk factors for underlying ASD phenotypes. CONCLUSIONS Genetic etiologies of ASD should be analyzed comprehensively by taking into account of the all chromosomal structural abnormalities and de novo or inherited CNV/SNVs with all possible inheritance patterns.
Collapse
Affiliation(s)
- Bayram Toraman
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Samiye Çilem Bilginer
- Faculty of Medicine Child and Adolescent Psychiatry Department, Karadeniz Technical University, Trabzon, Turkey
| | - Selma Tural Hesapçıoğlu
- Child and Adolescent Psychiatry Department, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Göker
- Ministry of Health Ankara City Hospital, Child-Adolescent and Mental Health, Cankaya, Ankara, Turkey
| | - Hüseyin Okan Soykam
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, İstanbul, Turkey
| | - Bekir Ergüner
- Sabanci University Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bio engineering, Istanbul, Turkey
| | - Tuba Dinçer
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Gökhan Yıldız
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Serbülent Ünsal
- Graduate School of Health Science, Biostatistics and Medical Informatics Department, PhD Candidate, Karadeniz Technical University, Trabzon, Turkey
| | - Burak Kaan Kasap
- Graduate School of Health Science, Medical Biology Department, PhD Candidate, Karadeniz Technical University, Trabzon, Turkey
| | - Sema Kandil
- Faculty of Medicine Child and Adolescent Psychiatry Department, Karadeniz Technical University, Trabzon, Turkey
| | - Ersan Kalay
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
27
|
Ressler KJ, Williams LM. Big data in psychiatry: multiomics, neuroimaging, computational modeling, and digital phenotyping. Neuropsychopharmacology 2021; 46:1-2. [PMID: 32919403 PMCID: PMC7689454 DOI: 10.1038/s41386-020-00862-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Kerry J Ressler
- McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA.
| | | |
Collapse
|
28
|
Abstract
Recent progress in the identification of genes and genomic regions contributing to autism spectrum disorder (ASD) has had a broad impact on our understanding of the nature of genetic risk for a range of psychiatric disorders, on our understanding of ASD biology, and on defining the key challenges now facing the field in efforts to translate gene discovery into an actionable understanding of pathology. While these advances have not yet had a transformative impact on clinical practice, there is nonetheless cause for real optimism: reliable lists of risk genes are large and growing rapidly; the identified encoded proteins have already begun to point to a relatively small number of areas of biology, where parallel advances in neuroscience and functional genomics are yielding profound insights; there is strong evidence pointing to mid-fetal prefrontal cortical development as one nexus of vulnerability for some of the largest-effect ASD risk genes; and there are multiple plausible paths forward toward rational therapeutics development that, while admittedly challenging, constitute fundamental departures from what was possible prior to the era of successful gene discovery.
Collapse
Affiliation(s)
- Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|