1
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Caggiano EG, Hernandez AL, Waldrop T, Liu K, Gatica-Gutierrez H, Vargas-Hernández S, Mims N, Acevedo-Diaz A, Velasquez B, Neil D, Aguilar E, Meyer MD, Echeverria GV, Koong AC, Spiotto MT, Gustavsson AK, Schüler E. Mitochondrial Responses to Conventional and Ultra-high Dose Rate (FLASH) Radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647049. [PMID: 40291669 PMCID: PMC12026588 DOI: 10.1101/2025.04.03.647049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Purpose Ultra-high dose rate (>40 Gy/s, FLASH) radiation therapy (RT) provides equivalent tumor control while reducing normal tissue toxicity relative to conventional dose rate (CONV) RT. However, the mechanisms underlying the observed FLASH effect are unknown. We hypothesized that the preservation of mitochondrial integrity in nontumorigenic cells by FLASH RT could be a key factor in reducing normal tissue toxicity and improving overall treatment outcomes. Methods We examined mitochondrial health and function after CONV and FLASH in vitro, ex vivo, and in vivo through assays of metabolic flux, mitochondrial membrane potential, mitochondrial reactive oxygen species (ROS), mitochondrial DNA damage and copy number, mitochondrial morphology, and tumor growth and survival. Results In in vitro assays, murine pancreatic cancer (PDAC) cells showed evidence of equal mitochondrial damage in response to CONV and FLASH, but nontumorigenic pancreatic cells were spared by FLASH. These results were recapitulated ex vivo, and mice treated with FLASH showed higher response rates and longer survival time than mice treated with CONV in an in vivo tumor model. Conclusions Collectively, these results suggest that FLASH spares mitochondrial function in nontumorigenic cells, but not in PDAC cells, relative to CONV. The preservation of mitochondrial integrity in nontumorigenic cells may be a key mechanism underlying the reduced normal tissue toxicity observed with FLASH RT.
Collapse
|
3
|
Arriojas A, Baek LM, Berner MJ, Zhurkevich A, Hinton AO, Meyer MD, Dobrolecki LE, Lewis MT, Zarringhalam K, Echeverria GV. Artificial intelligence-enabled automated analysis of transmission electron micrographs to evaluate chemotherapy impact on mitochondrial morphology in triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.635300. [PMID: 40027627 PMCID: PMC11870520 DOI: 10.1101/2025.02.19.635300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Advancements in transmission electron microscopy (TEM) have enabled in-depth studies of biological specimens, offering new avenues to large-scale imaging experiments with subcellular resolution. Mitochondrial structure is of growing interest in cancer biology due to its crucial role in regulating the multi-faceted functions of mitochondria. We and others have established the crucial role of mitochondria in triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer with limited therapeutic options. Building upon our previous work demonstrating the regulatory role of mitochondrial structure dynamics in metabolic adaptation and survival of chemotherapy-refractory TNBC cells, we sought to extend those findings to a large-scale analysis of transmission electron micrographs. Here we present a UNet artificial intelligence (AI) model for automatic annotation and assessment of mitochondrial morphology and feature quantification. Our model is trained on 11,039 manually annotated mitochondria across 125 micrographs derived from a variety of orthotopic patient-derived xenograft (PDX) mouse model tumors and adherent cell cultures. The model achieves an F1 score of 0.85 on test micrographs at the pixel level. To validate the ability of our model to detect expected mitochondrial structural features, we utilized micrographs from mouse primary skeletal muscle cells genetically modified to lack Dynamin-related protein 1 (Drp1). The algorithm successfully detected a significant increase in mitochondrial elongation, in alignment with the well-established role of Drp1 as a driver of mitochondrial fission. Further, we subjected in vitro and in vivo TNBC models to conventional chemotherapy treatments commonly used for clinical management of TNBC, including doxorubicin, carboplatin, paclitaxel, and docetaxel (DTX). We found substantial within-sample heterogeneity of mitochondrial structure in both in vitro and in vivo TNBC models and observed a consistent reduction in mitochondrial elongation in DTX-treated specimens. We went on to compare mammary tumors and matched lung metastases in a highly metastatic PDX model of TNBC, uncovering significant reduction in mitochondrial length in metastatic lesions. Our large, curated dataset provides high statistical power to detect frequent chemotherapy-induced shifts in mitochondrial shapes and sizes in residual cells left behind after treatment. The successful application of our AI model to capture mitochondrial structure marks a step forward in high-throughput analysis of mitochondrial structures, enhancing our understanding of how morphological changes may relate to chemotherapy efficacy and mechanism of action. Finally, our large, manually curated electron micrograph dataset - now publicly available - serves as a unique gold-standard resource for developing, benchmarking, and applying computational models, while further advancing investigations into mitochondrial morphology and its impact on cancer biology.
