1
|
Yan Y, Gong Y, Liang X, Xiong Q, Lin J, Wu Y, Zhang L, Chen H, Jin J, Luan X. Decoding β-catenin associated protein-protein interactions: Emerging cancer therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2025; 1880:189232. [PMID: 39643250 DOI: 10.1016/j.bbcan.2024.189232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The hyperactive Wnt/β-catenin signaling circuit has been proven to be closely related to the progression of various cancers, with β-catenin serving as a central regulator of pro-tumorigenic processes. Preclinical evidences strongly support β-catenin as a promising therapeutic target. However, it has long been considered "undruggable" due to challenges such as the lack of crystal structures for its N- and C-terminal domains, high mutation rates, and limited availability of inhibitors. Notably, the network of β-catenin-associated protein-protein interactions (PPIs) is vital in the progression of multiple diseases. These interactions form a cancer-specific network that participates in all phases of oncogenesis, from cell metastasis to immunosuppressive microenvironment formation. Thus, researches on these PPIs are essential for unraveling the molecular mechanisms behind tumors with aberrant β-catenin activation, as well as for developing new targeted therapies. In this review, we delve into how β-catenin's PPIs orchestrate cancer progression and highlight biological and clinical dilemmas, proposing frontier technologies and potential challenges in targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiting Gong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Nalli M, Di Magno L, Wen Y, Liu X, D’Ambrosio M, Puxeddu M, Parisi A, Sebastiani J, Sorato A, Coluccia A, Ripa S, Di Pastena F, Capelli D, Montanari R, Masci D, Urbani A, Naro C, Sette C, Orlando V, D’Angelo S, Biagioni S, Bigogno C, Dondio G, Pastore A, Stornaiuolo M, Canettieri G, Liu T, Silvestri R, La Regina G. Novel N-(Heterocyclylphenyl)benzensulfonamide Sharing an Unreported Binding Site with T-Cell Factor 4 at the β-Catenin Armadillo Repeats Domain as an Anticancer Agent. ACS Pharmacol Transl Sci 2023; 6:1087-1103. [PMID: 37470018 PMCID: PMC10353061 DOI: 10.1021/acsptsci.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 07/21/2023]
Abstract
Despite intensive efforts, no inhibitors of the Wnt/β-catenin signaling pathway have been approved so far for the clinical treatment of cancer. We synthesized novel N-(heterocyclylphenyl)benzenesulfonamides as β-catenin inhibitors. Compounds 5-10 showed strong inhibition of the luciferase activity. Compounds 5 and 6 inhibited the MDA-MB-231, HCC1806, and HCC1937 TNBC cells. Compound 9 induced in vitro cell death in SW480 and HCT116 cells and in vivo tumorigenicity of a human colorectal cancer line HCT116. In a co-immunoprecipitation study in HCT116 cells transfected with Myc-tagged T-cell factor 4 (Tcf-4), compound 9 abrogated the association between β-catenin and Tcf-4. The crystallographic analysis of the β-catenin Armadillo repeats domain revealed that compound 9 and Tcf-4 share a common binding site within the hotspot binding region close to Lys508. To our knowledge, compound 9 is the first small molecule ligand of this region to be reported. These results highlight the potential of this novel class of β-catenin inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Marianna Nalli
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Laura Di Magno
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Yichao Wen
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031 Shanghai, China
| | - Xin Liu
- Department
of Dermatology, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Michele D’Ambrosio
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Michela Puxeddu
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Anastasia Parisi
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Jessica Sebastiani
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Andrea Sorato
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonio Coluccia
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Silvia Ripa
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Fiorella Di Pastena
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Davide Capelli
- CNR—Institute
of Crystallography, Via
Salaria—km 29.300, Monterotondo, 00015 Rome, Italy
| | - Roberta Montanari
- CNR—Institute
of Crystallography, Via
Salaria—km 29.300, Monterotondo, 00015 Rome, Italy
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
| | - Chiara Naro
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
- GSTeP-Organoids
Research Core Facility, Fondazione Policlinico
Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Claudio Sette
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
- GSTeP-Organoids
Research Core Facility, Fondazione Policlinico
Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Viviana Orlando
- Department
of Biology and Biotechnologies “Charles Darwin”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sara D’Angelo
