1
|
Liu Y, Du Y, Wang J, Wu L, Lin F, Cui W. Reduce electrical overload via threaded Chinese acupuncture in nerve electrical therapy. Bioact Mater 2025; 46:476-493. [PMID: 39850020 PMCID: PMC11754975 DOI: 10.1016/j.bioactmat.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Bioelectrical stimulation is a powerful technique used to promote tissue regeneration, but it can be hindered by an "electrical overload" phenomenon in the core region of stimulation. We develop a threaded microneedle electrode system that protects against "electrical overload" by delivering medicinal hydrogel microspheres into the core regions. The threaded needle body is coated with polydopamine and chitosan to enhance the adhesion of microspheres, which are loaded into the threaded grooves, allowing for their stereoscopic release in the core regions. After the electrode is inserted, the microspheres can be delivered three-dimensionally through physical swelling and the shear-thinning effect of chitosan, mitigating the electrical damage. Microspheres are designed to release alkylated vitamin B12 and vitamin E, providing antioxidant and cell protection effects upon in-situ activation, reducing reactive oxygen species (ROS) by 72.8 % and cell death by 59.5 %. In the model of peripheral nerve injury, the electrode system improves the overall antioxidant capacity by 78.5 % and protects the surrounding cells. Additionally, it leads to an improved nerve conduction velocity ratio of 41.9 % and sciatic nerve function index of 12.1 %, indicating enhanced neuroregeneration. The threaded microneedle electrode system offers a promising approach for nerve repair by inhibiting "electrical overload", potentially improving outcomes for tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Longxi Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
2
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Gao C, Xiao C, Wang M, Liang X, Qin C, Zhang H, Bai R, Zhang R, Feng W, Yang J, Tang J. HIF-1 Transcriptionally Regulates Basal Expression of STING to Maintain Cellular Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:494-505. [PMID: 38967520 DOI: 10.4049/jimmunol.2400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Stimulator of IFN genes (STING) is a critical component of the innate immune system, playing an essential role in defending against DNA virus infections. However, the mechanisms governing basal STING regulation remain poorly understood. In this study, we demonstrate that the basal level of STING is critically maintained by hypoxia-inducible factor 1 (HIF-1)α through transcription. Under normal conditions, HIF-1α binds constitutively to the promoter region of STING, actively promoting its transcription. Knocking down HIF-1α results in a decrease in STING expression in multiple cell lines and zebrafish, which in turn reduces cellular responses to synthetic dsDNAs, including cell signaling and IFN production. Moreover, this decrease in STING levels leads to an increase in cellular susceptibility to DNA viruses HSV-1 and pseudorabies virus. These findings unveil a (to our knowledge) novel role of HIF-1α in maintaining basal STING levels and provide valuable insights into STING-mediated antiviral activities and associated diseases.
Collapse
Affiliation(s)
- Chao Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chenglu Xiao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengdong Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinxin Liang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Qin
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hang Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rulan Bai
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhai Feng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinbo Yang
- Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhang P, Zhang W, Wang X, Li L, Lin Y, Wu N, Mao R, Lin J, Kang M, Ding C. BCLAF1 drives esophageal squamous cell carcinoma progression through regulation of YTHDF2-dependent SIX1 mRNA degradation. Cancer Lett 2024; 591:216874. [PMID: 38636894 DOI: 10.1016/j.canlet.2024.216874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Esophageal cancer ranks among the most prevalent malignant tumors, and esophageal squamous cell carcinoma (ESCC) constitutes its predominant histological form. Despite its impact, a thorough insight into the molecular intricacies of ESCC's development is still incomplete, which hampers the advancement of targeted molecular diagnostics and treatments. Recently, B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) has come under investigation for its potential involvement in tumor biology, yet its specific role and mechanism in ESCC remain unclear. In this study, we observed a marked increase in BCLAF1 expression in ESCC tissues, correlating with advanced tumor stages and inferior patient outcomes. Our comprehensive in vitro and in vivo studies show that BCLAF1 augments glycolytic activity and the proliferation, invasion, and spread of ESCC cells. By employing mass spectrometry, we identified YTHDF2 as a key protein interacting with BCLAF1 in ESCC, with further validation provided by