1
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
2
|
Sprenger RR, Bilgin M, Ostenfeld MS, Bjørnshave A, Rasmussen JT, Ejsing CS. Dietary intake of a MFGM/EV-rich concentrate promotes accretion of very long odd-chain sphingolipids and increases lipid metabolic turnover at the whole-body level. Food Res Int 2024; 190:114601. [PMID: 38945615 DOI: 10.1016/j.foodres.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Lipids from cow milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are considered beneficial for neurodevelopment, cognitive maintenance and human health in general. Nevertheless, it is largely unknown whether intake of infant formulas and medical nutrition products rich in these particles promote accretion of specific lipids and whether this affects metabolic homeostasis. To address this, we carried out a 16-week dietary intervention study where mice were supplemented with a MFGM/EV-rich concentrate, a control diet supplemented with a whey protein concentrate and devoid of milk lipids, or regular chow. Assessment of commonly used markers of metabolic health, including body weight, glucose intolerance and liver microanatomy, demonstrated no differences across the dietary regimes. In contrast, in-depth lipidomic analysis revealed accretion of milk-derived very long odd-chain sphingomyelins and ceramides in blood plasma and multiple tissues of mice fed the MFGM/EV diet. Furthermore, lipidomic flux analysis uncovered that mice fed the MFGM/EV diet have increased lipid metabolic turnover at the whole-body level. These findings help fill a long-lasting knowledge gap between the intake of MFGM/EV-containing foods and the health-promoting effects of their lipid constituents. In addition, the findings suggest that dietary sphingomyelins or ceramide-breakdown products with very long-chains can be used as structural components of cellular membranes, lipoprotein particles and signaling molecules that modulate metabolic homeostasis and health.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | | | - Jan T Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
3
|
Demmelmair H, Uhl O, Zhou SJ, Makrides M, Gibson RA, Prosser C, Gallier S, Koletzko B. Plasma Sphingomyelins and Carnitine Esters of Infants Consuming Whole Goat or Cow Milk-Based Infant Formulas or Human Milk. J Nutr 2024; 154:1781-1789. [PMID: 38615734 PMCID: PMC11217027 DOI: 10.1016/j.tjnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Infant formulas are typically manufactured using skimmed milk, whey proteins, and vegetable oils, which excludes milk fat globule membranes (MFGM). MFGM contains polar lipids, including sphingomyelin (SM). OBJECTIVE The objective of this study was comparison of infant plasma SM and acylcarnitine species between infants who are breastfed or receiving infant formulas with different fat sources. METHODS In this explorative study, we focused on SM and acylcarnitine species concentrations measured in plasma samples from the TIGGA study (ACTRN12608000047392), where infants were randomly assigned to receive either a cow milk-based infant formula (CIF) with vegetable oils only or a goat milk-based infant formula (GIF) with a goat milk fat (including MFGM) and vegetable oil mixture to the age ≥4 mo. Breastfed infants were followed as a reference group. Using tandem mass spectrometry, SM species in the study formulas and SM and acylcarnitine species in plasma samples collected at the age of 4 mo were analyzed. RESULTS Total SM concentrations (∼42 μmol/L) and patterns of SM species were similar in both formulas. The total plasma SM concentrations were not different between the formula groups but were 15 % (CIF) and 21% (GIF) lower in the formula groups than in the breastfed group. Between the formula groups, differences in SM species were statistically significant but small. Total carnitine and major (acyl) carnitine species were not different between the groups. CONCLUSIONS The higher total SM concentration in breastfed than in formula-fed infants might be related to a higher SM content in human milk, differences in cholesterol metabolism, dietary fatty acid intake, or other factors not yet identified. SM and acylcarnitine species composition in plasma is not closely related to the formula fatty acid composition. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12608000047392.
Collapse
Affiliation(s)
- Hans Demmelmair
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany.
