1
|
Bauer KC, Ghabra S, Ma C, Chedester L, Greten TF. Liver Cancer Neuroscience: Regulating Liver Tumors via Selective Hepatic Vagotomy. Methods Protoc 2024; 7:99. [PMID: 39728619 DOI: 10.3390/mps7060099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 12/28/2024] Open
Abstract
Both the prevalence and mortality of liver cancers continue to rise. Early surgical interventions, including liver transplantation or resection, remain the only curative treatment. Nerves in the periphery influence tumor growth within visceral organs. Emerging cancer neuroscience efforts linked parasympathetic vagus nerves with tumor pathology, underscoring the value of vagal nerve denervation methods within cancer mouse models. Here, we describe a selective hepatic vagotomy that largely maintains non-liver parasympathetic innervation in mice. To address vagal interactions in hepatic tumor pathology, we provide an adapted methodology utilizing an established liver metastatic model. We anticipate that this methodology will expand the burgeoning field of cancer neuroscience, enabling the study of the neuroimmune, neurometabolic, and/or nerve-microbiota interactions shaping liver cancer progression and treatment.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Shadin Ghabra
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Surgical Oncology Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chi Ma
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lee Chedester
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Rockville, MD 20852, USA
| | - Tim F Greten
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Liver Cancer Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Xia Y, Jiang T, Li Y, Gu C, Lv J, Lu C, Xu P, Fang L, Chen Z, Liu H, Zhang D, Xu H, Yang L, Xu Z, Wang L. circVAPA-rich small extracellular vesicles derived from gastric cancer promote neural invasion by inhibiting SLIT2 expression in neuronal cells. Cancer Lett 2024; 592:216926. [PMID: 38714291 DOI: 10.1016/j.canlet.2024.216926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Gastric cancer (GC) is one of the most common cancer worldwide. Neural invasion (NI) is considered as the symbiotic interaction between nerves and cancers, which strongly affects the prognosis of GC patients. Small extracellular vesicles (sEVs) play a key role in intercellular communication. However, whether sEVs mediate GC-NI remains unexplored. In this study, sEVs release inhibitor reduces the NI potential of GC cells. Muscarinic receptor M3 on GC-derived sEVs regulates their absorption by neuronal cells. The enrichment of sEV-circVAPA in NI-positive patients' serum is validated by serum high throughput sEV-circRNA sequencing and clinical samples. sEV-circVAPA promotes GC-NI in vitro and in vivo. Mechanistically, sEV-circVAPA decreases SLIT2 transcription by miR-548p/TGIF2 and inhibits SLIT2 translation via binding to eIF4G1, thereby downregulates SLIT2 expression in neuronal cells and finally induces GC-NI. Together, this work identifies the preferential absorption mechanism of GC-derived sEVs by neuronal cells and demonstrates a previously undefined role of GC-derived sEV-circRNA in GC-NI, which provides new insight into sEV-circRNA based diagnostic and therapeutic strategies for NI-positive GC patients.
Collapse
Affiliation(s)
- Yiwen Xia
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianlu Jiang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jialun Lv
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Penghui Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lang Fang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongda Liu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Nagori K, Pradhan M, Sharma M, Ajazuddin, Badwaik HR, Nakhate KT. Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:50-68. [PMID: 38529600 DOI: 10.2174/0115672050306008240321034006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer's disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.