colocalization, co-immunoprecipitation, and GST pull-down assay. Further investigations involving MeRIP-seq and RIP-seq, alongside transcriptomic analysis, highlighted SIX1 mRNA as a molecule significantly upregulated and modified by N6-methyladenosine (m6A) in BCLAF1 overexpressing cells. BCLAF1 was found to reduce the tumor-suppressive activities of YTHDF2, and its effects on promoting glycolysis and cancer progression were shown to hinge on SIX1 expression. This research establishes that BCLAF1 fosters glycolysis and tumor progression in ESCC through the YTHDF2-SIX1 pathway in an m6A-specific manner, suggesting a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoqing Wang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Ye Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ningzi Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Renyan Mao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian, 351100, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Liu X, Ding Q, Liu W, Zhang S, Wang N, Chai G, Wang Y, Sun S, Zheng R, Zhao Y, Ding C. A Poloxamer 407/chitosan-based thermosensitive hydrogel dressing for diabetic wound healing via oxygen production and dihydromyricetin release. Int J Biol Macromol 2024; 263:130256. [PMID: 38368995 DOI: 10.1016/j.ijbiomac.2024.130256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The current clinical treatment of diabetic wounds is still based on oxygen therapy, and the slow healing of skin wounds due to hypoxia has always been a key problem in the repair of chronic skin injuries. To overcome this problem, the oxygen-producing matrix CaO2NPS based on the temperature-sensitive dihydromyricetin-loaded hydrogel was prepared. In vitro activity showed that the dihydromyricetin (DHM) oxygen-releasing temperature-sensitive hydrogel composite (DHM-OTH) not only provided a suitable oxygen environment for cells around the wound to survive but also had good biocompatibility and various biological activities. By constructing a T2D wound model, we further investigated the repairing effect of DHM-OTH on chronic diabetic skin wounds and the mechanisms involved. DHM-OTH was able to reduce inflammatory cells and collagen deposition and promote angiogenesis and cell proliferation for diabetic wound healing. These in vitro and in vivo data suggest that DHM-OTH accelerates diabetic wound repair as a novel method to efficiently deliver oxygen to wound tissue, providing a promising strategy to improve diabetic wound healing.
Collapse
Affiliation(s)
- Xinglong Liu
- School of Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- Jilin Agricultural University, Changchun 130118, China
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Chuanbo Ding
- School of Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| |
Collapse
|
6
|
Yu Z, Wu X, Zhu J, Yan H, Li Y, Zhang H, Zhong Y, Lin M, Ye G, Li X, Jin J, Li K, Wang J, Zhuang H, Lin T, He J, Lu C, Xu Z, Zhang X, Li H, Jin X. BCLAF1 binds SPOP to stabilize PD-L1 and promotes the development and immune escape of hepatocellular carcinoma. Cell Mol Life Sci 2024; 81:82. [PMID: 38340178 PMCID: PMC10858942 DOI: 10.1007/s00018-024-05144-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Xiang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Huan Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Yeling Zhong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Man Lin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Ganghui Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Kailang Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Hui Zhuang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Ting Lin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Changjiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Zeping Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Xie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Chen J, Liang Y, Hu S, Jiang J, Zeng M, Luo M. Role of ATG7-dependent non-autophagic pathway in angiogenesis. Front Pharmacol 2024; 14:1266311. [PMID: 38269279 PMCID: PMC10806190 DOI: 10.3389/fphar.2023.1266311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
ATG7, one of the core proteins of autophagy, plays an important role in various biological processes, including the regulation of autophagy. While clear that autophagy drives angiogenesis, the role of ATG7 in angiogenesis remains less defined. Several studies have linked ATG7 with angiogenesis, which has long been underappreciated. The knockdown of ATG7 gene in cerebrovascular development leads to angiogenesis defects. In addition, specific knockout of ATG7 in endothelial cells results in abnormal development of neovascularization. Notably, the autophagy pathway is not necessary for ATG7 regulation of angiogenesis, while the ATG7-dependent non-autophagic pathway plays a critical role in the regulation of neovascularization. In order to gain a better understanding of the non-autophagic pathway-mediated biological functions of the autophagy-associated protein ATG7 and to bring attention to this expanding but understudied research area, this article reviews recent developments in the ATG7-dependent non-autophagic pathways regulating angiogenesis.