| | - Olaf Uhl
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Shao J Zhou
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Maria Makrides
- Woman's and Children's Health Research Institute, University of Adelaide, Adelaide, Australia
| | - Robert A Gibson
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Colin Prosser
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Sophie Gallier
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Berthold Koletzko
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
4
|
Nie C, Zhao Y, Wang X, Li Y, Fang B, Wang R, Wang X, Liao H, Li G, Wang P, Liu R. Structure, Biological Functions, Separation, Properties, and Potential Applications of Milk Fat Globule Membrane (MFGM): A Review. Nutrients 2024; 16:587. [PMID: 38474716 PMCID: PMC10935281 DOI: 10.3390/nu16050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The milk fat globule membrane (MFGM) is a thin film that exists within the milk emulsion, suspended on the surface of milk fat globules, and comprises a diverse array of bioactive components. Recent advancements in MFGM research have sparked a growing interest in its biological characteristics and health-related functions. Thorough exploration and utilization of MFGM as a significant bioactive constituent in milk emulsion can profoundly impact human health in a positive manner. Scope and approach: This review comprehensively examines the current progress in understanding the structure, composition, physicochemical properties, methods of separation and purification, and biological activity of MFGM. Additionally, it underscores the vast potential of MFGM in the development of additives and drug delivery systems, with a particular focus on harnessing the surface activity and stability of proteins and phospholipids present on the MFGM for the production of natural emulsifiers and drug encapsulation materials. KEY FINDINGS AND CONCLUSIONS MFGM harbors numerous active substances that possess diverse physiological functions, including the promotion of digestion, maintenance of the intestinal mucosal barrier, and facilitation of nerve development. Typically employed as a dietary supplement in infant formula, MFGM's exceptional surface activity has propelled its advancement toward becoming a natural emulsifier or encapsulation material. This surface activity is primarily derived from the amphiphilicity of polar lipids and the stability exhibited by highly glycosylated proteins.
Collapse
Affiliation(s)
- Chao Nie
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Yunyi Zhao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Haiping Liao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Gengsheng Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Schipper L, Bartke N, Marintcheva-Petrova M, Schoen S, Vandenplas Y, Hokken-Koelega ACS. Infant formula containing large, milk phospholipid-coated lipid droplets and dairy lipids affects cognitive performance at school age. Front Nutr 2023; 10:1215199. [PMID: 37731397 PMCID: PMC10508340 DOI: 10.3389/fnut.2023.1215199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Background Breastfeeding has been positively associated with infant and child neurocognitive development and function. Contributing to this effect may be differences between human milk and infant formula in the milk lipid composition and milk fat globule structure. Objective To evaluate the effects of an infant formula mimicking human milk lipid composition and milk fat globule structure on childhood cognitive performance. Methods In a randomized, controlled trial, healthy term infants received until 4 months of age either a Standard infant formula (n = 108) or a Concept infant formula (n = 115) with large, milk phospholipid coated lipid droplets and containing dairy lipids. A breastfed reference group (n = 88) was included. Erythrocyte fatty acid composition was determined at 3 months of age. Neurocognitive function was assessed as exploratory follow-up outcome at 3, 4, and 5 years of age using the Flanker test, Dimensional Change Card Sort (DCCS) test and Picture Sequence Memory test from the National Institutes of Health Toolbox Cognition Battery. Mann-Whitney U test and Fisher exact test were used to compare groups. Results Erythrocyte omega-6 to -3 long-chain polyunsaturated fatty acid ratio appeared to be lower in the Concept compared to the Standard group (P = 0.025). At age 5, only the Concept group was comparable to the Breastfed group in the highest reached levels on the Flanker test, and the DCCS computed score was higher in the Concept compared to the Standard group (P = 0.021). Conclusion These outcomes suggest that exposure to an infant formula mimicking human milk lipid composition and milk fat globule structure positively affects child neurocognitive development. Underlying mechanisms may include a different omega-3 fatty acid status during the first months of life. Clinical trial registration https://onderzoekmetmensen.nl/en/trial/28614, identifier NTR3683 and NTR5538.
Collapse
Affiliation(s)
| | - Nana Bartke
- Danone Nutricia Research, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
6
|
Donovan SM, Aghaeepour N, Andres A, Azad MB, Becker M, Carlson SE, Järvinen KM, Lin W, Lönnerdal B, Slupsky CM, Steiber AL, Raiten DJ. Evidence for human milk as a biological system and recommendations for study design-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 4. Am J Clin Nutr 2023; 117 Suppl 1:S61-S86. [PMID: 37173061 PMCID: PMC10356565 DOI: 10.1016/j.ajcnut.2022.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health and Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Becker
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology and Center for Food Allergy, University of Rochester Medical Center, New York, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
The Role of Dietary Lipids in Cognitive Health: Implications for Neurodegenerative Disease. Biomedicines 2022; 10:biomedicines10123250. [PMID: 36552006 PMCID: PMC9775642 DOI: 10.3390/biomedicines10123250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a group of disorders characterised by progressive loss of brain function. The most common of these is Alzheimer's disease, a form of dementia. Intake of macro- and micro-nutrients impacts brain function, including memory, learning, mood, and behaviour. Lipids, particularly phospholipids and sphingolipids, are crucial structural components of neural tissues and significantly affect cognitive function. The importance of functional foods in preventing cardiovascular disease is well-documented in the current literature. However, the significance of such foods for central nervous system health and neurodegenerative diseases is less recognized. Gut microbiome composition affects cognitive health and function, and dietary lipids are known to influence gut health. Thus, this review will discuss different sources of dietary lipids and their effect on cognitive functioning and their interaction with the gut microbiome in the context of neurodegenerative disease.