Collapse
Affiliation(s)
- Kushagra Nagori
- Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Madhulika Pradhan
- Department of Pharmaceutical Technology, Gracious College of Pharmacy, Abhanpur 493661, Chhattisgarh, India
| | - Mukesh Sharma
- Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Hemant R Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| |
Collapse
|
4
|
Canakis A, Lee A, Halvorson AE, Noto JM, Peek RM, Wilson O, Hung A, Roumie CL, Greevy R, Shah SC. Bile Acid Sequestrant Use and Gastric Cancer: A National Retrospective Cohort Analysis. Clin Transl Gastroenterol 2023; 14:e00596. [PMID: 37606521 PMCID: PMC10749703 DOI: 10.14309/ctg.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Bile acids have been implicated in gastric carcinogenesis. We hypothesized that bile acid sequestrant medication (BAM) use is associated with a lower gastric cancer (GC) incidence. METHODS We assembled a cohort of veterans receiving longitudinal care within the Veterans Health Administration between 2000 and 2020 who completed testing for Helicobacterpylori . The index date was the date of completed H. pylori testing. The primary exposure was the number of filled BAM prescription(s) in the 5 years before the index date. The primary outcome was incident GC, stratified by anatomic subsite. Follow-up began at the index date and ended at the earliest of GC, death, after 2 years of follow-up, or the study end (May 31, 2020). We used Kaplan-Meier curves to visualize differences in GC incidence by exposure group and multivariable Cox proportional hazards models to estimate the association between BAM exposure and anatomic site-specific GC. RESULTS Among 417,239 individuals (89% male, mean age 54 years, 63% non-Hispanic White), 4,916 (1.2%) filled at least one BAM prescription, 2,623 of whom filled ≥4. Compared with unexposed individuals, those with ≥4 BAM fills before entry had a lower incidence (adjusted hazard ratio 0.71; 95% confidence interval, 0.37-1.36) of GC, but confidence intervals were wide. Results were consistent irrespective of GC anatomic site. DISCUSSION BAMs may have a protective effect against both cardia and noncardia GC. Further research and external validation are needed to confirm these findings.
Collapse
Affiliation(s)
- Andrew Canakis
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amy Lee
- University of California San Diego School of Medicine, San Diego, California, USA
| | - Alese E. Halvorson
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer M. Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville Tennessee, USA
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville Tennessee, USA
| | - Otis Wilson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Clinical Services Research and Development, Nashville, Tennessee, USA
| | - Adriana Hung
- VA Tennessee Valley Healthcare System, Clinical Services Research and Development, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville Tennessee, USA
| | - Christianne L. Roumie
- VA Tennessee Valley Healthcare System, Clinical Services Research and Development, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville Tennessee, USA
- VA Geriatrics Research Education and Clinical Center (GRECC), VA Tennessee Valley Health System, Nashville, Tennessee, USA
| | - Robert Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville Tennessee, USA
| | - Shailja C. Shah
- Gastroenterology Section, VA San Diego Healthcare System, San Diego, California, USA
- Division of Gastroenterology, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
5
|
Park YE. Is vagotomy necessary in palliative surgery for incurable advanced gastric cancer?: a retrospective case-control study. World J Surg Oncol 2023; 21:213. [PMID: 37480111 PMCID: PMC10360296 DOI: 10.1186/s12957-023-03111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The interplay between the nervous system and cancer plays an important role in the initiation and progression of gastric cancer. Few studies have presented evidence that the sympathetic nervous system inhibits the occurrence and development of gastric cancer while the parasympathetic nervous system promotes the growth of gastric cancer. To investigate the effect of vagotomy, which is the resection of a parasympathetic nerve innervating the stomach, on the progression of gastric cancer, a retrospective study was conducted comparing the prognosis of simple palliative gastrojejunostomy (PGJ) and palliative gastrojejunostomy with vagotomy (PGJV). METHODS From January 01, 2000, to December 31, 2021, the medical records of patients who underwent PGJ or PGJV because of gastric outlet obstruction due to incurable advanced gastric cancer at the Yeungnam University Medical Center were retrospectively reviewed. Patients were divided into two groups: locally unresectable gastric cancer (LUGC) or gastric cancer with distant metastasis (GCDM), according to the reason for gastrojejunostomy, and factors affecting overall survival (OS) were analyzed. RESULTS There was no significant difference in surgical outcomes and postoperative complications between the patients with PGJV and patients with PGJ. In univariate analysis, vagotomy was not a significant factor for OS in the GCDM group (HR 1.14, CI 0.67-1.94, p value 0.642), while vagotomy was a significant factor for OS in the LUGC group (HR 0.38, CI 0.15-0.98, p value 0.045). In multivariate analysis, when vagotomy is performed together with PGJ for LUGC, the OS can be significantly extended (HR 0.25, CI 0.09-0.068, p value 0.007). CONCLUSIONS When PGJ for LUGC was performed with vagotomy, additional survival benefits could be achieved with low complication risk. However, to confirm the effect of vagotomy on the growth of gastric cancer, further prospective studies using large sample sizes are essential.