Collapse
Affiliation(s)
- Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Liu Y, Peng C, Ahad F, Ali Zaidi SA, Muluh TA, Fu Q. Advanced Strategies of CAR-T Cell Therapy in Solid Tumors and Hematological Malignancies. Recent Pat Anticancer Drug Discov 2024; 19:557-572. [PMID: 38213150 DOI: 10.2174/0115748928277331231218115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024]
Abstract
Chimeric antigen receptor T-cells, known as CAR-T cells, represent a promising breakthrough in the realm of adoptive cell therapy. These T-cells are genetically engineered to carry chimeric antigen receptors that specifically target tumors. They have achieved notable success in the treatment of blood-related cancers, breathing new life into this field of medical research. However, numerous obstacles limit chimeric antigen receptors T-cell therapy's efficacy, such as it cannot survive in the body long. It is prone to fatigue and exhaustion, leading to difficult tumor elimination and repeated recurrence, affecting solid tumors and hematological malignancies. The challenges posed by solid tumors, especially in the context of the complex solid-tumor microenvironment, require specific strategies. This review outlines recent advancements in improving chimeric antigen receptors T-cell therapy by focusing on the chimeric antigen receptors protein, modifying T-cells, and optimizing the interaction between T-cells and other components within the tumor microenvironment. This article aims to provide an extensive summary of the latest discoveries regarding CAR-T cell therapy, encompassing its application across various types of human cancers. Moreover, it will delve into the obstacles that have emerged in recent times, offering insights into the challenges faced by this innovative approach. Finally, it highlights novel therapeutic options in treating hematological and solid malignancies with chimeric antigen receptors T-cell therapies.
Collapse
Affiliation(s)
- Yangjie Liu
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan, PRC China
| | - Cao Peng
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan PRC China
| | - Faiza Ahad
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Syed Aqib Ali Zaidi
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Qiuxia Fu
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan PRC China
| |
Collapse
|
9
|
Hosseiniyan Khatibi SM, Rahbar Saadat Y, Hejazian SM, Sharifi S, Ardalan M, Teshnehlab M, Zununi Vahed S, Pirmoradi S. Decoding the Possible Molecular Mechanisms in Pediatric Wilms Tumor and Rhabdoid Tumor of the Kidney through Machine Learning Approaches. Fetal Pediatr Pathol 2023; 42:825-844. [PMID: 37548233 DOI: 10.1080/15513815.2023.2242979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Objective: Wilms tumor (WT) and Rhabdoid tumor (RT) are pediatric renal tumors and their differentiation is based on histopathological and molecular analysis. The present study aimed to introduce the panels of mRNAs and microRNAs involved in the pathogenesis of these cancers using deep learning algorithms. Methods: Filter, graph, and association rule mining algorithms were applied to the mRNAs/microRNAs data. Results: Candidate miRNAs and mRNAs with high accuracy (AUC: 97%/93% and 94%/97%, respectively) could differentiate the WT and RT classes in training and test data. Let-7a-2 and C19orf24 were identified in the WT, while miR-199b and RP1-3E10.2 were detected in the RT by analysis of Association Rule Mining. Conclusion: The application of the machine learning methods could identify mRNA/miRNA patterns to discriminate WT from RT. The identified miRNAs/mRNAs panels could offer novel insights into the underlying molecular mechanisms that are responsible for the initiation and development of these cancers. They may provide further insight into the pathogenesis, prognosis, diagnosis, and molecular-targeted therapy in pediatric renal tumors.