- Department
of Biology and Biotechnologies “Charles Darwin”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Stefano Biagioni
- Department
of Biology and Biotechnologies “Charles Darwin”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Chiara Bigogno
- Aphad
SrL, Via della Resistenza
65, 20090 Buccinasco, Italy
| | - Giulio Dondio
- Aphad
SrL, Via della Resistenza
65, 20090 Buccinasco, Italy
| | - Arianna Pastore
- Department
of Pharmacy, University of Naples “Federico
II”, Via Domenico
Montesano, 49, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department
of Pharmacy, University of Naples “Federico
II”, Via Domenico
Montesano, 49, 80131 Naples, Italy
| | - Gianluca Canettieri
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Te Liu
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031 Shanghai, China
| | - Romano Silvestri
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giuseppe La Regina
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
3
|
Orlandi G, Roncucci L, Carnevale G, Sena P. Different Roles of Apoptosis and Autophagy in the Development of Human Colorectal Cancer. Int J Mol Sci 2023; 24:10201. [PMID: 37373349 PMCID: PMC10299161 DOI: 10.3390/ijms241210201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) remains a major life-threatening malignancy, despite numerous therapeutic and screening attempts. Apoptosis and autophagy are two processes that share common signaling pathways, are linked by functional relationships and have similar protein components. During the development of cancer, the two processes can trigger simultaneously in the same cell, causing, in some cases, an inhibition of autophagy by apoptosis or apoptosis by autophagy. Malignant cells that have accumulated genetic alterations can take advantage of any alterations in the apoptotic process and as a result, progress easily in the cancerous transformation. Autophagy often plays a suppressive role during the initial stages of carcinogenicity, while in the later stages of cancer development it can play a promoting role. It is extremely important to determine the regulation of this duality of autophagy in the development of CRC and to identify the molecules involved, as well as the signals and the mechanisms behind it. All the reported experimental results indicate that, while the antagonistic effects of autophagy and apoptosis occur in an adverse environment characterized by deprivation of oxygen and nutrients, leading to the formation and development of CRC, the effects of promotion and collaboration usually involve an auxiliary role of autophagy compared to apoptosis. In this review, we elucidate the different roles of autophagy and apoptosis in human CRC development.
Collapse
Affiliation(s)
- Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy; (G.O.); (G.C.)
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy;
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy; (G.O.); (G.C.)
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy; (G.O.); (G.C.)
| |
Collapse
|
4
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 426] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Coluccia A, Bufano M, La Regina G, Puxeddu M, Toto A, Paone A, Bouzidi A, Musto G, Badolati N, Orlando V, Biagioni S, Masci D, Cantatore C, Cirilli R, Cutruzzolà F, Gianni S, Stornaiuolo M, Silvestri R. Anticancer Activity of ( S)-5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)- N-(1-oxo-1-((pyridin-4-ylmethyl)amino)propan-2-yl)-1 H-indole-2-carboxamide (RS4690), a New Dishevelled 1 Inhibitor. Cancers (Basel) 2022; 14:1358. [PMID: 35267666 PMCID: PMC8909805 DOI: 10.3390/cancers14051358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Wingless/integrase-11 (WNT)/β-catenin pathway is a crucial upstream regulator of a huge array of cellular functions. Its dysregulation is correlated to neoplastic cellular transition and cancer proliferation. Members of the Dishevelled (DVL) family of proteins play an important role in the transduction of WNT signaling by contacting its cognate receptor, Frizzled, via a shared PDZ domain. Thus, negative modulators of DVL1 are able to impair the binding to Frizzled receptors, turning off the aberrant activation of the WNT pathway and leading to anti-cancer activity. Through structure-based virtual screening studies, we identified racemic compound RS4690 (1), which showed a promising selective DVL1 binding inhibition with an EC50 of 0.74 ± 0.08 μM. Molecular dynamic simulations suggested a different binding mode for the enantiomers. In the in vitro assays, enantiomer (S)-1 showed better inhibition of DVL1 with an EC50 of 0.49 ± 0.11 μM compared to the (R)-enantiomer. Compound (S)-1 inhibited the growth of HCT116 cells expressing wild-type APC with an EC50 of 7.1 ± 0.6 μM and caused a high level of ROS production. These results highlight (S)-1 as a lead compound for the development of new therapeutic agents against WNT-dependent colon cancer.