Collapse
Affiliation(s)
- Yong-Eun Park
- Department of Surgery, Yeungnam University Medical Center, 170 Hyeonchungno, Nam-Gu, Daegu, 42415, Korea.
| |
Collapse
|
6
|
Wang F, Cheng F, Zheng F. Bioinformatic-based genetic characterizations of neural regulation in skin cutaneous melanoma. Front Oncol 2023; 13:1166373. [PMID: 37404751 PMCID: PMC10315675 DOI: 10.3389/fonc.2023.1166373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Background Recent discoveries uncovered the complex cancer-nerve interactions in several cancer types including skin cutaneous melanoma (SKCM). However, the genetic characterization of neural regulation in SKCM is unclear. Methods Transcriptomic expression data were collected from the TCGA and GTEx portal, and the differences in cancer-nerve crosstalk-associated gene expressions between normal skin and SKCM tissues were analyzed. The cBioPortal dataset was utilized to implement the gene mutation analysis. PPI analysis was performed using the STRING database. Functional enrichment analysis was analyzed by the R package clusterProfiler. K-M plotter, univariate, multivariate, and LASSO regression were used for prognostic analysis and verification. The GEPIA dataset was performed to analyze the association of gene expression with SKCM clinical stage. ssGSEA and GSCA datasets were used for immune cell infiltration analysis. GSEA was used to elucidate the significant function and pathway differences. Results A total of 66 cancer-nerve crosstalk-associated genes were identified, 60 of which were up- or downregulated in SKCM and KEGG analysis suggested that they are mainly enriched in the calcium signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, and so on. A gene prognostic model including eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG) was built and verified by independent cohorts GSE59455 and GSE19234. A nomogram was constructed containing clinical characteristics and the above eight genes, and the AUCs of the 1-, 3-, and 5-year ROC were 0.850, 0.811, and 0.792, respectively. Expression of CCR2, GRIN3A, and CSF1 was associated with SKCM clinical stages. There existed broad and strong correlations of the prognostic gene set with immune infiltration and immune checkpoint genes. CHRNA4 and CHRNG were independent poor prognostic genes, and multiple metabolic pathways were enriched in high CHRNA4 expression cells. Conclusion Comprehensive bioinformatics analysis of cancer-nerve crosstalk-associated genes in SKCM was performed, and an effective prognostic model was constructed based on clinical characteristics and eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG), which were widely related to clinical stages and immunological features. Our work may be helpful for further investigation in the molecular mechanisms correlated with neural regulation in SKCM, and in searching new therapeutic targets.
Collapse
Affiliation(s)
- Fengdi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Li YT, Yuan WZ, Jin WL. Vagus innervation in the gastrointestinal tumor: Current understanding and challenges. Biochim Biophys Acta Rev Cancer 2023; 1878:188884. [PMID: 36990250 DOI: 10.1016/j.bbcan.2023.188884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
The vagus nerve (VN) is the main parasympathetic nerve of the autonomic nervous system. It is widely distributed in the gastrointestinal tract and maintains gastrointestinal homeostasis with the sympathetic nerve under physiological conditions. The VN communicates with various components of the tumor microenvironment to positively and dynamically affect the progression of gastrointestinal tumors (GITs). The intervention in vagus innervation delays GIT progression. Developments in adeno-associated virus vectors, nanotechnology, and in vivo neurobiological techniques have enabled the creation of precisely regulated "tumor neurotherapies". Furthermore, the combination of neurobiological techniques and single cell sequencing may reveal more insights into VN and GIT. The present review aimed to summarize the mechanisms of communication between the VN and the gastrointestinal TME and to explore the potential and challenges of VN-based tumor neurotherapy in GITs.
Collapse
|
8
|
Yaman I, Ağaç Çobanoğlu D, Xie T, Ye Y, Amit M. Advances in understanding cancer-associated neurogenesis and its implications on the neuroimmune axis in cancer. Pharmacol Ther 2022; 239:108199. [PMID: 35490859 PMCID: PMC9991830 DOI: 10.1016/j.pharmthera.2022.108199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
Nerves and immunologic mediators play pivotal roles in body homeostasis by interacting with each other through diverse mechanisms. The spread of nerves in the tumor microenvironment increases tumor cell proliferation and disease progression, and this correlates with poor patient outcomes. The effects of sympathetic and parasympathetic nerves on cancer regulation are being investigated. Recent findings demonstrate the possibility of developing therapeutic strategies that target the tumor microenvironment and its components such as immune cells, neurotransmitters, and extracellular vesicles. Therefore, examining and understanding the mechanisms and pathways associated with the sympathetic and parasympathetic nervous systems, neurotransmitters, cancer-derived mediators and their interactions with the immune system in the tumor microenvironment may lead to the development of new cancer treatments. This review discusses the effects of nerve cells, immune cells, and cancer cells have on each other that regulate neurogenesis, cancer progression, and dissemination.
