1
|
Pałucha-Poniewiera A, Bobula B, Rafało-Ulińska A, Kaczorowska K. Depression-like effects induced by chronic unpredictable mild stress in mice are rapidly reversed by a partial negative allosteric modulator of mGlu 5 receptor, M-5MPEP. Psychopharmacology (Berl) 2025; 242:1259-1273. [PMID: 39615019 DOI: 10.1007/s00213-024-06724-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 05/17/2025]
Abstract
RATIONALE Due to the numerous limitations of ketamine as a rapid-acting antidepressant drug (RAAD), research is still being conducted to find an effective and safe alternative to this drug. Recent studies indicate that the partial mGlu5 receptor negative allosteric modulator (NAM), 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), has therapeutic potential as an antidepressant. OBJECTIVES The study aimed to investigate the potential rapid antidepressant-like effect of M-5MPEP in a mouse model of depression and to determine the mechanism of this action. METHODS Chronic unpredictable mild stress (CUMS) was used as an animal model of depression. The effects of single and four-day administration of M-5MPEP on CUMS-induced animal behaviors reflecting anhedonia, apathy, and helplessness were studied. Western blot was applied to measure the levels of proteins potentially involved in a rapid antidepressant effect, including mammalian target of rapamycin (mTOR), eukaryotic elongation factor 2 (eEF2), tropomyosin receptor kinase B (TrkB), and serotonin transporter (SERT), both in the hippocampus and the prefrontal cortex (PFC). Furthermore, excitatory synaptic transmission and long-term potentiation (LTP) were measured in the medial PFC (mPFC). RESULTS We showed that M-5MPEP administration for four consecutive days abolished CUMS-induced apathy- and anhedonia-like symptoms in a mouse model of depression. We also found that these effects were accompanied by changes in hippocampal TrkB levels and mTOR and eEF2 levels in the PFC. Using electrophysiological techniques, we showed that the four-day M-5MPEP treatment reversed chronic stress-induced increases in excitatory synaptic potential and CUMS-impaired LTP in the mPFC. CONCLUSIONS Partial mGlu5 receptor NAM, M-5MPEP, appears to be a potentially effective new RAAD and deserves further study.
Collapse
Affiliation(s)
- Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Anna Rafało-Ulińska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| |
Collapse
|
2
|
Riggs LM, Aronson S, Mou TCM, Pereira EFR, Thompson SM, Gould TD. Bioactive ketamine metabolite exerts in vivo neuroplastogenic effects to improve hippocampal function in a treatment-resistant depression model. Cell Rep 2025; 44:115743. [PMID: 40408248 DOI: 10.1016/j.celrep.2025.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
An acute increase in excitatory synaptic transmission contributes to the rapid antidepressant actions of neuroplastogens, including ketamine and its bioactive metabolite, (2R,6R)-hydroxynorketamine (HNK). It is hypothesized that drug-induced metaplastic changes in synaptic strength account for therapeutically relevant behavioral adaptations in vivo. Using the plasticity-deficient Wistar Kyoto model of treatment-resistant depression, we demonstrate that (2R,6R)-HNK potentiates glutamatergic transmission, promotes synaptic strength, restores long-term potentiation (LTP), and reverses deficits in hippocampal-dependent synaptic activity and behavior. (2R,6R)-HNK selectively potentiated CA1 pyramidal neuron activity during novelty exploration and restored Schaffer collateral-dependent spatial recognition memory. Prior experience with spatial learning partially occluded LTP in control rats, an effect mimicked in LTP-impaired rats in which spatial learning deficits were reversed by (2R,6R)-HNK. These findings demonstrate that (2R,6R)-HNK exerts rapid neuroplastogenic effects in vivo, which improve cognitive function and promote adaptive changes in synaptic strength at functionally impaired synapses.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Ta-Chung M Mou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Edna F R Pereira