Collapse
Affiliation(s)
- Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (M.B.); (G.L.R.); (M.P.)
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (M.B.); (G.L.R.); (M.P.)
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (M.B.); (G.L.R.); (M.P.)
| | - Michela Puxeddu
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (M.B.); (G.L.R.); (M.P.)
| | - Angelo Toto
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Biochemical Sciences “Rossi Fanelli”, Institute of Biology and Molecular Pathology of CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.T.); (A.P.); (A.B.); (F.C.); (S.G.)
| | - Alessio Paone
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Biochemical Sciences “Rossi Fanelli”, Institute of Biology and Molecular Pathology of CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.T.); (A.P.); (A.B.); (F.C.); (S.G.)
| | - Amani Bouzidi
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Biochemical Sciences “Rossi Fanelli”, Institute of Biology and Molecular Pathology of CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.T.); (A.P.); (A.B.); (F.C.); (S.G.)
| | - Giorgia Musto
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 80131 Naples, Italy; (G.M.); (N.B.); (M.S.)
| | - Nadia Badolati
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 80131 Naples, Italy; (G.M.); (N.B.); (M.S.)
| | - Viviana Orlando
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy; (V.O.); (S.B.)
| | - Stefano Biagioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy; (V.O.); (S.B.)
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Chiara Cantatore
- National Center for the Control and Evaluation of Drugs, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy; (C.C.); (R.C.)
| | - Roberto Cirilli
- National Center for the Control and Evaluation of Drugs, Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Rome, Italy; (C.C.); (R.C.)
| | - Francesca Cutruzzolà
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Biochemical Sciences “Rossi Fanelli”, Institute of Biology and Molecular Pathology of CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.T.); (A.P.); (A.B.); (F.C.); (S.G.)
| | - Stefano Gianni
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Biochemical Sciences “Rossi Fanelli”, Institute of Biology and Molecular Pathology of CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.T.); (A.P.); (A.B.); (F.C.); (S.G.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 80131 Naples, Italy; (G.M.); (N.B.); (M.S.)
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (M.B.); (G.L.R.); (M.P.)
| |
Collapse
|
6
|
Sonnessa M, Sergio S, Saponaro C, Maffia M, Vergara D, Zito FA, Tinelli A. The Biological Relevance of NHERF1 Protein in Gynecological Tumors. Front Oncol 2022; 12:836630. [PMID: 35223518 PMCID: PMC8878902 DOI: 10.3389/fonc.2022.836630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gynecological cancer management remains challenging and a better understanding of molecular mechanisms that lead to carcinogenesis and development of these diseases is needed to improve the therapeutic approaches. The Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein that contains modular protein-interaction domains able to interact with molecules with an impact on carcinogenesis and cancer progression. During recent years, its involvement in gynecological cancers has been explored, suggesting that NHERF1 could be a potential biomarker for the development of new targeted therapies suitable to the management of these tumors. This comprehensive review provides an update on the recent study on NHERF1 activity and its pathological role in cervical and ovarian cancer, as well as on its probable involvement in the therapeutic landscape of these cancer types.
Collapse
Affiliation(s)
- Margherita Sonnessa
- Functional Biomorphology Laboratory, Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Sara Sergio
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
- *Correspondence: Concetta Saponaro,
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Francesco Alfredo Zito
- Functional Biomorphology Laboratory, Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, “Veris delli Ponti” Hospital, Lecce, Italy
| |
Collapse
|
7
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Leysen H, Walter D, Christiaenssen B, Vandoren R, Harputluoğlu İ, Van Loon N, Maudsley S. GPCRs Are Optimal Regulators of Complex Biological Systems and Orchestrate the Interface between Health and Disease. Int J Mol Sci 2021; 22:ijms222413387. [PMID: 34948182 PMCID: PMC8708147 DOI: 10.3390/ijms222413387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
GPCRs arguably represent the most effective current therapeutic targets for a plethora of diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between healthy and pathological conditions; thus, their importance in systems biology cannot be underestimated. The molecular diversity of GPCR signaling systems is likely to be closely associated with disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level. GPCRs have been long considered as controllers of communication between tissues and cells. This communication involves the ligand-mediated control of cell surface receptors that then direct their stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets, considerable focus has been placed on the ability of these therapeutics to modulate diseases by acting at cell surface receptors. In the past decade, however, attention has focused upon how stable multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and in the intracellular domain dictate and condition long-term GPCR activities associated with the regulation of protein expression patterns, cellular stress responses and DNA integrity management. The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control complex cellular activities implicates them as key controllers of the functional balance between health and disease. A greater understanding of this function of GPCRs is likely to significantly augment our ability to further employ these proteins in a multitude of diseases.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Bregje Christiaenssen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Romi Vandoren
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara 06800, Turkey
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Correspondence:
| |
Collapse
|
9
|
Emerging Therapeutic Agents for Colorectal Cancer. Molecules 2021; 26:molecules26247463. [PMID: 34946546 PMCID: PMC8707340 DOI: 10.3390/molecules26247463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC’s therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.