Collapse
Affiliation(s)
- Ismail Yaman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Didem Ağaç Çobanoğlu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Head and Neck Surgery, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
Emerging Roles of the Nervous System in Gastrointestinal Cancer Development. Cancers (Basel) 2022; 14:cancers14153722. [PMID: 35954387 PMCID: PMC9367305 DOI: 10.3390/cancers14153722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Nerve–cancer cross-talk has increasingly become a focus of the oncology field, particularly in gastrointestinal (GI) cancers. The indispensable roles of the nervous system in GI tumorigenesis and malignancy have been dissected by epidemiological, experimental animal and mechanistic data. Herein, we review and integrate recent discoveries linking the nervous system to GI cancer initiation and progression, and focus on the molecular mechanisms by which nerves and neural receptor pathways drive GI malignancy. Abstract Our understanding of the fascinating connection between nervous system and gastrointestinal (GI) tumorigenesis has expanded greatly in recent years. Recent studies revealed that neurogenesis plays an active part in GI tumor initiation and progression. Tumor-driven neurogenesis, as well as neurite outgrowth of the pre-existing peripheral nervous system (PNS), may fuel GI tumor progression via facilitating cancer cell proliferation, chemoresistance, invasion and immune escape. Neurotransmitters and neuropeptides drive the activation of various oncogenic pathways downstream of neural receptors within cancer cells, underscoring the importance of neural signaling pathways in GI tumor malignancy. In addition, neural infiltration also plays an integral role in tumor microenvironments, and contributes to an environment in favor of tumor angiogenesis, immune evasion and invasion. Blockade of tumor innervation via denervation or pharmacological agents may serve as a promising therapeutic strategy against GI tumors. In this review, we summarize recent findings linking the nervous system to GI tumor progression, set the spotlight on the molecular mechanisms by which neural signaling fuels cancer aggressiveness, and highlight the importance of targeting neural mechanisms in GI tumor therapy.
Collapse
|
10
|
Alizadeh M, Raufman JP. Gastrointestinal neoplasia: carcinogenic interaction between bile acids and Helicobacter pylori in the stomach. J Clin Invest 2022; 132:160194. [PMID: 35575088 PMCID: PMC9106340 DOI: 10.1172/jci160194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bile acids modulate cell functions in health and disease, however, the mechanisms underlying their actions on neoplastic cells in the gastrointestinal (GI) tract remain largely unknown. In this issue of the JCI, Noto et al. comprehensively analyzed how interactions between Helicobacter pylori infection, iron deficiency, and bile acids modulate gastric inflammation and carcinogenesis. The investigators used sophisticated models, including INS-GAS mice with elevated serum gastrin and gastric acid secretion, in which H. pylori infection mimics human disease progression, to show that selected bile acids potentiated the carcinogenic effects of H. pylori infection and iron depletion. This elegant work has broad translational implications for microbe-associated GI neoplasia. Importantly, bile acid sequestration robustly attenuated the combined effects of H. pylori infection and iron depletion on gastric inflammation and cancer.