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Brown KA, Ajibola MI, Gould TD. Rapid hippocampal synaptic potentiation induced by ketamine metabolite (2R,6R)-hydroxynorketamine persistently primes synaptic plasticity. Neuropsychopharmacology 2025; 50:928-940. [PMID: 40097740 PMCID: PMC12032166 DOI: 10.1038/s41386-025-02085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The pharmacologically active (R,S)-ketamine (ketamine) metabolite (2 R,6 R)-hydroxynorketamine (HNK) maintains ketamine's preclinical antidepressant profile without adverse effects. While hypotheses have been proposed to explain how ketamine and its metabolites initiate their antidepressant-relevant effects, it remains unclear how sustained therapeutic actions arise following drug elimination. To distinguish the physiological mechanisms involved in the rapid from sustained actions of HNK, we utilized extracellular electrophysiology combined with pharmacology to develop an in vitro hippocampal slice incubation model that exhibited pharmacological fidelity to the 1) rapid synaptic potentiation induced by HNK at the Schaffer collateral-CA1 (SC-CA1) synapse during bath-application to slices collected from mice, and 2) maintenance of metaplastic (priming) activity that enhanced N-methyl-D-aspartate receptor (NMDAR) activation-dependent long-term potentiation (LTP) hours after in vivo dosing. We used this model to reveal novel mechanisms engaged in HNK's temporally-sensitive antidepressant-relevant synaptic actions, finding that the induction of synaptic potentiation by HNK did not require NMDAR activity, but NMDAR activity was necessary to maintain synaptic priming. HNK required protein kinase A (PKA) activity to rapidly potentiate SC-CA1 neurotransmission to facilitate synaptic priming that persistently promoted LTP formation. HNK's rapid actions were blocked by inhibitors of adenylyl cyclase 1 (AC1), but not an AC5 inhibitor. We conclude that HNK rapidly potentiates SC-CA1 synaptic efficacy, which then stimulates priming mechanisms that persistently favor plasticity. Targeting such priming mechanisms may be an effective antidepressant strategy, and our incubation model may aid in revealing novel pharmacological targets.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Musa I Ajibola
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Department of Pharmacology and Physiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Zheng X, Zheng Y, Zhai Z, Chen Y, Zhu Y, Qiu G, Wang B, Wang S, Chen Y, Yan J. Electroacupuncture restores maternal separation-induced glutamatergic presynaptic deficits of the medial prefrontal cortex in adulthood. Neuroscience 2025; 570:203-212. [PMID: 39993668 DOI: 10.1016/j.neuroscience.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Maternal separation (MS) serves as a critical model of early life stress (ELS) that can lead to mood disorders, such as depression. Our previous studies suggest that MS may disrupt synaptic transmission in adulthood. While electroacupuncture (EA) has demonstrated antidepressant effects in several animal models of stress-induced depression, it remains unclear whether EA can reverse synaptic transmission deficits caused by ELS. In this study, we examined the effects of EA at Baihui (GV20) and Yintang (GV29) on both behavioural deficits and glutamatergic synaptic transmission in Sprague-Dawley rats subjected to MS. First, we showed that EA effectively alleviated anhedonia and despair-like behaviours. Furthermore, our data indicated that EA restored the decrease in presynaptic glutamate release, as evidenced by changes in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and paired-pulse ratios (PPR). Microdialysis results also suggested that EA elevated extracellular glutamate levels. To explore the underlying mechanisms, we performed Western blot analyses on several proteins involved in glutamatergic synaptic transmission. Notably, we found that EA treatment increased the expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and vesicle-associated release proteins (SNAP25, Syntaxin-1A, and VAMP2) in the medial prefrontal cortex (mPFC) of MS rats. In contrast, EA did not significantly affect most postsynaptic glutamatergic receptors. These findings underscore the significant impact of EA on glutamatergic synaptic transmission, particularly in restoring presynaptic impairments induced by MS in adulthood.
Collapse
Affiliation(s)
- Xiaorong Zheng
- South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Zhai
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Zhu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guofan Qiu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bokai Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuxin Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China..