Collapse
|
4
|
Reinhold WC, Marangoni E, Elloumi F, Montagne R, Varma S, Wang Y, Rezai K, Morriset L, Dahmani A, El Botty R, Huguet L, Mizunuma M, Takebe N, Huguet S, Luna A, Pommier Y. Acetalax and Bisacodyl for the Treatment of Triple-Negative Breast Cancer: A Combined Molecular and Preclinical Study. CANCER RESEARCH COMMUNICATIONS 2025; 5:375-388. [PMID: 39932272 PMCID: PMC11869203 DOI: 10.1158/2767-9764.crc-24-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
SIGNIFICANCE Acetalax and bisacodyl represent a prospective novel drug mechanism-of-action type, affect mitochondrial function and affect tumor growth in vivo. Their activity may be predicted by TRPM4 but with more accuracy adding other genes in multivariate analysis for triple negative breast cancer (TNBC). Acetalax has a biphasic mean half-life of 5.8 hours.
Collapse
Affiliation(s)
- William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Remi Montagne
- CBIO-Centre for Computational Biology, Institut Curie, INSERM, Mines ParisTech, Paris, France
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- HiThru Analytics LLC, Princeton, New Jersey
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- ICF International Inc., Fairfax, Virginia
| | - Keyvan Rezai
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Ludivine Morriset
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Ahmed Dahmani
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Rania El Botty
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Léa Huguet
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Samuel Huguet
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Augustin Luna
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Computational Biology Branch, National Library of Medicine, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Borankova K, Solny M, Krchniakova M, Skoda J. Depleting chemoresponsive mitochondrial fission mediator DRP1 does not mitigate sarcoma resistance. Life Sci Alliance 2025; 8:e202402870. [PMID: 39643272 PMCID: PMC11629689 DOI: 10.26508/lsa.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024] Open
Abstract
Specific patterns of mitochondrial dynamics have been repeatedly reported to promote drug resistance in cancer. However, whether targeting mitochondrial fission- and fusion-related proteins could be leveraged to combat multidrug-resistant pediatric sarcomas is poorly understood. Here, we demonstrated that the expression and activation of the mitochondrial fission mediator DRP1 are affected by chemotherapy exposure in common pediatric sarcomas, namely, rhabdomyosarcoma and osteosarcoma. Unexpectedly, decreasing DRP1 activity through stable DRP1 knockdown neither attenuated sarcoma drug resistance nor affected growth rate or mitochondrial network morphology. The minimal impact on sarcoma cell physiology, along with the up-regulation of fission adaptor proteins (MFF and FIS1) detected in rhabdomyosarcoma cells, suggests an alternative DRP1-independent mitochondrial fission mechanism that may efficiently compensate for the lack of DRP1 activity. By exploring the upstream mitophagy and mitochondrial fission regulator, AMPKα1, we found that markedly reduced AMPKα1 levels are sufficient to maintain AMPK signaling capacity without affecting chemosensitivity. Collectively, our findings challenge the direct involvement of DRP1 in pediatric sarcoma drug resistance and highlight the complexity of yet-to-be-characterized noncanonical regulators of mitochondrial dynamics.
Collapse
Affiliation(s)
- Karolina Borankova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Matyas Solny
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
6
|
Galloway A, Hofstede BT, Walsh AJ. Fluorescence lifetime imaging microscopy for metabolic analysis of LDHB inhibition in triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632864. [PMID: 39868164 PMCID: PMC11760741 DOI: 10.1101/2025.01.13.632864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no targeted treatments currently available. TNBC cells participate in metabolic symbiosis, a process that optimizes tumor growth by balancing metabolic processes between glycolysis and oxidative phosphorylation through increased activity by the enzyme lactate dehydrogenase B (LDHB). Metabolic symbiosis allows oxidative cancer cells to function at a similar rate as glycolytic cancer cells, increasing overall metabolic activity and proliferation. Here, fluorescence lifetime imaging microscopy (FLIM) is used to analyze the metabolism of TNBC cells with inhibition of LDHB using a multiphoton microscope to measure the fluorescent lifetimes of two metabolic coenzymes, NAD(P)H and FAD. LDHB is inhibited via an indole derivative known as AXKO-0046 in varying concentrations. Understanding how TNBC cell metabolism changes due to LDHB inhibition will provide further insight into metabolic symbiosis and potential new TNBC treatment options.