Collapse
|
10
|
Capdevielle C, Hagedorn M. Scaffolding proteins in pediatric glioma. Aging (Albany NY) 2021; 13:23440-23441. [PMID: 34705668 PMCID: PMC8580342 DOI: 10.18632/aging.203659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Caroline Capdevielle
- Département de Biochimie et Médecine Moléculaire, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Martin Hagedorn
- Université Bordeaux, Campus de Carreire, Victoire, Sciences de la Santé, Sciences de l'Homme, Bordeaux 33076, CEDEX, France
- Inserm U1035, Bâtiment TP Zone Sud, Bordeaux 33000, France
| |
Collapse
|
11
|
Xiong J, Jiang P, Zhong L, Wang Y. The Novel Tumor Suppressor Gene ZNF24 Induces THCA Cells Senescence by Regulating Wnt Signaling Pathway, Resulting in Inhibition of THCA Tumorigenesis and Invasion. Front Oncol 2021; 11:646511. [PMID: 34136386 PMCID: PMC8201406 DOI: 10.3389/fonc.2021.646511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECT Clinically, the effective treatment options available to thyroid cancer (THCA) patients are very limited. Elucidating the features of tumor suppressor genes (TSGs) and the corresponding signal transduction cascade may provide clues for the development of new strategies for targeted therapy of THCA. Therefore, this paper aims to explore the mechanism of ZNF24 underlying promoting THCA cell senescence at molecular level. METHODS We performed RT-PCR and Western Blotting for evaluating associated RNA and protein expression. CCK8, colony forming, wound healing and Transwell chamber assays were conducted to examine THCA cell proliferation, invasion and migration. β-galactosidase staining assay was performed to detect THCA cells senescence. The size and volume of xenotransplanted tumors in nude mice are calculated to asses ZNF24 effect in vivo. RESULTS Ectopic expression of ZNF24 significantly inhibited the cell viability, colony forming, migration and invasion abilities of THCA cell lines (K1/GLAG-66i and BCPAPi) (P < 0.05). ZNF24 induced BCPAPi cells senescence through regulating Wnt signaling pathway. ZNF24 inhibited Wnt signaling pathway activition by competitively binding β-catenin from LEF1/TCF1-β-catenin complex. In nude mice, both Ectopic expression of ZNF24 and 2,4-Da (the strong β-catenin/Tcf-4 inhibitor) treatment significantly decreased both the size and weight of xenotransplanted tumors when compared with control mice (P < 0.05). CONCLUSION Results obtained in vivo and in vitro reveal the role of ZNF24 in significantly suppressing THCA tumorigenesis and invasion by regulating Wnt signaling pathway.
Collapse
Affiliation(s)
- Juan Xiong
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China
| | - Panpan Jiang
- School of Life and Marine Sciences, Shenzhen University, Shenzhen, China
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen, China
| | - Li Zhong
- School of Life and Marine Sciences, Shenzhen University, Shenzhen, China
| | - Youling Wang
- School of Life and Marine Sciences, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Di Magno L, Di Pastena F, Puxeddu M, La Regina G, Coluccia A, Ciogli A, Manetto S, Maroder M, Canettieri G, Silvestri R, Nalli M. Sulfonamide Inhibitors of β-Catenin Signaling as Anticancer Agents with Different Output on c-MYC. ChemMedChem 2020; 15:2264-2268. [PMID: 32946182 DOI: 10.1002/cmdc.202000594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/11/2022]
Abstract
The Wnt/β-catenin pathway is often found deregulated in cancer. The aberrant accumulation of β-catenin in the cell nucleus results in the development of various malignancies. Specific drugs against this signaling pathway for clinical treatments have not been approved yet. Herein we report inhibitors of β-catenin signaling of potential therapeutic value as anticancer agents. Ethyl 4-((4-(trifluoromethyl)phenyl)sulfonamido)benzoate (compound 14) inhibits the effect on Wnt reporter with an IC50 value of 7.0 μM, significantly reduces c-MYC levels, inhibits HCT116 colon cancer cell growth (IC50 20.2 μM), does not violate Lipinski and Veber rules, and shows predicted Caco-2 and MDCK cell permeability Papp >500 nm s-1 . Compound 14 seems to have potential for the development of new anticancer therapies.