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China..
| |
Collapse
|
5
|
Rodrigues B, Leitão RA, Santos M, Trofimov A, Silva M, Inácio ÂS, Abreu M, Nobre RJ, Costa J, Cardoso AL, Milosevic I, Peça J, Oliveiros B, Pereira de Almeida L, Pinheiro PS, Carvalho AL. MiR-186-5p inhibition restores synaptic transmission and neuronal network activity in a model of chronic stress. Mol Psychiatry 2025; 30:1034-1046. [PMID: 39237722 PMCID: PMC11835755 DOI: 10.1038/s41380-024-02715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo A Leitão
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Santos
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexander Trofimov
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Integrative Brain Function Neurobiology Lab, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 197022, St. Petersburg, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Mariline Silva
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Department of Applied Physics and Science for Life Laboratory (SciLifeLab), KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ângela S Inácio
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui J Nobre
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jéssica Costa
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ana Luísa Cardoso
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ira Milosevic
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Bárbara Oliveiros
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- iCRB-Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
6
|
Guo CCG, Xu Y, Shan L, Foka K, Memoli S, Mulveen C, Gijsbrechts B, Verheij MM, Homberg JR. Quantifying multilabeled brain cells in the whole prefrontal cortex reveals reduced inhibitory and a subtype of excitatory neuronal marker expression in serotonin transporter knockout rats. Cereb Cortex 2025; 35:bhae486. [PMID: 39932853 DOI: 10.1093/cercor/bhae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 02/13/2025] Open
Abstract
The prefrontal cortex regulates emotions and is influenced by serotonin. Rodents lacking the serotonin transporter (5-HTT) show increased anxiety and changes in excitatory and inhibitory cell markers in the prefrontal cortex. However, these observations are constrained by limitations in brain representation and cell segmentation, as standard immunohistochemistry is inadequate to consider volume variations in regions of interest. We utilized the deep learning network of the StarDist method in combination with novel open-source methods for automated cell counts in a wide range of prefrontal cortex subregions. We found that 5-HTT knockout rats displayed increased anxiety and diminished relative numbers of subclass excitatory VGluT2+ and activated ΔFosB+ cells in the infralimbic and prelimbic cortices and of inhibitory GAD67+ cells in the prelimbic cortex. Anxiety levels and ΔFosB cell counts were positively correlated in wild-type, but not in knockout, rats. In conclusion, we present a novel method to quantify whole brain subregions of multilabeled cells in animal models and demonstrate reduced excitatory and inhibitory neuronal marker expression in prefrontal cortex subregions of 5-HTT knockout rats.
Collapse
Affiliation(s)
- Chao Ciu-Gwok Guo
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Yifan Xu
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Kyriaki Foka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Simone Memoli
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Calum Mulveen
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Barend Gijsbrechts
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Michel M Verheij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry 2024; 29:3802-3813. [PMID: 38816586 PMCID: PMC11692567 DOI: 10.1038/s41380-024-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity-including via serotonergic interventions-to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Helen and Arthur E. Johnson Depression Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korrina A Duffy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Rosas-Sánchez GU, Germán-Ponciano LJ, Guillen-Ruiz G, Cueto-Escobedo J, Limón-Vázquez AK, Rodríguez-Landa JF, Soria-Fregozo C. Neuroplasticity and Mechanisms of Action of Acute and Chronic Treatment with Antidepressants in Preclinical Studies. Biomedicines 2024; 12:2744. [PMID: 39767650 PMCID: PMC11727250 DOI: 10.3390/biomedicines12122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Pharmacotherapy for depression includes drugs such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), noradrenaline (NA) and serotonin (5-HT) reuptake inhibitors (NaSSAs), and atypical antidepressants; these drugs exert differentially beneficial effects on symptoms of depression after acute and chronic treatment in animal models. Said effects are established through neuroplastic mechanisms involving changes in neurogenesis and synaptogenesis as result of the activation of intracellular signaling pathways associated with neurochemical and behavioral changes. Antidepressants increase the synaptic availability of monoamines (monoaminergic hypothesis) such as 5-HT, NA, and gamma-aminobutyric acid (GABA) by inhibiting their reuptake or degradation and activating intracellular signaling pathways such as the responsive element binding protein (cAMP-CREB) cascade, which regulates the expression of genes related to neuroplasticity and neurogenesis, such as brain-derived neurotrophic factor (BDNF), in various brain structures implicated in depression. The aim of this review is to analyze the mechanisms of action of different antidepressants and to compare the effects of acute and chronic treatment on neuroplasticity in animal models of depression. A thorough search was conducted in PubMed, Scopus, and Web of Science, focusing on studies since 1996 with keywords like antidepressants, acute and chronic treatment, neuroplasticity, and experimental depression. Studies included had to investigate antidepressant effects experimentally, with full-text access, while excluding those that did not. Data extraction focused on study design, findings, and relevance to understanding treatment differences. Only high-quality, peer-reviewed studies were considered to ensure a comprehensive synthesis of current knowledge.