Collapse
Affiliation(s)
- Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz Iran
| | | | - Mohammad Teshnehlab
- Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Shen M, Pan R, Lei S, Zhang L, Zhou C, Zeng Z, Nie Y, Tian X. KCNJ2/HIF1α positive-feedback loop promotes the metastasis of osteosarcoma. Cell Commun Signal 2023; 21:46. [PMID: 36864422 PMCID: PMC9979522 DOI: 10.1186/s12964-023-01064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/04/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Early metastasis is a hallmark of osteosarcoma (OS), a highly common type of malignant tumor. Members of the potassium inwardly rectifying channel family exert oncogenic effects in various cancers. However, the role of the potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) in OS is unclear. METHODS The expression of KCNJ2 in OS tissues and cell lines was measured using bioinformatic analysis, immunohistochemistry, and western blotting. Wound-healing assays, Transwell assays, and lung metastasis models were used to analyze the effects of KCNJ2 on mobility of OS cells. The molecular mechanisms linking KCNJ2 and HIF1α in OS were explored by mass spectrometry analysis, immunoprecipitation, ubiquitination detection, and chromatin-immunoprecipitation quantitative real-time polymerase chain reaction. RESULTS KCNJ2 was found to be overexpressed in advanced-stage OS tissues, as well as in cells with high metastatic potential. High expression of KCNJ2 was associated with a shorter survival rate of OS patients. KCNJ2-inhibition repressed the metastasis of OS cells, whereas KCNJ2-elevation induced the opposite effects. Mechanistically, KCNJ2 binds to HIF1α and inhibits its ubiquitination, thus increasing the expression of HIF1α. Interestingly, HIF1α binds directly to the KCNJ2 promoter and increases its transcription under hypoxic conditions. CONCLUSION Taken together, our results indicated that a KCNJ2/HIF1α positive feedback loop exists in OS tissues, which significantly promotes OS cell metastasis. This evidence may contribute to the diagnosis and treatment of OS. Video Abstract.
Collapse
Affiliation(s)
- Mao Shen
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Runsang Pan
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shan Lei
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Lu Zhang
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Changhua Zhou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Yingjie Nie
- The Central Laboratory, Guizhou Provincial Peoples Hospital, Guiyang, 550009, Guizhou, China.
| | - Xiaobin Tian
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| |
Collapse
|
12
|
L3MBTL3 is induced by HIF-1α and fine tunes the HIF-1α degradation under hypoxia in vitro. Heliyon 2023; 9:e13222. [PMID: 36747531 PMCID: PMC9898070 DOI: 10.1016/j.heliyon.2023.e13222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
HIF-1α plays a crucial part in hypoxia response by transcriptionally upregulating genes to adapt the hypoxic condition. HIF-1α is under severe cellular control as its exceptional activation is always associated with tumorigenesis and tumor progression. Here, we report L3MBTL3 serves as a novel negative regulator of HIF-1α. It is upregulated during hypoxia and acts as a transcriptional target of HIF-1α. In the nuclei, L3MBTL3 makes an interaction with HIF-1α and promotes its ubiquitination and degradation. These findings indicate L3MBTL3 forms a negative feedback loop with HIF-1α in vitro to dampen the hypoxic response.