Collapse
Affiliation(s)
- Laura Di Magno
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Fiorella Di Pastena
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Michela Puxeddu
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alessia Ciogli
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Simone Manetto
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marella Maroder
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Gianluca Canettieri
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Romano Silvestri
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
13
|
Capdevielle C, Desplat A, Charpentier J, Sagliocco F, Thiebaud P, Thézé N, Fédou S, Hooks KB, Silvestri R, Guyonnet-Duperat V, Petrel M, Raymond AA, Dupuy JW, Grosset CF, Hagedorn M. HDAC inhibition induces expression of scaffolding proteins critical for tumor progression in pediatric glioma: focus on EBP50 and IRSp53. Neuro Oncol 2020; 22:550-562. [PMID: 31711240 DOI: 10.1093/neuonc/noz215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diffuse midline glioma (DMG) is a pediatric malignancy with poor prognosis. Most children die less than one year after diagnosis. Recently, mutations in histone H3 have been identified and are believed to be oncogenic drivers. Targeting this epigenetic abnormality using histone deacetylase (HDAC) inhibitors such as panobinostat (PS) is therefore a novel therapeutic option currently evaluated in clinical trials. METHODS BH3 profiling revealed engagement in an irreversible apoptotic process of glioma cells exposed to PS confirmed by annexin-V/propidium iodide staining. Using proteomic analysis of 3 DMG cell lines, we identified 2 proteins deregulated after PS treatment. We investigated biological effects of their downregulation by silencing RNA but also combinatory effects with PS treatment in vitro and in vivo using a chick embryo DMG model. Electron microscopy was used to validate protein localization. RESULTS Scaffolding proteins EBP50 and IRSp53 were upregulated by PS treatment. Reduction of these proteins in DMG cell lines leads to blockade of proliferation and migration, invasion, and an increase of apoptosis. EBP50 was found to be expressed in cytoplasm and nucleus in DMG cells, confirming known oncogenic locations of the protein. Treatment of glioma cells with PS together with genetic or chemical inhibition of EBP50 leads to more effective reduction of cell growth in vitro and in vivo. CONCLUSION Our data reveal a specific relation between HDAC inhibitors and scaffolding protein deregulation which might have a potential for therapeutic intervention for cancer treatment.
Collapse
Affiliation(s)
- Caroline Capdevielle
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Angélique Desplat
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France
| | - Justine Charpentier
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Francis Sagliocco
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Pierre Thiebaud
- INSERM Unit 1035 Dermatology team, Bordeaux, France.,XenoFish Platform, University of Bordeaux, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Nadine Thézé
- INSERM Unit 1035 Dermatology team, Bordeaux, France.,XenoFish Platform, University of Bordeaux, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Sandrine Fédou
- INSERM Unit 1035 Dermatology team, Bordeaux, France.,XenoFish Platform, University of Bordeaux, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Katarzyna B Hooks
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | | | - Melina Petrel
- Bordeaux Imaging Center, University of Bordeaux, Bordeaux, France
| | - Anne-Aurélie Raymond
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Oncoprot, Bordeaux, France
| | - Jean-William Dupuy
- University of Bordeaux, Bordeaux, France.,Proteomics Platform, Bordeaux Functional Genomics Center, University of Bordeaux, Bordeaux, France
| | - Christophe F Grosset
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Martin Hagedorn
- National Institute of Health and Medical Research (INSERM) Unit 1035, MicroRNAs in Cancer and Development (miRCADE) team, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Bushau-Sprinkle AM, Lederer ED. New roles of the Na +/H + exchange regulatory factor 1 scaffolding protein: a review. Am J Physiol Renal Physiol 2020; 318:F804-F808. [PMID: 31984791 DOI: 10.1152/ajprenal.00467.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Na+/H+ exchange regulatory factor 1 (NHERF1), a member of a PDZ scaffolding protein family, was first identified as an organizer of membrane-bound protein complexes composed of hormone receptors, signal transduction pathways, and electrolyte and mineral transporters and channels. NHERF1 is involved in the regulation of Na+/H+ exchanger 3, Na+-dependent phosphate transporter 2a, and Na+-K+-ATPase through its ability to scaffold these transporters to the plasma membrane, allowing regulation of these protein complexes with their associated hormone receptors. Recently, NHERF1 has received increased interest in its involvement in a variety of functions, including cell structure and trafficking, tumorigenesis and tumor behavior, inflammatory responses, and tissue injury. In this review, we highlight the evidence for the expansive role of NHERF1 in cell biology and speculate on the implications for renal physiology and pathophysiology.