Collapse
Affiliation(s)
| | - León Jesús Germán-Ponciano
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.J.G.-P.); (A.K.L.-V.)
| | - Gabriel Guillen-Ruiz
- Programa Investigadoras e Investigadores por México-CONAHCYT-Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
| | | | - Ana Karen Limón-Vázquez
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.J.G.-P.); (A.K.L.-V.)
| | - Juan Francisco Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.J.G.-P.); (A.K.L.-V.)
| | - César Soria-Fregozo
- Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico;
| |
Collapse
|
9
|
Brown KA, Ajibola MI, Gould TD. Rapid Hippocampal Synaptic Potentiation Induced by Ketamine Metabolite ( 2R , 6R )-Hydroxynorketamine Persistently Primes Synaptic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619152. [PMID: 39484512 PMCID: PMC11526997 DOI: 10.1101/2024.10.18.619152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The pharmacologically active ( R , S )-ketamine (ketamine) metabolite ( 2R , 6R )-hydroxynorketamine (HNK) maintains ketamine's preclinical antidepressant profile without adverse effects. While hypotheses have been proposed to explain how ketamine and its metabolites initiate their antidepressant-relevant effects, it remains unclear how sustained therapeutic actions arise following drug elimination. To distinguish the physiological mechanisms involved in the rapid from sustained actions of HNK, we utilized extracellular electrophysiology combined with pharmacology to develop an in vitro hippocampal slice incubation model that exhibited pharmacological fidelity to the 1) rapid synaptic potentiation induced by HNK at the Schaffer collateral-CA1 (SC-CA1) synapse during bath-application to slices collected from mice, and 2) maintenance of metaplastic (priming) activity that lowered the threshold for N- methyl-D-aspartate receptor (NMDAR) activation-dependent long-term potentiation (LTP) hours after in vivo dosing. We then used this model to reveal novel druggable mechanisms engaged in HNK's temporally-sensitive antidepressant synaptic actions, finding that the induction of synaptic potentiation by HNK did not require NMDAR activity, but NMDAR activity was necessary to maintain synaptic priming. HNK required protein kinase A (PKA) activity to rapidly potentiate SC-CA1 neurotransmission to facilitate synaptic priming that persistently promoted LTP formation. HNK's rapid actions were blocked by inhibitors of adenylyl cyclase 1 (AC1), but not an AC5 inhibitor. We conclude that HNK rapidly potentiates SC-CA1 synaptic efficacy, which then stimulates priming mechanisms that persistently favor antidepressant-relevant plasticity. Targeting such priming mechanisms may be an effective antidepressant strategy, and using approaches such as our incubation model may aid in revealing novel pharmacological targets.