Collapse
Affiliation(s)
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,VA Maryland Healthcare System, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center and,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Calaf GM, Crispin LA, Muñoz JP, Aguayo F, Bleak TC. Muscarinic Receptors Associated with Cancer. Cancers (Basel) 2022; 14:cancers14092322. [PMID: 35565451 PMCID: PMC9100020 DOI: 10.3390/cancers14092322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Recently, cancer research has described the presence of the cholinergic machinery, specifically muscarinic receptors, in a wide variety of cancers due to their activation and signaling pathways associated with tumor progression and metastasis, providing a wide overview of their contribution to different cancer formation and development for new antitumor targets. This review focused on determining the molecular signatures associated with muscarinic receptors in breast and other cancers and the need for pharmacological, molecular, biochemical, technological, and clinical approaches to improve new therapeutic targets. Abstract Cancer has been considered the pathology of the century and factors such as the environment may play an important etiological role. The ability of muscarinic agonists to stimulate growth and muscarinic receptor antagonists to inhibit tumor growth has been demonstrated for breast, melanoma, lung, gastric, colon, pancreatic, ovarian, prostate, and brain cancer. This work aimed to study the correlation between epidermal growth factor receptors and cholinergic muscarinic receptors, the survival differences adjusted by the stage clinical factor, and the association between gene expression and immune infiltration level in breast, lung, stomach, colon, liver, prostate, and glioblastoma human cancers. Thus, targeting cholinergic muscarinic receptors appears to be an attractive therapeutic alternative due to the complex signaling pathways involved.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Correspondence:
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
12
|
Schledwitz A, Sundel MH, Alizadeh M, Hu S, Xie G, Raufman JP. Differential Actions of Muscarinic Receptor Subtypes in Gastric, Pancreatic, and Colon Cancer. Int J Mol Sci 2021; 22:ijms222313153. [PMID: 34884958 PMCID: PMC8658119 DOI: 10.3390/ijms222313153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cancers arising from gastrointestinal epithelial cells are common, aggressive, and difficult to treat. Progress in this area resulted from recognizing that the biological behavior of these cancers is highly dependent on bioactive molecules released by neurocrine, paracrine, and autocrine mechanisms within the tumor microenvironment. For many decades after its discovery as a neurotransmitter, acetylcholine was thought to be synthesized and released uniquely from neurons and considered the sole physiological ligand for muscarinic receptor subtypes, which were believed to have similar or redundant actions. In the intervening years, we learned this former dogma is not tenable. (1) Acetylcholine is not produced and released only by neurons. The cellular machinery required to synthesize and release acetylcholine is present in immune, cancer, and other cells, as well as in lower organisms (e.g., bacteria) that inhabit the gut. (2) Acetylcholine is not the sole physiological activator of muscarinic receptors. For example, selected bile acids can modulate muscarinic receptor function. (3) Muscarinic receptor subtypes anticipated to have overlapping functions based on similar G protein coupling and downstream signaling may have unexpectedly diverse actions. Here, we review the relevant research findings supporting these conclusions and discuss how the complexity of muscarinic receptor biology impacts health and disease, focusing on their role in the initiation and progression of gastric, pancreatic, and colon cancers.
Collapse
Affiliation(s)
- Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
| | - Margaret H. Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-328-8728
| |
Collapse
|
13
|
Tolaymat M, Sundel MH, Alizadeh M, Xie G, Raufman JP. Potential Role for Combined Subtype-Selective Targeting of M 1 and M 3 Muscarinic Receptors in Gastrointestinal and Liver Diseases. Front Pharmacol 2021; 12:786105. [PMID: 34803723 PMCID: PMC8600121 DOI: 10.3389/fphar.2021.786105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023] Open
Abstract
Despite structural similarity, the five subtypes comprising the cholinergic muscarinic family of G protein-coupled receptors regulate remarkably diverse biological functions. This mini review focuses on the closely related and commonly co-expressed M1R and M3R muscarinic acetylcholine receptor subtypes encoded respectively by CHRM1 and CHRM3. Activated M1R and M3R signal via Gq and downstream initiate phospholipid turnover, changes in cell calcium levels, and activation of protein kinases that alter gene transcription and ultimately cell function. The unexpectedly divergent effects of M1R and M3R activation, despite similar receptor structure, distribution, and signaling, are puzzling. To explore this conundrum, we focus on the gastrointestinal (GI) tract and liver because abundant data identify opposing effects of M1R and M3R activation on the progression of gastric, pancreatic, and colon cancer, and liver injury and fibrosis. Whereas M3R activation promotes GI neoplasia, M1R activation appears protective. In contrast, in murine liver injury models, M3R activation promotes and M1R activation mitigates liver fibrosis. We analyze these findings critically, consider their therapeutic implications, and review the pharmacology and availability for research and therapeutics of M1R and M3R-selective agonists and antagonists. We conclude by considering gaps in knowledge and other factors that hinder the application of these drugs and the development of new agents to treat GI and liver diseases.