Collapse
|
7
|
Lei JT, Dobrolecki LE, Huang C, Srinivasan RR, Vasaikar SV, Lewis AN, Sallas C, Zhao N, Cao J, Landua JD, Moon CI, Liao Y, Hilsenbeck SG, Osborne CK, Rimawi MF, Ellis MJ, Petrosyan V, Wen B, Li K, Saltzman AB, Jain A, Malovannaya A, Wulf GM, Marangoni E, Li S, Kraushaar DC, Wang T, Damodaran S, Zheng X, Meric-Bernstam F, Echeverria GV, Anurag M, Chen X, Welm BE, Welm AL, Zhang B, Lewis MT. Patient-Derived Xenografts of Triple-Negative Breast Cancer Enable Deconvolution and Prediction of Chemotherapy Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.09.627518. [PMID: 39713418 PMCID: PMC11661147 DOI: 10.1101/2024.12.09.627518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Combination chemotherapy remains essential for clinical management of triple-negative breast cancer (TNBC). Consequently, responses to multiple single agents cannot be delineated at the single patient level, even though some patients might not require all drugs in the combination. Herein, we conduct multi-omic analyses of orthotopic TNBC patient-derived xenografts (PDXs) treated with single agent carboplatin, docetaxel, or the combination. Combination responses were usually no better than the best single agent, with enhanced response in only ~13% of PDX, and apparent antagonism in a comparable percentage. Single-omic comparisons showed largely non-overlapping results between genes associated with single agent and combination treatments that could be validated in independent patient cohorts. Multi-omic analyses of PDXs identified agent-specific biomarkers/biomarker combinations, nominating high Cytokeratin-5 (KRT5) as a general marker of responsiveness. Notably, integrating proteomic with transcriptomic data improved predictive modeling of pathologic complete response to combination chemotherapy. PDXs refractory to all treatments were enriched for signatures of dysregulated mitochondrial function. Targeting this process indirectly in a PDX with HDAC inhibition plus chemotherapy in vivo overcomes chemoresistance. These results suggest possible resistance mechanisms and therapeutic strategies in TNBC to overcome chemoresistance, and potentially allow optimization of chemotherapeutic regimens.
Collapse
Affiliation(s)
- Jonathan T. Lei
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Current affiliation: Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ramakrishnan R. Srinivasan
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suhas V. Vasaikar
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Current affiliation: Translational Oncology Bioinformatics, Pfizer, Bothell, WA 98021, USA
| | - Alaina N. Lewis
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Cao
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Current affiliation: The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - John D. Landua
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chang In Moon
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C. Kent Osborne
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Current affiliation: Guardant Health, Palo Alto, CA 94304, USA
| | - Varduhi Petrosyan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Current affiliation: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kai Li
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Current affiliation: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander B. Saltzman
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerburg M. Wulf
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Elisabetta Marangoni
- Laboratory of Preclinical investigation, Translational Research Department, Institut Curie, PSL University, 26 Rue d’Ulm, Paris 75005, France
| | - Shunqiang Li
- Siteman Cancer Center, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Daniel C. Kraushaar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Wang
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Gloria V. Echeverria
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bryan E. Welm
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
8
|
Pesta M, Mrazova B, Kapalla M, Kulda V, Gkika E, Golubnitschaja O. Mitochondria-based holistic 3PM approach as the 'game-changer' for individualised rehabilitation-the proof-of-principle model by treated breast cancer survivors. EPMA J 2024; 15:559-571. [PMID: 39635015 PMCID: PMC11612048 DOI: 10.1007/s13167-024-00386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer belongs to the most commonly diagnosed malignancies worldwide, with its increasing incidence paralleled by advances in early diagnostics and effective treatments resulting in significantly improved survival rates. However, breast cancer survivors often experience significantly reduced quality of life linked to the long-term health burden as a consequence of aggressive oncological treatments applied. Their most frequently recorded complains include chronic fatigue, reduced physical activity, disordered sleep, chronification of pain, and severe mental health impairments-all per evidence are associated with compromised mitochondrial health and impaired homeostasis. Self-report of a breast cancer survivor is included in this article to illustrate currently uncovered patient needs. This article highlights mechanisms behind the suboptimal health of breast cancer survivors associated with mitochondrial damage, and introduces a novel, mitochondria-based holistic approach addressing rehabilitation concepts for breast cancer survivors following advanced principles of predictive, preventive and personalised medicine (3PM). By operating via mitochondrial function, the proposed holistic approach triggers systemic effects at molecular, sub/cellular and organismal levels positively affecting energy metabolism, repair mechanisms as well as physical and mental health creating, therefore, highly effective rehabilitation algorithms tailored to an individualised patient profile. The proposed methodology integrates mitochondrial health assessments utilising mitochondrial homeostasis biomarkers in tear fluid as a non-invasive diagnostic tool, tailored nutraceuticals and lifestyle adjustments. The introduced approach aligns with advanced principles of 3PM, offering a holistic and proactive framework for managing persistent post-treatment symptoms of suboptimal health in the cohort of cancer survivors. Furthermore, presented approach is also applicable to pre-habilitation programmes considering needs of other patient cohorts affected by chronic diseases such as CVD and orthopaedic disorders with planned major surgical incisions, who require individually adapted pre- and rehabilitation programmes. Implementing such innovative pre- and rehabilitation strategies may lead to a full recovery, sustainable health conditions and, therefore, facilitating patients' comeback to normal daily activities, family and professional life. Contextually, presented approach is considered a 'proof-of-principle' model for the 3PM-related paradigm shift from reactive medicine to a cost-effective holistic health management in both primary and secondary care benefiting a large spectrum of affected patient cohorts, individuals in suboptimal health conditions as well as society at large.