Collapse
|
10
|
Li L, Kan W, Zhang Y, Wang T, Yang F, Ji T, Wang G, Du J. Quantitative proteomics combined independent PRM analysis reveals the mitochondrial and synaptic mechanism underlying norisoboldine's antidepressant effects. Transl Psychiatry 2024; 14:400. [PMID: 39358323 PMCID: PMC11447221 DOI: 10.1038/s41398-024-03127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Major depressive disorder (MDD) is a common disease affecting 300 million people worldwide. The existing drugs are ineffective for approximately 30% of patients, so it is urgent to develop new antidepressant drugs with novel mechanisms. Here, we found that norisoboldine (NOR) showed an antidepressant efficacy in the chronic social defeat stress (CSDS) depression model in the tail suspension, forced swimming, and sucrose consumption tests. We then utilized the drug-treated CSDS mice paradigm to segregate and gain differential protein groups of CSDS versus CON (CSDSCON), imipramine (IMI)-treated versus CSDS (IMICSDS), and NOR-treated versus CSDS (NORCSDS) from the prefrontal cortex. These protein expression alterations were first analyzed by ANOVA with p < 0.05. The protein cluster 1 and cluster 3, in which the pattern of protein levels similar to the mood pattern, showed enrichment in functions and localizations related to mitochondrion, ribosome and synapses. Further GO analysis of the common proteins for NORCSDS groups and NORIMI groups supported the findings from ANOVA analysis. We employed Protein-Protein interaction (PPI) analysis to examine the proteins of NORCSDS and NORIMI, revealing an enrichment of the proteins associated with the mitochondrial ribosomal and synaptic functions. Further independent analysis using parallel reaction monitoring (PRM) revealed that Cox7c, Mrp142, Naa30, Ighm, Apoa4, Ssu72, Mrps30, Apoh, Acbd5, and Cdv3, exhibited regulation in the NOR-treated group to support the homeostasis of mitochondrial functions. Additionally, Dcx, Arid1b, Rnf112, and Fam3c, were also observed to undergo modulation in the NOR-treated groups to support the synaptic formation and functions. These findings suggest that the proteins involved in depression treatment exert effects in strengthen the mitochondrial and synaptic functions in the mice PFC. Western blot analysis supported the data that the levels of Mrpl42, Cox7c, Naa30, Rnf112, Dcx Apoa4, Apoh and Fam3c were altered in the CSDS mice, and rescued by NOR treatment, supporting the PRM data. NOR treatment also rescued the NLRP3 inflammasome activation in CSDS mice. In summary, the current proteomic research conducted on the prefrontal cortex has provided valuable insights into the specific and shared molecular mechanisms underlying pathophysiology and treatment to CSDS-induced depression, shedding light on the therapeutic effects of Norisoboldine.
Collapse
Affiliation(s)
- Lei Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Weijing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Yi Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Tianyi Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050, Beijing, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China.
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088, Beijing, China.
| |
Collapse
|
11
|
Zhu J, Chen X, Lu B, Li XY, Wang ZH, Cao LP, Chen GM, Chen JS, Chen T, Chen TL, Cheng YQ, Chu ZS, Cui SX, Cui XL, Deng ZY, Gong QY, Guo WB, He CC, Hu ZJY, Huang Q, Ji XL, Jia FN, Kuang L, Li BJ, Li F, Li HX, Li T, Lian T, Liao YF, Liu XY, Liu YS, Liu ZN, Long YC, Lu JP, Qiu J, Shan XX, Si TM, Sun PF, Wang CY, Wang HN, Wang X, Wang Y, Wang YW, Wu XP, Wu XR, Wu YK, Xie CM, Xie GR, Xie P, Xu XF, Xue ZP, Yang H, Yu H, Yuan ML, Yuan YG, Zhang AX, Zhao JP, Zhang KR, Zhang W, Zhang ZJ, Yan CG, Yu Y. Transcriptomic decoding of regional cortical vulnerability to major depressive disorder. Commun Biol 2024; 7:960. [PMID: 39117859 PMCID: PMC11310478 DOI: 10.1038/s42003-024-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Han Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Guan-Mao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Jian-Shan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Tao Chen
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao-Lin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhao-Song Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shi-Xian Cui
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xi-Long Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhao-Yu Deng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Wen-Bin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Can-Can He
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zheng-Jia-Yi Hu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xin-Lei Ji
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng-Nan Jia
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Bao-Juan Li
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Li
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Tao Lian
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Fan Liao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Zhe-Ning Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yi-Cheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian-Ping Lu
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiao-Xiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Peng-Feng Sun
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Chuan-Yue Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hua-Ning Wang
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ping Wu
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Xin-Ran Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yan-Kun Wu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Guang-Rong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400000, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen-Peng Xue
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Min-Lan Yuan
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ai-Xia Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing-Ping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Wei Zhang
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Zi-Jing Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
12
|
Yu X, Meng W, Li Y, Luo X. A low-fouling electrochemical biosensor based on BSA hydrogel doped with carbon black for the detection of cortisol in human serum. Anal Chim Acta 2024; 1307:342645. [PMID: 38719410 DOI: 10.1016/j.aca.2024.342645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Electrochemical biosensors with high sensitivity can detect low concentrations of biomarkers, but their practical detection applications in complex biological environments such as human serum and sweat are severely limited by the biofouling. Herein, a conductive hydrogel based on bovine serum albumin (BSA) and conductive carbon black (CCB) was prepared for the construction of an antifouling biosensor. The BSA hydrogel (BSAG) was doped with CCB, and the prepared composite hydrogel exhibited good conductivity originated from the CCB and antifouling capability owing to the BSA hydrogel. An antifouling biosensor for the sensitive detection of cortisol was fabricated by drop-coating the conductive hydrogel onto a poly(3,4-ethylenedioxythiophene) (PEDOT) modified electrode and further immobilizing the cortisol aptamer. The constructed biosensor showed a linear range of 100 pg mL-1 - 10 μg mL-1 and a limit of detection of 26.0 pg mL-1 for the detection of cortisol, and it was capable of assaying cortisol accurately in complex human serum. This strategy of preparing antifouling and conductive hydrogels provides an effective way to develop robust electrochemical biosensors for biomarker detection in complex biological media.