Collapse
Affiliation(s)
- Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Rabben HL, Andersen GT, Olsen MK, Øverby A, Ianevski A, Kainov D, Wang TC, Lundgren S, Grønbech JE, Chen D, Zhao CM. Neural signaling modulates metabolism of gastric cancer. iScience 2021; 24:102091. [PMID: 33598644 PMCID: PMC7869004 DOI: 10.1016/j.isci.2021.102091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors comprise cancer cells and the associated stromal and immune/inflammatory cells, i.e., tumor microenvironment (TME). Here, we identify a metabolic signature of human and mouse model of gastric cancer and show that vagotomy in the mouse model reverses the metabolic reprogramming, reflected by metabolic switch from glutaminolysis to OXPHOS/glycolysis and normalization of the energy metabolism in cancer cells and TME. We next identify and validate SNAP25, mTOR, PDP1/α-KGDH, and glutaminolysis as drug targets and accordingly propose a therapeutic strategy to target the nerve-cancer metabolism. We demonstrate the efficacy of nerve-cancer metabolism therapy by intratumoral injection of BoNT-A (SNAP25 inhibitor) with systemic administration of RAD001 and CPI-613 but not cytotoxic drugs on overall survival in mice and show the feasibility in patients. These findings point to the importance of neural signaling in modulating the tumor metabolism and provide a rational basis for clinical translation of the potential strategy for gastric cancer. Metabolic reprogramming in gastric cancer cells and tumor microenvironment SNAP25, mTOR, PDP1/α-KGDH, and glutaminolysis as potential drug targets Combination of botulinum toxin type A, RAD001, and CPI-613 as a potential treatment
Collapse
Affiliation(s)
- Hanne-Line Rabben
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,The Central Norway Regional Health Authority, Norway
| | - Gøran Troseth Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Magnus Kringstad Olsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Anders Øverby
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Timothy Cragin Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Steinar Lundgren
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Jon Erik Grønbech
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,Surgical Clinic, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,The Central Norway Regional Health Authority, Norway
| |
Collapse
|
15
|
Role of sympathetic and parasympathetic nerves in the development of gastric cancer through antagonism. Chin Med J (Engl) 2021; 134:908-909. [PMID: 33470652 PMCID: PMC8078313 DOI: 10.1097/cm9.0000000000001348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
刘 海. Effects of Habitats Change on EPT Aquatic Insects in Streams. INTERNATIONAL JOURNAL OF ECOLOGY 2021. [DOI: 10.12677/ije.2021.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874:188411. [PMID: 32828885 DOI: 10.1016/j.bbcan.2020.188411] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
It is well known that tumours arising in different organs are innervated and that 'perineural invasion' (cancer cells escaping from the tumour by following the nerve trunk) is a negative prognostic factor. More surprisingly, increasing evidence suggests that the nerves can provide active inputs to tumours and there is two-way communication between nerves and cancer cells within the tumour microenvironment. Cells of the immune system also interact with the nerves and cancer cells. Thus, the nerve connections can exert significant control over cancer progression and modulating these (physically or chemically) can affect significantly the cancer process. Nerve inputs to tumours are derived mainly from the sympathetic (adrenergic) and the parasympathetic (cholinergic) systems, which are interactive. An important component of the latter is the vagus nerve, the largest of the cranial nerves. Here, we present a two-part review of the nerve inputs to tumours and their effects on tumorigenesis. First, we review briefly some relevant general issues including ultrastructural aspects, stemness, interactions between neurones and primary tumours, and communication between neurones and metastasizing tumour cells. Ultrastructural characteristics include synaptic vesicles, tumour microtubes and gap junctions enabling formation of cellular networks. Second, we evaluate the pathophysiology of the nerve input to five major carcinomas: cancers of prostate, stomach, colon, lung and pancreas. For each cancer, we present (i) the nerve inputs normally present in the cancer organ and (ii) how these interact and influence the cancer process. The best clinical evidence for the role of nerves in promoting tumorigenesis comes from prostate cancer patients where metastatic progression has been shown to be suppressed significantly in cases of spinal cord injury. The balance of the sympathetic and parasympathetic contributions to early versus late tumorigenesis varies amongst the different cancers. Different branches of the vagus provide functional inputs to several of the carcinomas and, in two-way interaction with the sympathetic nervous system, affect different stages of the cancer process. Overall, the impact of the vagus nerve can be 'direct' or 'indirect'. Directly, the effect of the vagus is primarily to promote tumorigenesis and this is mediated through cholinergic receptor mechanisms. Indirectly, pro- and anti-tumour effects can occur by stimulation or inhibition of the sympathetic nervous system, respectively. Less well understood are the 'indirect' anti-tumour effect of the vagus nerve via immunomodulation/inflammation, and the role of sensory innervation. A frequent occurrence in the nerve-tumour interactions is the presence of positive feedback driven by agents like nerve growth factor. We conclude that the nerve inputs to tumours can actively and dynamically impact upon cancer progression and are open to clinical exploitation.