Collapse
Affiliation(s)
- Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Barbara Mrazova
- F. D, Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Marko Kapalla
- F. D, Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Yu L, Wei W, Lv J, Lu Y, Wang Z, Cai C. FABP4-mediated lipid metabolism promotes TNBC progression and breast cancer stem cell activity. Cancer Lett 2024; 604:217271. [PMID: 39306229 DOI: 10.1016/j.canlet.2024.217271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Metabolic remodeling is a pivotal feature of cancer, with cancer stem cells frequently showcasing distinctive metabolic behaviors. Nonetheless, understanding the metabolic intricacies of triple-negative breast cancer (TNBC) and breast cancer stem cells (BCSCs) has remained elusive. In this study, we meticulously characterized the metabolic profiles of TNBC and BCSCs and delved into their potential implications for TNBC treatment. Our findings illuminated the robust lipid metabolism activity within TNBC tumors, especially in BCSCs. Furthermore, we discovered that Fabp4, through its mediation of fatty acid uptake, plays a crucial role in regulating TNBC lipid metabolism. Knocking down Fabp4 or inhibiting its activity significantly suppressed TNBC tumor progression in both the MMTV-Wnt1 spontaneous TNBC model and the TNBC patient-derived xenograft model. Mechanistically, Fabp4's influence on TNBC tumor progression was linked to its regulation of mitochondrial stability, the CPT1-mediated fatty acid oxidation process, and ROS production. Notably, in a high-fat diet model, Fabp4 deficiency proved to be a substantial inhibitor of obesity-accelerated TNBC progression. Collectively, these findings shed light on the unique metabolic patterns of TNBC and BCSCs, underscore the biological significance of Fabp4-mediated fatty acid metabolism in governing TNBC progression, and offer a solid theoretical foundation for considering metabolic interventions in breast cancer treatment. SIGNIFICANCE: Triple-negative breast cancer progression and breast cancer stem cell activity can be restricted by targeting a critical regulator of lipid responses, FABP4.
Collapse
Affiliation(s)
- Liya Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Yu Lu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
10
|
Berner MJ, Beasley HK, Vue Z, Lane A, Vang L, Baek ML, Marshall AG, Killion M, Zeleke F, Shao B, Parker D, Peterson A, Rhoades JS, Scudese E, Dobrolecki LE, Lewis MT, Hinton A, Echeverria GV. Three-dimensional analysis of mitochondria in a patient-derived xenograft model of triple negative breast cancer reveals mitochondrial network remodeling following chemotherapy treatments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611245. [PMID: 39314272 PMCID: PMC11419075 DOI: 10.1101/2024.09.09.611245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mitochondria are hubs of metabolism and signaling and play an important role in tumorigenesis, therapeutic resistance, and metastasis in many cancer types. Various laboratory models of cancer demonstrate the extraordinary dynamics of mitochondrial structure, but little is known about the role of mitochondrial structure in resistance to anticancer therapy. We previously demonstrated the importance of mitochondrial structure and oxidative phosphorylation in the survival of chemotherapy-refractory triple negative breast cancer (TNBC) cells. As TNBC is a highly aggressive breast cancer subtype with few targeted therapy options, conventional chemotherapies remain the backbone of early TNBC treatment. Unfortunately, approximately 45% of TNBC patients retain substantial residual tumor burden following chemotherapy, associated with abysmal prognoses. Using an orthotopic patient-derived xenograft mouse model of human TNBC, we compared mitochondrial structures between treatment-naïve tumors and residual tumors after conventional chemotherapeutics were administered singly or in combination. We reconstructed 1,750 mitochondria in three dimensions from serial block-face scanning electron micrographs, providing unprecedented insights into the complexity and intra-tumoral heterogeneity of mitochondria in TNBC. Following exposure to carboplatin or docetaxel given individually, residual tumor mitochondria exhibited significant increases in mitochondrial complexity index, area, volume, perimeter, width, and length relative to treatment-naïve tumor mitochondria. In contrast, residual tumors exposed to those chemotherapies given in combination exhibited diminished mitochondrial structure changes. Further, we document extensive intra-tumoral heterogeneity of mitochondrial structure, especially prior to chemotherapeutic exposure. These results highlight the potential for structure-based monitoring of chemotherapeutic responses and reveal potential molecular mechanisms that underlie chemotherapeutic resistance in TNBC.
Collapse
Affiliation(s)
- Mariah J. Berner
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Lane
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mokryun L. Baek
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dominque Parker
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Autumn Peterson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Julie Sterling Rhoades
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael T. Lewis
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Cancer, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Carlosama C, Arévalo C, Jimenez MC, Lasso P, Urueña C, Fiorentino S, Barreto A. Triple negative breast cancer migration is modified by mitochondrial metabolism alteration induced by natural extracts of C. spinosa and P. alliacea. Sci Rep 2024; 14:20253. [PMID: 39215068 PMCID: PMC11364553 DOI: 10.1038/s41598-024-70550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.