Collapse
|
8
|
Cavaletto M, Givonetti A, Cattaneo C. The Immunological Role of Milk Fat Globule Membrane. Nutrients 2022; 14:nu14214574. [PMID: 36364836 PMCID: PMC9655658 DOI: 10.3390/nu14214574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Human milk is the ideal food for newborns until the age of six months. Human milk can be defined as a dynamic living tissue, containing immunological molecules, such as immunoglobulins, supra-molecular structures, such as the milk fat globule membrane (MFGM), and even entire cells, such as the milk microbiota. The milk composition changes throughout lactation to fulfill the infant’s requirements and reflect the healthy/disease status of the lactating mother. Many bioactive milk components are either soluble or bound to the MFGM. In this work, we focus on the peculiar role of the MFGM components, from their structural organization in fat globules to their route into the gastrointestinal tract. Immunometabolic differences between human and bovine MFGM components are reported and the advantages of supplementing infant formula with the MFGM are highlighted.
Collapse
Affiliation(s)
- Maria Cavaletto
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
- Correspondence:
| | - Annalisa Givonetti
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Chiara Cattaneo
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, 15121 Alessandria, Italy
| |
Collapse
|
9
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
10
|
Mohamed HJJ, Lee EKH, Woo KCK, Sarvananthan R, Lee YY, Zabidi‐Hussin ZAMH. Brain
–
immune
–
gut
benefits with early life supplementation of milk fat globule membrane. JGH OPEN 2022; 6:454-461. [PMID: 35822117 PMCID: PMC9260205 DOI: 10.1002/jgh3.12775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 12/18/2022]
Abstract
The milk fat globule membrane (MFGM) has been recognized as a milk component for more than 60 years, but its exact benefits remain unknown. Research on human MFGM has revealed that the membrane holds a host of bioactive components with potential benefits for the brain–immune–gut (BiG) axis in early life. Gangliosides and sphingomyelin, components within the MFGM, have been included in infant formulas for many years. Recent advancements in dairy milk processing have allowed the successful separation of MFGM from bovine milk, enabling it to be used for supplementing infant formulas. Evidence indicates the potential benefits of MFGM in early life supplementation, including better cognitive development, reduction of infection risks, and modulation of the gut microbiome. However, larger and more robust randomized trials are needed, in addition to long‐term outcome data beyond the infancy period.
Collapse
Affiliation(s)
- Hamid Jan Jan Mohamed
- Nutrition and Dietetics Programme, School of Health Sciences Universiti Sains Malaysia Kelantan Malaysia
| | | | | | | | - Yeong Yeh Lee
- School of Medical Sciences Hospital Universiti Sains Malaysia Kelantan Malaysia
| | - ZAMH Zabidi‐Hussin
- School of Medicine International Medical University Kuala Lumpur Malaysia
| |
Collapse
|
11
|
Lamichhane S, Siljander H, Salonen M, Ruohtula T, Virtanen SM, Ilonen J, Hyötyläinen T, Knip M, Orešič M. Impact of Extensively Hydrolyzed Infant Formula on Circulating Lipids During Early Life. Front Nutr 2022; 9:859627. [PMID: 35685890 PMCID: PMC9171511 DOI: 10.3389/fnut.2022.859627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022] Open
Abstract
Background Current evidence suggests that the composition of infant formula (IF) affects the gut microbiome, intestinal function, and immune responses during infancy. However, the impact of IF on circulating lipid profiles in infants is still poorly understood. The objectives of this study were to (1) investigate how extensively hydrolyzed IF impacts serum lipidome compared to conventional formula and (2) to associate changes in circulatory lipids with gastrointestinal biomarkers including intestinal permeability. Methods In a randomized, double-blind controlled nutritional intervention study (n = 73), we applied mass spectrometry-based lipidomics to analyze serum lipids in infants who were fed extensively hydrolyzed formula (HF) or conventional, regular formula (RF). Serum samples were collected at 3, 9, and 12 months of age. Child's growth (weight and length) and intestinal functional markers, including lactulose mannitol (LM) ratio, fecal calprotectin, and fecal beta-defensin, were also measured at given time points. At 3 months of age, stool samples were analyzed by shotgun metagenomics. Results Concentrations of sphingomyelins were higher in the HF group as compared to the RF group. Triacylglycerols (TGs) containing saturated and monounsaturated fatty acyl chains were found in higher levels in the HF group at 3 months, but downregulated at 9 and 12 months of age. LM ratio was lower in the HF group at 9 months of age. In the RF group, the LM ratio was positively associated with ether-linked lipids. Such an association was, however, not observed in the HF group. Conclusion Our study suggests that HF intervention changes the circulating lipidome, including those lipids previously found to be associated with progression to islet autoimmunity or overt T1D. Clinical Trial Registration [Clinicaltrials.gov], identifier [NCT01735123].