Collapse
Affiliation(s)
- Xiaohang Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Weichen Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
13
|
Peterson BS, Li J, Trujillo M, Sawardekar S, Balyozian D, Bansal S, Sun BF, Marcelino C, Nanda A, Xu T, Amen D, Bansal R. A multi-site 99mTc-HMPAO SPECT study of cerebral blood flow in a community sample of patients with major depression. Transl Psychiatry 2024; 14:234. [PMID: 38830866 PMCID: PMC11148018 DOI: 10.1038/s41398-024-02961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Prior regional Cerebral Blood Flow (rCBF) studies in Major Depressive Disorder (MDD) have been limited by small, highly selective, non-representative samples that have yielded variable and poorly replicated findings. The aim of this study was to compare rCBF measures in a large, more representative community sample of adults with MDD and healthy control participants. This is a cross-sectional, retrospective multi-site cohort study in which clinical data from 338 patients 18-65 years of age with a primary diagnosis of MDD were retrieved from a central database for 8 privately owned, private-pay outpatient psychiatric centers across the United States. Two 99mTc-HMPAO SPECT brain scans, one at rest and one during performance of a continuous performance task, were acquired as a routine component of their initial clinical evaluation. In total, 103 healthy controls, 18-65 years old and recruited from the community were also assessed and scanned. Depressed patients had significantly higher rCBF in frontal, anterior cingulate, and association cortices, and in basal ganglia, thalamus, and cerebellum, after accounting for significantly higher overall CBF. Depression severity associated positively with rCBF in the basal ganglia, hippocampus, cerebellum, and posterior white matter. Elevated rCBF was especially prominent in women and older patients. Elevated rCBF likely represents pathogenic hypermetabolism in MDD, with its magnitude in direct proportion to depression severity. It is brain-wide, with disproportionate increases in cortical and subcortical attentional networks. Hypermetabolism may be a reasonable target for novel therapeutics in MDD.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| | - Jennifer Li
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Manuel Trujillo
- Department of Psychiatry at NYU Grossman School of Medicine, New York, NY, USA
- Amen Clinics Inc., Costa Mesa, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David Balyozian
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddharth Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bernice F Sun
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Courtney Marcelino
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anoop Nanda
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tracy Xu
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Gao Y, Nie K, Wang H, Dong H, Tang Y. Research progress on antidepressant effects and mechanisms of berberine. Front Pharmacol 2024; 15:1331440. [PMID: 38318145 PMCID: PMC10839030 DOI: 10.3389/fphar.2024.1331440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Depression, a global health problem with growing prevalence, brings serious impacts on the daily life of patients. However, the antidepressants currently used in clinical are not perfectly effective, which greatly reduces the compliance of patients. Berberine is a natural quaternary alkaloid which has been shown to have a variety of pharmacological effects, such as hypoglycemic, lipid-regulation, anti-cancer, antibacterial, anti-oxidation, anti-inflammatory, and antidepressant. This review summarizes the evidence of pharmacological applications of berberine in treating depression and elucidates the mechanisms of berberine regulating neurotransmitter levels, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal axis dysfunction, anti-oxidative stress, and suppressing inflammatory status in order to provide a reference for further research and clinical application of berberine.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
16
|
Riggs LM, Pereira EFR, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for ( 2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol 2024; 131:64-74. [PMID: 38050689 PMCID: PMC11286304 DOI: 10.1152/jn.00326.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