Collapse
Affiliation(s)
- Carolina Carlosama
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - María Camila Jimenez
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia.
| |
Collapse
|
12
|
Shiba-Ishii A, Isagawa T, Shiozawa T, Mato N, Nakagawa T, Takada Y, Hirai K, Hong J, Saitoh A, Takeda N, Niki T, Murakami Y, Matsubara D. Novel therapeutic strategies targeting bypass pathways and mitochondrial dysfunction to combat resistance to RET inhibitors in NSCLC. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167249. [PMID: 38768929 DOI: 10.1016/j.bbadis.2024.167249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
RET fusion is an oncogenic driver in 1-2 % of patients with non-small cell lung cancer (NSCLC). Although RET-positive tumors have been treated with multikinase inhibitors such as vandetanib or RET-selective inhibitors, ultimately resistance to them develops. Here we established vandetanib resistance (VR) clones from LC-2/ad cells harboring CCDC6-RET fusion and explored the molecular mechanism of the resistance. Each VR clone had a distinct phenotype, implying they had acquired resistance via different mechanisms. Consistently, whole exome-seq and RNA-seq revealed that the VR clones had unique mutational signatures and expression profiles, and shared only a few common remarkable events. AXL and IGF-1R were activated as bypass pathway in different VR clones, and sensitive to a combination of RET and AXL inhibitors or IGF-1R inhibitors, respectively. SMARCA4 loss was also found in a particular VR clone and 55 % of post-TKI lung tumor tissues, being correlated with higher sensitivity to SMARCA4/SMARCA2 dual inhibition and shorter PFS after subsequent treatments. Finally, we detected an increased number of damaged mitochondria in one VR clone, which conferred sensitivity to mitochondrial electron transfer chain inhibitors. Increased mitochondria were also observed in post-TKI biopsy specimens in 13/20 cases of NSCLC, suggesting a potential strategy targeting mitochondria to treat resistant tumors. Our data propose new promising therapeutic options to combat resistance to RET inhibitors in NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mitochondria/metabolism
- Mitochondria/drug effects
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Cell Line, Tumor
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/antagonists & inhibitors
- Signal Transduction/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Helicases/antagonists & inhibitors
- Cytoskeletal Proteins
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takayuki Isagawa
- Center for Data Science, Jichi Medical University, Tochigi, Japan
| | - Toshihiro Shiozawa
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoko Mato
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Ibaraki, Japan
| | - Tomoki Nakagawa
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Yurika Takada
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kanon Hirai
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jeongmin Hong
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anri Saitoh
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
13
|
O'Sullivan JDB, Terry S, Scott CA, Bullen A, Jagger DJ, Mann ZF. Mitochondrial dynamics regulate cell morphology in the developing cochlea. Development 2024; 151:dev202845. [PMID: 39120083 PMCID: PMC11809207 DOI: 10.1242/dev.202845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
In multicellular tissues, the size and shape of cells are intricately linked with their physiological functions. In the vertebrate auditory organ, the neurosensory epithelium develops as a mosaic of sensory hair cells (HCs), and their glial-like supporting cells, which have distinct morphologies and functional properties at different frequency positions along its tonotopic long axis. In the chick cochlea, the basilar papilla (BP), proximal (high-frequency) HCs, are larger than their distal (low-frequency) counterparts, a morphological feature essential for sound perception. Mitochondrial dynamics, which constitute the equilibrium between fusion and fission, regulate differentiation and functional refinement across a variety of cell types. We investigate this as a potential mechanism for regulating the shape of developing HCs. Using live imaging in intact BP explants, we identify distinct remodelling of mitochondrial networks in proximal compared with distal HCs. Manipulating mitochondrial dynamics in developing HCs alters their normal morphology along the proximal-distal (tonotopic) axis. Inhibition of the mitochondrial fusion machinery decreased proximal HC surface area, whereas promotion of fusion increased the distal HC surface area. We identify mitochondrial dynamics as a key regulator of HC morphology in developing inner ear epithelia.
Collapse
Affiliation(s)
- James D. B. O'Sullivan
- Centre for Craniofacial and Regenerative Biology, King's College London, 27th Floor, Guy's Tower, London SE1 9RT, UK
| | - Stephen Terry
- UCL Ear Institute, University College London, 332 Gray's Inn Rd, London WC1X 8EE, UK
- The London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Claire A. Scott
- Centre for Craniofacial and Regenerative Biology, King's College London, 27th Floor, Guy's Tower, London SE1 9RT, UK
| | - Anwen Bullen
- UCL Ear Institute, University College London, 332 Gray's Inn Rd, London WC1X 8EE, UK
| | - Daniel J. Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Rd, London WC1X 8EE, UK
| | - Zoë F. Mann
- Centre for Craniofacial and Regenerative Biology, King's College London, 27th Floor, Guy's Tower, London SE1 9RT, UK
| |
Collapse
|
14
|
Tak H, Cha S, Hong Y, Jung M, Ryu S, Han S, Jeong SM, Kim W, Lee EK. The miR-30-5p/TIA-1 axis directs cellular senescence by regulating mitochondrial dynamics. Cell Death Dis 2024; 15:404. [PMID: 38858355 PMCID: PMC11164864 DOI: 10.1038/s41419-024-06797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Senescent cells exhibit a diverse spectrum of changes in their morphology, proliferative capacity, senescence-associated secretory phenotype (SASP) production, and mitochondrial homeostasis. These cells often manifest with elongated mitochondria, a hallmark of cellular senescence. However, the precise regulatory mechanisms orchestrating this phenomenon remain predominantly unexplored. In this study, we provide compelling evidence for decreases in TIA-1, a pivotal regulator of mitochondrial dynamics, in models of both replicative senescence and ionizing radiation (IR)-induced senescence. The downregulation of TIA-1 was determined to trigger mitochondrial elongation and enhance the expression of senescence-associated β-galactosidase, a marker of cellular senescence, in human foreskin fibroblast HS27 cells and human keratinocyte HaCaT cells. Conversely, the overexpression of TIA-1 mitigated IR-induced cellular senescence. Notably, we identified the miR-30-5p family as a novel factor regulating TIA-1 expression. Augmented expression of the miR-30-5p family was responsible for driving mitochondrial elongation and promoting cellular senescence in response to IR. Taken together, our findings underscore the significance of the miR-30-5p/TIA-1 axis in governing mitochondrial dynamics and cellular senescence.