Collapse
Key Words
- ARNT, aryl hydrocarbon receptor nuclear translocator
- CHX, cycloheximide
- FCS, phenylalanine-cysteine-serine nucleic acid−binding
- HIF-1, hypoxia inducible factor 1
- HIF-1α
- HIF-1α degradation
- HRE, hypoxia response element
- Hypoxia
- L3MBTL3
- L3MBTL3, lethal (3) malignant brain tumor-like 3
- MBT, malignant brain tumor
- PHD, prolyl hydroxylase domain
- SAM, sterile α motif
- VHL, von Hippel-Lindau
Collapse
|
13
|
Methyltransferase SMYD3 impairs hypoxia tolerance by augmenting hypoxia signaling independent of its enzymatic activity. J Biol Chem 2022; 298:102633. [PMID: 36273580 PMCID: PMC9692045 DOI: 10.1016/j.jbc.2022.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)1α, a main transcriptional regulator of the cellular response to hypoxia, also plays important roles in oxygen homeostasis of aerobic organisms, which is regulated by multiple mechanisms. However, the full cellular response to hypoxia has not been elucidated. In this study, we found that expression of SMYD3, a methyltransferase, augments hypoxia signaling independent of its enzymatic activity. We demonstrated SMYD3 binds to and stabilizes HIF1α via co-immunoprecipitation and Western blot assays, leading to the enhancement of HIF1α transcriptional activity under hypoxia conditions. In addition, the stabilization of HIF1α by SMYD3 is independent of HIF1α hydroxylation by prolyl hydroxylases and the intactness of the von Hippel-Lindau ubiquitin ligase complex. Furthermore, we showed SMYD3 induces reactive oxygen species accumulation and promotes hypoxia-induced cell apoptosis. Consistent with these results, we found smyd3-null zebrafish exhibit higher hypoxia tolerance compared to their wildtype siblings. Together, these findings define a novel role of SMYD3 in affecting hypoxia signaling and demonstrate that SMYD3-mediated HIF1α stabilization augments hypoxia signaling, leading to the impairment of hypoxia tolerance.
Collapse
|
14
|
Xia S, Li X, Xu S, Ni X, Zhan W, Zhou W. Sublethal heat treatment promotes breast cancer metastasis and its molecular mechanism revealed by quantitative proteomic analysis. Aging (Albany NY) 2022; 14:1389-1406. [PMID: 35150481 PMCID: PMC8876919 DOI: 10.18632/aging.203884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Radiofrequency ablation (RFA) is a frequently used thermal ablation technique for breast tumors. The study aimed to identify the effect of sublethal heat treatment on biological function of breast cancer cells and reveal its potential molecular mechanism. The expression profile of dysregulated proteins in sublethal heat treated breast cancer cells was analyzed by quantitative proteomic analysis. The differentially expressed proteins in the sublethal heat treated breast cancer were identified. The potential biological functions of these proteins were evaluated. The proliferation and invasion ability of breast cancer cells were enhanced after sublethal heat treatment. The expression profile of proteins in sublethal heat treated breast cancer cells was abundant, and most of which were newly discovered. A total of 206 differentially expressed proteins were identified. Among them, 101 proteins were downregulated while 105 proteins were upregulated. GO and KEGG analysis indicated that various systems were involved in the process of sublethal heat treatment including cancer, immune system, et al. Immunohistochemistry staining showed that the expression of Heat shock protein 1B, NOB1 and CRIP1 was highly expressed while the expression of BCLAF1 was lower in sublethal heat treated group. The proliferation and invasion ability of breast cancer cells were enhanced after sublethal heat treatment. Sublethal heat treatment caused gene alterations in cancer and immune system. Heat shock protein 1B, NOB1 and CRIP1 were upregulated while BCLAF1 was downregulated in breast cancer after sublethal heat treatment.