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marja Salonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terhi Ruohtula
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi M. Virtanen
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
- Center for Child Health Research and Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Center for Child Health Research and Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
12
|
Jiang C, Cheong LZ, Zhang X, Ali AH, Jin Q, Wei W, Wang X. Dietary Sphingomyelin Metabolism and Roles in Gut Health and Cognitive Development. Adv Nutr 2021; 13:S2161-8313(22)00073-4. [PMID: 34549256 PMCID: PMC8970835 DOI: 10.1093/advances/nmab117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sphingomyelin (SM) is a widely occurring sphingolipid that is a major plasma membrane constituent. Milk and dairy products are rich SM sources, and human milk has high SM content. Numerous studies have evaluated the roles of SM in maintaining cell membrane structure and cellular signal transduction. There has been a growing interest in exploring the role of dietary SM, especially from human milk, in imparting health benefits. This review focuses on recent publications regarding SM content in several dietary sources and dietary SM metabolism. SM digestion and absorption are slow and incomplete and mainly occur in the middle sections of the small intestine. This review also evaluates the effect of dietary SM on gut health and cognitive development. Studies indicate that SM may promote gut health by reducing intestinal cholesterol absorption in adults. However, there has been a lack of data supporting clinical trials. An association between milk SM and neural development is evident before childhood. Hence, additional studies and well-designed randomized controlled trials that incorporate dietary SM evaluation, SM metabolism, and its long-term functions on infants and children are required.
Collapse
Affiliation(s)
- Chenyu Jiang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling-Zhi Cheong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xue Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdelmoneim H Ali
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- Address correspondence to WW (e-mail: )
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Bosco A, Toto M, Pintus R, Fanos V, Dessì A. Human milk sphingomyelins and metabolomics: an enigma to be discovered. J Matern Fetal Neonatal Med 2021; 35:7649-7661. [PMID: 34362283 DOI: 10.1080/14767058.2021.1958314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sphingomyelins, the most abundant sphingolipids in most mammalian cells, appear to be among the most represented polar lipids in breast milk. Despite the variability of the data reported in the literature, human milk sphingomyelins are qualitatively unique and their quantities are five times higher than in most formula milk. The structural and functional role within the milk fat globule membranes, the involvement in neonatal neurological maturation both in neuro-typical development and in some pathological circumstances, together with the possible contribution in the intestinal development of newborns, are certainly among the main characteristics that have fueled the curiosity of the scientific world. Metabolomics studies, providing a unique metabolic fingerprint, allow an in-depth analysis of the role of these molecules in the extreme variability and uniqueness of breast milk. In the perspective of preventive medicine, at the base of which there is certainly personalized nutrition, it is possible, in the presence of particular conditions, such as neonatal growth retardation or in preterm infants, to consider supplementation of some target nutrients, such as certain sphingomyelins. Nevertheless, further studies are needed to more accurately assess whether and how the type and quantity of sphingomyelins present in breast milk could affect the metabolic health of newborns.HIGHLIGHTSBreast milk is the golden standard for infants' nutritionSphingomyelins are the most represented polar lipids in breast milkThese molecules are involved in both intestinal and neural developments of newbornsMetabolomics is a very useful tool to investigate their precise roleFurther studies are needed to provide eventual nutritional treatment.