Collapse
Affiliation(s)
- Hyosun Tak
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Seongho Cha
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Youlim Hong
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Myeongwoo Jung
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seungyeon Ryu
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sukyoung Han
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seung Min Jeong
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea, Seoul, 06591, South Korea.
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, South Korea.
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
15
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
16
|
Sunassee ED, Deutsch RJ, D’Agostino VW, Castellano-Escuder P, Siebeneck EA, Ilkayeva O, Crouch BT, Madonna MC, Everitt J, Alvarez JV, Palmer GM, Hirschey MD, Ramanujam N. Optical imaging reveals chemotherapy-induced metabolic reprogramming of residual disease and recurrence. SCIENCE ADVANCES 2024; 10:eadj7540. [PMID: 38579004 PMCID: PMC10997195 DOI: 10.1126/sciadv.adj7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.
Collapse
Affiliation(s)
| | - Riley J. Deutsch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Pol Castellano-Escuder
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Everitt
- Department of Pathology, School of Medicine, Duke University, Durham, NC, USA
| | - James V. Alvarez
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Matthew D. Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| |
Collapse
|
17
|
Wang Y, Harada‐Shoji N, Kitamura N, Yamazaki Y, Ebata A, Amari M, Watanabe M, Miyashita M, Tada H, Abe T, Suzuki T, Gonda K, Ishida T. Mitochondrial dynamics as a novel treatment strategy for triple-negative breast cancer. Cancer Med 2024; 13:e6987. [PMID: 38334464 PMCID: PMC10854452 DOI: 10.1002/cam4.6987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC), recognized as the most heterogeneous type of breast cancer (BC), exhibits a worse prognosis than other subtypes. Mitochondria dynamics play a vital role as mediators in tumorigenesis by adjusting to the cell microenvironments. However, the relationship between mitochondrial dynamics and metabophenotype exhibits discrepancies and divergence across various research and BC models. Therefore, this study aims to explore the role of mitochondrial dynamics in TNBC drug resistance and tumorigenesis. METHODS The Wst-8 test was conducted to assess doxorubicin sensitivity in HCC38, MDA-MB-231 (TNBC), and MCF-7 (luminal). Confocal microscopy and FACS were used to quantify the mitochondrial membrane potential (ΔφM), mitophagy, and reactive oxygen species (ROS) production. Agilent Seahorse XF Analyzer was utilized to measure metabolic characteristics. Dynamin-related protein-1 (DRP1), Parkin, and p62 immunohistochemistry staining were performed using samples from 107 primary patients with BC before and after neoadjuvant chemotherapy (NAC). RESULTS MDA-MB-231, a TNBC cell line with reduced sensitivity to doxorubicin, reduced ΔφM, and enhanced mitophagy to maintain ROS production through oxidative phosphorylation (OXPHOS)-based metabolism. HCC38, a doxorubicin-sensitive cell line, exhibited no alterations in ΔφM or mitophagy. However, it demonstrated an increase in ROS production and glycolysis. Clinicopathological studies revealed that pretreatment (before NAC) expression of DRP1 was significant in TNBC, as was pretreatment expression of Parkin in the hormone receptor-negative group. Furthermore, low p62 levels seem to be a risk factor for recurrence-free survival. CONCLUSION Our findings indicated that the interplay between mitophagy, linked to a worse clinical prognosis, and OXPHOS metabolism promoted chemotherapy resistance in TNBC. Mitochondrial fission is prevalent in TNBC. These findings suggest that targeting the unique mitochondrial metabolism and dynamics in TNBC may offer a novel therapeutic strategy for patients with TNBC.