Collapse
Affiliation(s)
- Shujun Xia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Li
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyan Xu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Ni
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ultrasound, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Yu Z, Zhu J, Wang H, Li H, Jin X. Function of BCLAF1 in human disease. Oncol Lett 2022; 23:58. [PMID: 34992690 PMCID: PMC8721854 DOI: 10.3892/ol.2021.13176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Originally identified as a regulator of apoptosis and transcription, B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) has since been shown to be associated with a multitude of biological processes, such as DNA damage response, splicing and processing of pre-mRNA, T-cell activation, lung development, muscle cell proliferation and differentiation, autophagy, ischemia-reperfusion injury, and viral infection. In recent years, an increasing amount of evidence has shown that BCLAF1 acts as either a tumor promoter or tumor suppressor in tumorigenesis depending on the cellular context and the type of cancer. Even in the same tumor type, BCLAF1 may have opposite effects. In the present review, the subcellular localization, structural features, mutations within BCLAF1 will be described, then the regulation of BCLAF1 and its downstream targets will be analyzed. Furthermore, the different roles and possible mechanisms of BCLAF1 in tumorigenesis will also be highlighted and discussed. Finally, BCLAF1 may be considered as a potential target for cancer therapy in the future.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haibiao Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
16
|
Zhang R, Xue T, Shao A, Lang Y, Qin C, Zhao M, Kuang Y, Yu Z, Geng Y, Zhao C, Tang J. Bclaf1 regulates c-FLIP expression and protects cells from TNF-induced apoptosis and tissue injury. EMBO Rep 2022; 23:e52702. [PMID: 34693625 PMCID: PMC8728627 DOI: 10.15252/embr.202152702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023] Open
Abstract
TNF stimulation generates pro-survival signals through activation of NF-κB that restrict the build-in death signaling triggered by TNF. The competition between TNF-induced survival and death signals ultimately determines the fate of a cell. Here, we report the identification of Bclaf1 as a novel component of the anti-apoptotic program of TNF. Bclaf1 depletion in multiple cells sensitizes cells to TNF-induced apoptosis but not to necroptosis. Bclaf1 exerts its anti-apoptotic function by promoting the transcription of CFLAR, a caspase 8 antagonist, downstream of NF-κB activation. Bclaf1 binds to the p50 subunit of NF-κB, which is required for Bclaf1 to stimulate CFLAR transcription. Finally, in Bclaf1 siRNA administered mice, TNF-induced small intestine injury is much more severe than in control mice with aggravated signs of apoptosis and pyroptosis. These results suggest Bclaf1 is a key regulator in TNF-induced apoptosis, both in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Teng Xue
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Anwen Shao
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Yue Lang
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Chao Qin
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Mingliang Zhao
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Yu Kuang
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yunyun Geng
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular DiseaseHebei University of Chinese MedicineShijiazhuangHebeiChina
| | - Chenyang Zhao
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Jun Tang
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| |
Collapse
|
17
|
Chen Y, Bei J, Liu M, Huang J, Xie L, Huang W, Cai M, Guo Y, Lin L, Zhu K. Sublethal heat stress-induced O-GlcNAcylation coordinates the Warburg effect to promote hepatocellular carcinoma recurrence and metastasis after thermal ablation. Cancer Lett 2021; 518:23-34. [PMID: 34126196 DOI: 10.1016/j.canlet.2021.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
The malignant transformation of residual hepatocellular carcinoma (HCC) cells after thermal ablation is considered as the main factor promoting postoperative HCC progression, which greatly limits the improvement of long-term survival, and at present there is no effective targeted therapeutic strategies. The Warburg effect is a metabolic feature correlated highly with malignant transformation (e.g. epithelial-to-mesenchymal transition [EMT]). Here, we showed that sublethal heat stress triggered a stronger Warburg effect of HCC cells, which contributed to the thermotolerance and invasion of HCC cells. Sublethal heat stress-induced O-GlcNAcylation was involved in this process. Such enhanced Warburg effect in HCC cells may be eliminated through O-GlcNAcylation inhibition, resulting in impaired thermotolerance and EMT, and thereby preventing tumor recurrence and metastasis of HCC-bearing mice after insufficient thermal ablation. Finally, we present evidence that sublethal heat stress-induced O-GlcNAcylation regulates the Warburg effect in HCC cells by promoting hypoxia-inducible factor 1α (HIF-1α) stability. In conclusion, the present study suggests that O-GlcNAcylation coordinates the Warburg effect to promote HCC progression after thermal ablation, which may serve as a novel potential target for controlling postoperative HCC recurrence and metastasis.