Collapse
Affiliation(s)
- Alice Bosco
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Martina Toto
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
14
|
Nilsson AK, Andersson MX, Sjöbom U, Hellgren G, Lundgren P, Pivodic A, Smith LEH, Hellström A. Sphingolipidomics of serum in extremely preterm infants: Association between low sphingosine-1-phosphate levels and severe retinopathy of prematurity. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158939. [PMID: 33862236 PMCID: PMC8633973 DOI: 10.1016/j.bbalip.2021.158939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Extremely preterm infants are at risk of developing retinopathy of prematurity (ROP) that can cause impaired vision or blindness. Changes in blood lipids have been associated with ROP. This study aimed to monitor longitudinal changes in the serum sphingolipidome of extremely preterm infants and investigate the relationship to development of severe ROP. METHODS This is a prospective study that included 47 infants born <28 gestational weeks. Serum samples were collected from cord blood and at postnatal days 1, 7, 14, and 28, and at postmenstrual weeks (PMW) 32, 36, and 40. Serum sphingolipids and phosphatidylcholines were extracted and analyzed by LC-MS/MS. Associations between sphingolipid species and ROP were assessed using mixed models for repeated measures. RESULTS The serum concentration of all investigated lipid classes, including ceramide, mono- di- and trihexosylceramide, sphingomyelin, and phosphatidylcholine displayed distinct temporal patterns between birth and PMW40. There were also substantial changes in the lipid species composition within each class. Among the analyzed sphingolipid species, sphingosine-1-phosphate showed the strongest association with severe ROP, and this association was independent of gestational age at birth and weight standard deviation score change. CONCLUSIONS The serum phospho- and sphingolipidome undergoes significant remodeling during the first weeks of the preterm infant's life. Low postnatal levels of the signaling lipid sphingosine-1-phosphate are associated with the development of severe ROP.
Collapse
Affiliation(s)
- Anders K Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Mats X Andersson
- Department of Biology and Environmental Sciences, The Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Sjöbom
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Hellgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pia Lundgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Aldina Pivodic
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- The Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|
16
|
Timby N, Adamsson M, Domellöf E, Grip T, Hernell O, Lönnerdal B, Domellöf M. Neurodevelopment and growth until 6.5 years of infants who consumed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr 2021; 113:586-592. [PMID: 33564853 DOI: 10.1093/ajcn/nqaa354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously reported results from a randomized controlled trial in which we found that Swedish infants consuming an experimental low-energy, low-protein formula (EF) supplemented with bovine milk fat globule membranes (MFGMs) until 6 mo of age had several positive outcomes, including better performance in the cognitive domain of Bayley Scales of Infant and Toddler Development 3rd Edition at 12 mo of age, and higher plasma cholesterol concentrations during the intervention, than infants consuming standard formula (SF). OBJECTIVES We aimed to evaluate neurodevelopment, growth, and plasma cholesterol status at 6 and 6.5 y of age in the same study population. METHODS We assessed cognitive and executive functions using the Wechsler Intelligence Scale for Children 4th Edition (WISC-IV), Brown Attention-Deficit Disorder Scales for Children and Adolescents (Brown-ADD), and Quantified Behavior (Qb) tests, and behavior using the Child Behavior Checklist (CBCL) and Teacher's Report Form (TRF), at 6.5 y of age. Anthropometrics and plasma lipids were assessed at 6 y of age. RESULTS There were no differences between the EF and SF groups in any of the subscales in WISC-IV or Brown-ADD at 6.5 y of age, in the proportion of children with scores outside the normal range in the Qb test, nor in clinical or borderline indications of problems in adaptive functioning from parental and teacher's scoring using the CBCL and TRF. There were no differences between the EF and SF groups in weight, length, or head or abdominal circumferences, nor in plasma concentrations of homocysteine, lipids, insulin, or glucose. CONCLUSIONS Among children who as infants consumed a low-energy, low-protein formula supplemented with bovine MFGMs, there were no effects on neurodevelopment, growth, or plasma cholesterol status 6-6.5 y later.