Collapse
Affiliation(s)
- Yuechen Wang
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narumi Harada‐Shoji
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yuto Yamazaki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akiko Ebata
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masakazu Amari
- Department of Breast SurgeryTohoku Kosai HospitalSendaiJapan
| | - Mika Watanabe
- Department of PathologyTohoku Kosai HospitalSendaiJapan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
- Department of Medical ScienceTohoku University Graduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Suzuki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kohsuke Gonda
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
- International Center for Synchrotron Radiation Innovation Smart (SRIS)Tohoku UniversitySendaiJapan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
18
|
Winter M, Nait Eldjoudi A, Guette C, Hondermarck H, Bourette RP, Fovez Q, Laine W, Ghesquiere B, Adriaenssens E, Kluza J, Le Bourhis X. Mitochondrial adaptation decreases drug sensitivity of persistent triple negative breast cancer cells surviving combinatory and sequential chemotherapy. Neoplasia 2023; 46:100949. [PMID: 37956532 PMCID: PMC10661600 DOI: 10.1016/j.neo.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Triple negative breast cancer (TNBC) is an aggressive malignancy for which chemotherapy remains the standard treatment. However, between 3 and 5 years after chemotherapy, about half patients will relapse and it is essential to identify vulnerabilities of cancer cells surviving neoadujuvant therapy. In this study, we established persistent TNBC cell models after treating MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide, and then with paclitaxel, for a total of 18 weeks. The resulting chemo-persistent cell lines were more proliferative, both in vitro and in xenografted mice. Interestingly, MDA-MB-231 persistent cells became less sensitive to chemotherapeutic drugs, whereas SUM159-PT persistent cells kept similar sensitivity compared to control cells. The reduced sensitivity to chemotherapy in MDA-MB-231 persistent cells was found to be associated with an increased oxidative phosphorylation (OXPHOS) and modified levels of tricarboxylic acid cycle (TCA) intermediates. Integration of data from proteomics and metabolomics demonstrated TCA cycle among the most upregulated pathways in MDA-MB-231 persistent cells. The absence of glucose and pyruvate impeded OXPHOS in persistent cells, while the absence of glutamine did not. In contrast, OXPHOS was not modified in control cells independently of TCA substrates, indicating that MDA-MB-231 persistent cells evolved towards a more pyruvate dependent profile. Finally, the inhibition of pyruvate entry into mitochondria with UK-5099 reduced OXPHOS and re-sensitized persistent cells to therapeutic agents. Together, these findings suggest that targeting mitochondrial pyruvate metabolism may help to overcome mitochondrial adaptation of chemo-persistent TNBC.
Collapse
Affiliation(s)
- Marie Winter
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Amina Nait Eldjoudi
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d'Angers, Angers, France
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW2308, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW2305, Australia
| | - Roland P Bourette
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Quentin Fovez
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - William Laine
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Bart Ghesquiere
- Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium; Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, 3000, Belgium
| | - Eric Adriaenssens
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Jérôme Kluza
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Xuefen Le Bourhis
- UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
19
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
20
|
Pendleton KE, Wang K, Echeverria GV. Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Front Cell Dev Biol 2023; 11:1254313. [PMID: 37779896 PMCID: PMC10534013 DOI: 10.3389/fcell.2023.1254313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Deregulation of tumor cell metabolism is widely recognized as a "hallmark of cancer." Many of the selective pressures encountered by tumor cells, such as exposure to anticancer therapies, navigation of the metastatic cascade, and communication with the tumor microenvironment, can elicit further rewiring of tumor cell metabolism. Furthermore, phenotypic plasticity has been recently appreciated as an emerging "hallmark of cancer." Mitochondria are dynamic organelles and central hubs of metabolism whose roles in cancers have been a major focus of numerous studies. Importantly, therapeutic approaches targeting mitochondria are being developed. Interestingly, both plastic (i.e., reversible) and permanent (i.e., stable) metabolic adaptations have been observed following exposure to anticancer therapeutics. Understanding the plastic or permanent nature of these mechanisms is of crucial importance for devising the initiation, duration, and sequential nature of metabolism-targeting therapies. In this review, we compare permanent and plastic mitochondrial mechanisms driving therapy resistance. We also discuss experimental models of therapy-induced metabolic adaptation, therapeutic implications for targeting permanent and plastic metabolic states, and clinical implications of metabolic adaptations. While the plasticity of metabolic adaptations can make effective therapeutic treatment challenging, understanding the mechanisms behind these plastic phenotypes may lead to promising clinical interventions that will ultimately lead to better overall care for cancer patients.
Collapse
Affiliation(s)
- Katherine E. Pendleton
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Karen Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Su JX, Li SJ, Zhou XF, Zhang ZJ, Yan Y, Liu SL, Qi Q. Chemotherapy-induced metastasis: molecular mechanisms and clinical therapies. Acta Pharmacol Sin 2023; 44:1725-1736. [PMID: 37169853 PMCID: PMC10462662 DOI: 10.1038/s41401-023-01093-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Chemotherapy, the most widely accepted treatment for malignant tumors, is dependent on cell death induced by various drugs including antimetabolites, alkylating agents, mitotic spindle inhibitors, antitumor antibiotics, and hormonal anticancer drugs. In addition to causing side effects due to non-selective cytotoxicity, chemotherapeutic drugs can initiate and promote metastasis, which greatly reduces their clinical efficacy. The knowledge of how they induce metastasis is essential for developing strategies that improve the outcomes of chemotherapy. Herein, we summarize the recent findings on chemotherapy-induced metastasis and discuss the underlying mechanisms including tumor-initiating cell expansion, the epithelial-mesenchymal transition, extracellular vesicle involvement, and tumor microenvironment alterations. In addition, the use of combination treatments to overcome chemotherapy-induced metastasis is also elaborated.