Collapse
MESH Headings
- Acylation/physiology
- Animals
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial-Mesenchymal Transition/physiology
- Heat-Shock Response/physiology
- Humans
- Hyperthermia, Induced/methods
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Warburg Effect, Oncologic
Collapse
Affiliation(s)
- Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jiaxin Bei
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Lulu Xie
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| |
Collapse
|
18
|
Zhang S, Zhang M, Chen J, Zhao J, Su J, Zhang X. Ginsenoside Compound K Regulates HIF-1α-Mediated Glycolysis Through Bclaf1 to Inhibit the Proliferation of Human Liver Cancer Cells. Front Pharmacol 2020; 11:583334. [PMID: 33363466 PMCID: PMC7753211 DOI: 10.3389/fphar.2020.583334] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
This study aimed to demonstrate that ginsenoside compound K (20 (S)-ginsenoside CK; CK) downregulates Bcl-2-associated transcription factor 1 (Bclaf1), which inhibits the hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis pathway to inhibit the proliferation of liver cancer cells. Treatment of hepatoma cells (Bel-7404 and Huh7) under hypoxic conditions with different concentrations of CK showed that CK inhibited the proliferation of hepatoma cells in a time- and concentration-dependent manner; furthermore, the ability of the cells to form colonies was reduced, and cell growth was blocked in the G0/G1 phase. CK promoted the degradation of HIF-1α ubiquitination in liver cancer cells by regulating the expression of HIF-1α and related ubiquitination proteins; moreover, it reduced the activity of key enzymes involved in glycolysis, the pressure of cellular glycolysis, and the rate of real-time ATP production, thereby inhibiting the glycolysis pathway. It also decreased the expression of Bclaf1 in hypoxic liver cancer cells and thus reduced the ability of Bclaf1 to bind to HIF-1α. CK treatment of Bel-7404 and Huh7 cells with CRISPR/Cas9-engineered knock out of Bclaf1 gene under hypoxic conditions further suppressed the expression of HIF-1α, promoted HIF-1α ubiquitination, and inhibited the glycolysis pathway. In a rat model of primary liver cancer induced by diethylnitrosamine, positron emission tomography and computed tomography scans showed that after CK administration, tumor tissue volumes were reduced and glucose uptake capacity decreased. Increased Bclaf1 and HIF-1α expression promoted the ubiquitination of HIF-1α and inhibited the glycolysis pathway, thereby inhibiting the proliferation of liver cancer cells. In summary, this study confirmed by in vitro and in vivo experiments that in hypoxic liver cancer cells CK downregulates the expression of Bclaf1, inhibits the HIF-1α-mediated glycolysis pathway, and inhibits cell proliferation, suggesting that the CK-mediated effects on Bclaf1 may represent a novel therapeutic approach for the treatment of liver cancer patients.
Collapse
Affiliation(s)
- Silin Zhang
- College of Medicine, Yanbian University, Yanji, China
| | | | - Jiaxin Chen
- College of Medicine, Yanbian University, Yanji, China
| | - Jiaqi Zhao
- College of Medicine, Yanbian University, Yanji, China
| | - Jielin Su
- College of Medicine, Yanbian University, Yanji, China
| | - Xuewu Zhang
- College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
19
|
Huang M, Yang L, Peng X, Wei S, Fan Q, Yang S, Li X, Li B, Jin H, Wu B, Liu J, Li H. Autonomous glucose metabolic reprogramming of tumour cells under hypoxia: opportunities for targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:185. [PMID: 32928258 PMCID: PMC7491117 DOI: 10.1186/s13046-020-01698-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Molecular oxygen (O2) is a universal electron acceptor that is eventually synthesized into ATP in the mitochondrial respiratory chain of all metazoans. Therefore, hypoxia biology has become an organizational principle of cell evolution, metabolism and pathology. Hypoxia-inducible factor (HIF) mediates tumour cells to produce a series of glucose metabolism adaptations including the regulation of glucose catabolism, glycogen metabolism and the biological oxidation of glucose to hypoxia. Since HIF can regulate the energy metabolism of cancer cells and promote the survival of cancer cells, targeting HIF or HIF mediated metabolic enzymes may become one of the potential treatment methods for cancer. In this review, we summarize the established and recently discovered autonomous molecular mechanisms that can induce cell reprogramming of hypoxic glucose metabolism in tumors and explore opportunities for targeted therapy.
Collapse
Affiliation(s)
- Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|