Collapse
Affiliation(s)
- Charlotte Hutchings
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Jade A Phillips
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey.
| |
Collapse
|
18
|
Lee KE, Kim JK, Han SK, Lee DY, Lee HJ, Yim SV, Kim DH. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. MICROBIOME 2020; 8:107. [PMID: 32669127 PMCID: PMC7364628 DOI: 10.1186/s40168-020-00881-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND In a pilot study, we found that feces transplantation from elderly individuals to mice significantly caused cognitive impairment. Paenalcaligenes hominis and Escherichia coli are increasingly detected in the feces of elderly adults and aged mice. Therefore, we isolated Paenalcaligenes hominis and Escherichia coli from the feces of elderly individuals and aged mice and examined their effects on the occurrence of age-related degenerative cognitive impairment and colonic inflammation in mice. RESULTS The transplantation of feces collected from elderly people and aged mice caused significantly more severe cognitive impairment in transplanted young mice than those from young adults and mice. Oral gavage of Paenalcaligenes hominis caused strong cognitive impairment and colitis in specific pathogen-free (SPF) and germ-free mice. Escherichia coli also induced cognitive impairment and colitis in SPF mice. Oral gavage of Paenalcaligenes hominis, its extracellular vesicles (EVs), and/or lipopolysaccharide caused cognitive impairment and colitis in mice. However, celiac vagotomy significantly inhibited the occurrence of cognitive impairment, but not colitis, in mice exposed to Paenalcaligenes hominis or its EVs, whereas its lipopolysaccharide or Escherichia coli had no such effects. Vagotomy also inhibited the infiltration of EVs into the hippocampus. CONCLUSIONS Paenalcaligenes hominis, particularly its EVs, can cause cognitive function-impaired disorders, such as Alzheimer's disease, and its EVs may penetrate the brain through the blood as well as the vagus nerve. Video Abstract.
Collapse
Affiliation(s)
- Kyung-Eon Lee
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 South Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 South Korea
| | - Sang-Kap Han
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 South Korea
| | - Dong Yun Lee
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 South Korea
| | - Hae-Ji Lee
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 South Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447 South Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 South Korea
| |
Collapse
|
19
|
Lourenço LO, Ramos Lopes AC, Zavan B, Soncini R. Vagotomy influences the lung response to adrenergic agonists and muscarinic antagonists. Respir Physiol Neurobiol 2019; 274:103358. [PMID: 31811939 DOI: 10.1016/j.resp.2019.103358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/01/2022]
Abstract
Mammals airways are extensively innervated by the vagus nerve, which controls the airway diameter and bronchial tone. However, very few studies described the respiratory function and lung morphology after vagal section. In the present study, we evaluated the respiratory mechanics after aerosolization of vehicle (to obtain control values), a muscarinic agonist (methacholine), a β2-adrenergic agonist (salbutamol) or a muscarinic antagonist (ipratropium bromide) in intact (Vi) and bilaterally vagotomized (Vx) Swiss male mice. Different group was established for morphometric analyze. The total lung resistance, airway resistance, elastance, compliance, lung tissue damping, lung tissue elastance, and morphological parameters (collagen and elastic fibers) were significantly different in the Vx group compared to the Vi group. Bronchoconstrictor and bronchodilators change the respiratory function of the Vx group. In conclusion, the vagus nerve modulates the lung function in response to bronchoconstriction and bronchodilation, as well as lung architecture of mice.
Collapse
Affiliation(s)
- Luiz Otávio Lourenço
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Ana Carolina Ramos Lopes
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Bruno Zavan
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil; Integrative Animal Biology Laboratory, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Roseli Soncini
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|