Collapse
Affiliation(s)
- Jin-Xuan Su
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Feng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi-Jing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Song-Lin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, García-Báez J, Vadovsky A, Bazil JN, Javadov S. The Role of Swelling in the Regulation of OPA1-Mediated Mitochondrial Function in the Heart In Vitro. Cells 2023; 12:2017. [PMID: 37626827 PMCID: PMC10453793 DOI: 10.3390/cells12162017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Optic atrophy-1 (OPA1) plays a crucial role in the regulation of mitochondria fusion and participates in maintaining the structural integrity of mitochondrial cristae. Here we elucidate the role of OPA1 cleavage induced by calcium swelling in the presence of Myls22 (an OPA1 GTPase activity inhibitor) and TPEN (an OMA1 inhibitor). The rate of ADP-stimulated respiration was found diminished by both inhibitors, and they did not prevent Ca2+-induced mitochondrial respiratory dysfunction, membrane depolarization, or swelling. L-OPA1 cleavage was stimulated at state 3 respiration; therefore, our data suggest that L-OPA1 cleavage produces S-OPA1 to maintain mitochondrial bioenergetics in response to stress.
Collapse
Affiliation(s)
- Xavier R. Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Keishla M. Rodríguez-Graciani
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Jorge García-Báez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Alyssa Vadovsky
- Department of Physiology, Michigan State University, East Lansing, MI 48824-1046, USA; (A.V.); (J.N.B.)
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824-1046, USA; (A.V.); (J.N.B.)
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| |
Collapse
|
23
|
Christensen IB, Abrahamsen M, Ribas L, Buch‐Larsen K, Marina D, Andersson M, Larsen S, Schwarz P, Dela F, Gillberg L. Peripheral blood mononuclear cells exhibit increased mitochondrial respiration after adjuvant chemo- and radiotherapy for early breast cancer. Cancer Med 2023; 12:16985-16996. [PMID: 37439084 PMCID: PMC10501284 DOI: 10.1002/cam4.6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Adjuvant chemo- and radiotherapy cause cellular damage to tumorous and healthy dividing cells. Chemotherapy has been shown to cause mitochondrial respiratory dysfunction in non-tumorous tissues, but the effects on human peripheral blood mononuclear cells (PBMCs) remain unknown. AIM We aimed to investigate mitochondrial respiration of PBMCs before and after adjuvant chemo- and radiotherapy in postmenopausal patients with early breast cancer (EBC) and relate these to metabolic parameters of the patients. METHODS Twenty-three postmenopausal women diagnosed with EBC were examined before and shortly after chemotherapy with (n = 18) or without (n = 5) radiotherapy. Respiration (O2 flux per million PBMCs) was assessed by high-resolution respirometry of intact and permeabilized PBMCs. Clinical metabolic characteristics and mitochondrial DNA (mtDNA) content of PBMCs (mtDN relative to nuclear DNA) were furthermore assessed. RESULTS Respiration of intact and permeabilized PBMCs from EBC patients significantly increased with adjuvant chemo- and radiotherapy (p = 6 × 10-5 and p = 1 × 10-7 , respectively). The oxygen flux attributed to specific mitochondrial complexes and respiratory states increased by 17-43% compared to before therapy initiation. Similarly, PBMC mtDNA content increased by 40% (p = 0.002). Leukocytes (p = 0.0001), hemoglobin (p = 0.0003), and HDL cholesterol (p = 0.003) concentrations decreased whereas triglyceride (p = 0.01) and LDL (p = 0.02) concentrations increased after treatment suggesting a worsened metabolic state. None of the metabolic parameters or the mtDNA content of PBMCs correlated significantly with PBMC respiration. CONCLUSION This study shows that mitochondrial respiration and mtDNA content in circulating PBMCs increase after adjuvant chemo- and radiotherapy in postmenopausal patients with EBC. Besides the increased mtDNA content, a shift in PBMC subpopulation proportions towards cells relying on oxidative phosphorylation, who may be less sensitive to chemotherapy, might influence the increased mitochondrial respiration observed iafter chemotherapy.
Collapse
Affiliation(s)
| | | | - Lucas Ribas
- Xlab, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | - Djordje Marina
- Department of EndocrinologyRigshospitaletCopenhagenDenmark
| | | | - Steen Larsen
- Xlab, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research CentreMedical University of BialystokBialystokPoland
| | - Peter Schwarz
- Department of EndocrinologyRigshospitaletCopenhagenDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Flemming Dela
- Xlab, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of GeriatricsBispebjerg University HospitalCopenhagenDenmark
| | - Linn Gillberg
- Xlab, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|