Collapse
Affiliation(s)
- Adrienne M Bushau-Sprinkle
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Eleanor D Lederer
- Division of Nephrology, Department of Medicine, University of Louisville, Louisville, Kentucky.,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| |
Collapse
|
15
|
Saponaro C, Scarpi E, Zito FA, Giotta F, Silvestris N, Mangia A. Independent Negative Prognostic Role of TCF1 Expression within the Wnt/β-Catenin Signaling Pathway in Primary Breast Cancer Patients. Cancers (Basel) 2019; 11:cancers11071035. [PMID: 31336689 PMCID: PMC6678184 DOI: 10.3390/cancers11071035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway is involved in the progression of breast cancer (BC). We aimed to evaluate the expression of some components of the Wnt pathway (β-catenin, FZD4 (frizzled receptor 4), LRP5 (low-density lipoprotein receptor-related protein 5), LRP6, and TCF1 (T-cell factor 1)) to detect potential associations with NHERF1 (Na+/H+ exchanger regulatory factor 1) protein. Besides, we assessed their impact on patients’ clinical outcome. We evaluated 220 primary BC samples by immunohistochemistry (IHC) and protein localization by immunofluorescence. We found a significant correlation between NHERF1 and FZD4, LRP5, LRP6, and TCF1. Univariate analysis showed that the overexpression of β-catenin (p < 0.0001), FZD4 (p = 0.0001), LRP5, LRP6, and TCF1 (p < 0.0001 respectively) was related to poor disease-free survival (DFS). A Kaplan-Meier analysis confirmed univariate data and showed a poor DFS for cNHERF1+/FZD4+ (p = 0.0007), cNHERF1+/LRP5+ (p = 0.0002), cNHERF1+/LRP6+ (p < 0.0001), and cNHERF1+/TCF1+ phenotypes (p = 0.0034). In multivariate analysis, the expression of TCF1 and β-catenin was an independent prognostic variable of worse DFS (p = 0.009 and p = 0.027, respectively). In conclusion, we found that the overexpression of β-catenin, FZD4, LRP5, LRP6, and TCF1 was associated with poor prognosis. Furthermore, we first identified TCF1 as an independent prognostic factor of poor outcome, indicating it as a new potential biomarker for the management of BC patients. Also, the expression of Wnt pathway proteins, both alone and in association with NHERF1, suggests original associations of biological significance for new studies.
Collapse
Affiliation(s)
- Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, (IRST)-IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, 47014 Meldola (FC), Italy
| | - Francesco Alfredo Zito
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy
| | - Francesco Giotta
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', 70124 Bari, Italy.