(2R,6R)-Hydroxynorketamine (HNK) is a ketamine metabolite that shows rapid antidepressant-like effects in preclinical studies and lacks the adverse N-methyl-d-aspartate receptor (NMDAR) inhibition-related properties of ketamine. Investigating how (2R,6R)-HNK exerts its antidepressant actions may be informative in the design of novel pharmacotherapies with improved safety and efficacy. We sought to identify the molecular substrates through which (2R,6R)-HNK induces functional changes at excitatory synapses, a prevailing hypothesis for how rapid antidepressant effects are initiated. We recorded excitatory postsynaptic potentials in hippocampal slices from male Wistar Kyoto rats, which have impaired hippocampal plasticity and are resistant to traditional antidepressants. (2R,6R)-HNK (10 µM) led to a rapid potentiation of electrically evoked excitatory postsynaptic potentials at Schaffer collateral CA1 stratum radiatum synapses. This potentiation was associated with a decrease in paired pulse facilitation, suggesting an increase in the probability of glutamate release. The (2R,6R)-HNK-induced potentiation was blocked by inhibiting either cyclic adenosine monophosphate (cAMP) or its downstream target, cAMP-dependent protein kinase (PKA). As cAMP is a potent regulator of brain-derived neurotrophic factor (BDNF) release, we assessed whether (2R,6R)-HNK exerts this acute potentiation through a rapid increase in cAMP-dependent BDNF-TrkB signaling. We found that the cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the acute synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions in vivo. These results suggest that, by potentiating glutamate release via cAMP-PKA signaling, (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission that promote structural plasticity leading to maintained antidepressant action.NEW & NOTEWORTHY Ketamine is a rapid-acting antidepressant and its preclinical effects are mimicked by its (2R,6R)-(HNK) metabolite. We found that (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission by potentiating glutamate release via cAMP-PKA signaling at hippocampal Schaffer collateral synapses. This cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the rapid synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions that are thought to maintain antidepressant action in vivo.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Edna F R Pereira
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Thompson SM. Modulators of GABA A receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology 2024; 49:83-95. [PMID: 37709943 PMCID: PMC10700661 DOI: 10.1038/s41386-023-01728-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
The predominant inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), acts at ionotropic GABAA receptors to counterbalance excitation and regulate neuronal firing. GABAA receptors are heteropentameric channels comprised from subunits derived from 19 different genes. GABAA receptors have one of the richest and well-developed pharmacologies of any therapeutic drug target, including agonists, antagonists, and positive and negative allosteric modulators (PAMs, NAMs). Currently used PAMs include benzodiazepine sedatives and anxiolytics, barbiturates, endogenous and synthetic neurosteroids, and general anesthetics. In this article, I will review evidence that these drugs act at several distinct binding sites and how they can be used to alter the balance between excitation and inhibition. I will also summarize existing literature regarding (1) evidence that changes in GABAergic inhibition play a causative role in major depression, anxiety, postpartum depression, premenstrual dysphoric disorder, and schizophrenia and (2) whether and how GABAergic drugs exert beneficial effects in these conditions, focusing on human studies where possible. Where these classical therapeutics have failed to exert benefits, I will describe recent advances in clinical and preclinical drug development. I will also highlight opportunities to advance a generation of GABAergic therapeutics, such as development of subunit-selective PAMs and NAMs, that are engendering hope for novel tools to treat these devastating conditions.