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| |
Collapse
|
16
|
Luo C, Yao D, Lim TK, Lin Q, Liu Y. Identification of the Altered Proteins Related to Colon Carcinogenesis by iTRAQ-based Quantitative Proteomic Analysis. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666181129111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The molecular mechanisms or valuable biomarkers for early diagnosis of colorectal cancer (CRC) are not fully elucidated yet.Objective:To understand the proteomic changes at the global level in the carcinogenesis of CRC, differentially expressed proteins between normal intestinal epithelial cells CCD841 and colorectal cancer cells HCT116 were identified.Method:The isobaric tags for relative and absolute quantitation (iTRAQ) coupled with 2D LC-MS/MS proteomic approach were performed for screening the altered proteins between cells CCD841 and HCT116.Results:A total of 1947 proteins were identified after filtering and using a 1% false discovery rate. Based on a final cutoff (> 3.16 and < 0.32), 229 proteins were found to be significantly altered, among which 95 (41%) were up-regulated while 134 (59%) were down-regulated. Gene Ontology analysis revealed that the differentially expressed proteins were mainly cell part proteins involved in cellular process and binding in terms of subcellular distribution, biological process, and molecular function. KEGG analysis indicated that the differentially expressed proteins were significantly involved in the process of focal adhesion, pathogenic Escherichia coli infection, leukocyte transendothelial migration, bacterial invasion of epithelial cells, regulation of actin cytoskeleton, DNA replication and so on.Conclusion:Collectively, our data identified differentially expressed proteins in colon cancer carcinogenesis, which could provide the clues on unraveling the molecular mechanism of CRC.
Collapse
Affiliation(s)
- Chunhua Luo
- The Department of Pathology, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yingfu Liu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
17
|
Coluccia A, La Regina G, Naccarato V, Nalli M, Orlando V, Biagioni S, De Angelis ML, Baiocchi M, Gautier C, Gianni S, Di Pastena F, Di Magno L, Canettieri G, Coluccia AML, Silvestri R. Drug Design and Synthesis of First in Class PDZ1 Targeting NHERF1 Inhibitors as Anticancer Agents. ACS Med Chem Lett 2019; 10:499-503. [PMID: 30996786 PMCID: PMC6466550 DOI: 10.1021/acsmedchemlett.8b00532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
![]()
Targeted
approaches aiming at modulating NHERF1 activity, rather
than its overall expression, would be preferred to preserve the normal
functions of this versatile protein. We focused our attention on the
NHERF1/PDZ1 domain that governs its membrane recruitment/displacement
through a transient phosphorylation switch. We herein report the design
and synthesis of novel NHERF1 PDZ1 domain inhibitors. These compounds
have potential therapeutic value when used in combination with antagonists
of β-catenin to augment apoptotic death of colorectal cancer
cells refractory to currently available Wnt/β-catenin-targeted
agents.
Collapse
Affiliation(s)
- Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Giuseppe La Regina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valentina Naccarato
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Marianna Nalli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Viviana Orlando
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Marta Baiocchi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Candice Gautier
- Department of Biochemistry, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Stefano Gianni
- Department of Biochemistry, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Viale Regina Elena, 291, I-00161 Roma, Italy
| | - Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Viale Regina Elena, 291, I-00161 Roma, Italy
| | | | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia − Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
18
|
Zhang K, Liu P, Tang H, Xie X, Kong Y, Song C, Qiu X, Xiao X. AFAP1-AS1 Promotes Epithelial-Mesenchymal Transition and Tumorigenesis Through Wnt/β-Catenin Signaling Pathway in Triple-Negative Breast Cancer. Front Pharmacol 2018; 9:1248. [PMID: 30505272 PMCID: PMC6250734 DOI: 10.3389/fphar.2018.01248] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (LncRNA) actin filament-associated protein1-antisense RNA 1 (AFAP1-AS1) is overexpressed in various types of cancers and plays an important role in tumor progression and prognosis. This study investigates the role of AFAP1-AS1 in tumor progression in triple-negative breast cancer (TNBC). We found that AFAP1-AS1 was overexpressed in TNBC tissues and cells. Overexpression of LncRNA AFAP1-AS1 was associated with poor prognosis in TNBC patients. Moreover, we demonstrated that upregulation of AFAP1-AS1 promoted cell proliferation and invasion, and inhibited cell apoptosis in vitro, while overexpression of AFAP1-AS1 promoted tumor growth in vivo. Our results also revealed that upregulation of AFAP1-AS1 activated Wnt/β-catenin pathway to promote tumorigenesis and cell invasion by increasing the expression of C-myc and epithelial-mesenchymal transition-related molecules in TNBC. Collectively, AFAP1-AS1 can be an independent prognostic marker and an effective therapeutic target of triple- negative breast cancer.
Collapse
Affiliation(s)
- Kaiming Zhang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanan Kong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cailu Song
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xingsheng Qiu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangsheng Xiao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|