Collapse
Affiliation(s)
- Scott M Thompson
- Center for Novel Therapeutics, Department of Psychiatry, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos-Petropulu A, Al-Sharif N, Leaver A, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Ketamine treatment modulates habenular and nucleus accumbens static and dynamic functional connectivity in major depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299282. [PMID: 38106178 PMCID: PMC10723506 DOI: 10.1101/2023.12.01.23299282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dysfunctional reward processing in major depressive disorder (MDD) involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Ketamine elicits rapid antidepressant and alleviates anhedonia in MDD. To clarify how ketamine perturbs reward circuitry in MDD, we examined how serial ketamine infusions (SKI) modulate static and dynamic functional connectivity (FC) in Hb and NAc networks. MDD participants (n=58, mean age=40.7 years, female=28) received four ketamine infusions (0.5mg/kg) 2-3 times weekly. Resting-state fMRI scans and clinical assessments were collected at baseline and 24 hours post-SKI completion. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Paired t-tests examined changes in FC pre-to-post SKI, and correlations were used to determine relationships between FC changes with mood and anhedonia. Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in Hamilton Depression Rating Scale. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Noor Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Benjamin Wade
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Bailey AM, Barrett A, Havens L, Leyder E, Merchant T, Starnes H, Thompson SM. Changes in social, sexual, and hedonic behaviors in rats in response to stress and restoration by a negative allosteric modulator of α5-subunit containing GABA receptor. Behav Brain Res 2023; 452:114554. [PMID: 37356670 PMCID: PMC10528636 DOI: 10.1016/j.bbr.2023.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Major depressive disorder (MDD) is a debilitating and costly human condition. Treatment for MDD relies heavily on the use of antidepressants that are slow to produce mood-related changes and are not effective in all patients, such as selective serotonin reuptake inhibitors (SSRIs). Several novel compounds, including negative allosteric modulators of GABA-A receptors containing the α5-subunit (GABA-NAMs), are under investigation for potential fast acting therapeutic use in MDD. Preclinical evidence that these compounds produce a rapid antidepressant-like response comes primarily from simple tests of escape behavior and preference for rewarding stimuli after chronic stress. To increase the ethological relevance of these compounds, we tested the hypothesis that the GABA-NAM, L-655,708, would produce an antidepressant-like response in more complex stress-sensitive social and sex behaviors, which are of relevance to the symptoms of human depression. In male rats subjected to chronic restraint stress, injection of L-655,708 increased reward in a sexual conditioned place preference task, increased male sexual activity with a receptive female, and re-established male social dominance hierarchies within 24 h. We also report increased sucrose preference in the social defeat stress (SDS) model of depression following GABA-NAM administration, demonstrating that its antidepressant-like actions are independent of the type of chronic stress administered. This work extends the impact of GABA-NAMs beyond traditional tests of anhedonia and further supports the development of alpha5 subunit-selective GABA-NAMs as a potential fast-acting therapeutic approach for treating human MDD.
Collapse
Affiliation(s)
- Aileen M Bailey
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States.
| | - Allison Barrett
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Lane Havens
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Erica Leyder
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Taylor Merchant
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Hannah Starnes
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
20
|
Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA, Thompson SM, Gould TD. NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine. J Neurosci 2023; 43:1038-1050. [PMID: 36596696 PMCID: PMC9908316 DOI: 10.1523/jneurosci.1316-22.2022] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Ketamine is a well-characterized NMDA receptor (NMDAR) antagonist, although the relevance of this pharmacology to its rapid (within hours of administration) antidepressant actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by using behavioral pharmacology, western blot quantification of hippocampal synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent ketamine's antidepressant effects. Ketamine's actions to induce antidepressant-like behavioral effects, up-regulation of hippocampal AMPAR subunits GluA1 and GluA2, as well as metaplasticity measured ex vivo using electrically-stimulated LTP, were abolished by pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP. Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs (2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAAα5 negative allosteric modulator), and LY341495 (mGlu2/3 receptor antagonist) were blocked by NMDAR inhibition. Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was necessary and sufficient for such relevant effects. We conclude rapid-acting antidepressant compounds share a common downstream NMDAR-activation dependent effector mechanism, despite variation in initial pharmacological targets. Promoting NMDAR signaling or other approaches that enhance NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.SIGNIFICANCE STATEMENT The anesthetic and antidepressant drug ketamine is well-characterized as an NMDA receptor (NMDAR) antagonist; though, the relevance and full impact of this pharmacology to its antidepressant actions is unclear. We found that NMDAR activation, which occurs downstream of their initial actions, is necessary for the beneficial effects of ketamine and several other putative antidepressant compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-dependent long-term potentiation (LTP)-like synaptic potentiation in vivo may be an effective antidepressant strategy directly, or acting synergistically with other drug or interventional treatments.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Kyle A Brown
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Biology, University of Cyprus, Nicosia 2109, Cyprus
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Scott M Thompson
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland 21201
| |
Collapse
|