Collapse
Affiliation(s)
- Niklas Timby
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Marie Adamsson
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Tove Grip
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Olle Hernell
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Magnus Domellöf
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Henriksen NL, Aasmul-Olsen K, Venkatasubramanian R, Nygaard MKE, Sprenger RR, Heckmann AB, Ostenfeld MS, Ejsing CS, Eskildsen SF, Müllertz A, Sangild PT, Bering SB, Thymann T. Dairy-Derived Emulsifiers in Infant Formula Show Marginal Effects on the Plasma Lipid Profile and Brain Structure in Preterm Piglets Relative to Soy Lecithin. Nutrients 2021; 13:718. [PMID: 33668360 PMCID: PMC7996312 DOI: 10.3390/nu13030718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Breastfed infants have higher intestinal lipid absorption and neurodevelopmental outcomes compared to formula-fed infants, which may relate to a different surface layer structure of fat globules in infant formula. This study investigated if dairy-derived emulsifiers increased lipid absorption and neurodevelopment relative to soy lecithin in newborn preterm piglets. Piglets received a formula diet containing soy lecithin (SL) or whey protein concentrate enriched in extracellular vesicles (WPC-A-EV) or phospholipids (WPC-PL) for 19 days. Both WPC-A-EV and WPC-PL emulsions, but not the intact diets, increased in vitro lipolysis compared to SL. The main differences of plasma lipidomics analysis were increased levels of some sphingolipids, and lipid molecules with odd-chain (17:1, 19:1, 19:3) as well as mono- and polyunsaturated fatty acyl chains (16:1, 20:1, 20:3) in the WPC-A-EV and WPC-PL groups and increased 18:2 fatty acyls in the SL group. Indirect monitoring of intestinal triacylglycerol absorption showed no differences between groups. Diffusor tensor imaging measurements of mean diffusivity in the hippocampus were lower for WPC-A-EV and WPC-PL groups compared to SL indicating improved hippocampal maturation. No differences in hippocampal lipid composition or short-term memory were observed between groups. In conclusion, emulsification of fat globules in infant formula with dairy-derived emulsifiers altered the plasma lipid profile and hippocampal tissue diffusivity but had limited effects on other absorptive and learning abilities relative to SL in preterm piglets.
Collapse
Affiliation(s)
- Nicole L. Henriksen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Karoline Aasmul-Olsen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Ramakrishnan Venkatasubramanian
- Physiological Pharmaceutics, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Mikkel K. E. Nygaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark; (M.K.E.N.); (S.F.E.)
| | - Richard R. Sprenger
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.R.S.); (C.S.E.)
| | - Anne B. Heckmann
- Arla Foods Ingredients, Sønderhøj 10-12, 8260 Viby J, Denmark; (A.B.H.); (M.S.O.)
| | - Marie S. Ostenfeld
- Arla Foods Ingredients, Sønderhøj 10-12, 8260 Viby J, Denmark; (A.B.H.); (M.S.O.)
| | - Christer S. Ejsing
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.R.S.); (C.S.E.)
| | - Simon F. Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark; (M.K.E.N.); (S.F.E.)
| | - Anette Müllertz
- Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Stine B. Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| |
Collapse
|
18
|
Milk Fat Globule Membrane Supplementation in Children: Systematic Review with Meta-Analysis. Nutrients 2021; 13:nu13030714. [PMID: 33668227 PMCID: PMC7996302 DOI: 10.3390/nu13030714] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Milk fat globule membrane (MFGM), composing fat droplets responsible for lipid transport in breast milk, has been shown to possess immunological and antimicrobial effects. Standard formulas (SF) are devoid of MFGMs during the production process. The study’s aim was to evaluate the safety and benefits of MFGMs supplementation in children. (2) Methods: We searched four databases for randomized controlled trials evaluating the supplementation of MFGMs in children. Growth parameters were chosen as the primary outcome. (3) Results: Twenty-four publications of seventeen studies were included. Meta-analyses assessing the primary outcomes at the age of 4 months included four studies (814 children) comparing the MFGM-supplemented formulas and SF, and two trials (549 children) comparing the MFGM-supplemented formulas and breastfeeding. The primary outcomes were non-inferior in all the experimental MFGM formulas compared to SF, or even represented more similar results to breastfed infants. The promising effects, including a lower incidence of acute otitis media and improved cognitive development, cannot be firmly confirmed due to the small amount of existing evidence. No significant adverse effects were reported in any of the assessed products. (4) Conclusions: The available data signaled beneficial effects and a good safety profile, requiring future research with well-designed trials.
Collapse
|
19
|
Bovine Milk-Derived Emulsifiers Increase Triglyceride Absorption in Newborn Formula-Fed Pigs. Nutrients 2021; 13:nu13020410. [PMID: 33525418 PMCID: PMC7912295 DOI: 10.3390/nu13020410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.
Collapse
|
20
|
Lee H, Slupsky CM, Heckmann AB, Christensen B, Peng Y, Li X, Hernell O, Lönnerdal B, Li Z. Milk Fat Globule Membrane as a Modulator of Infant Metabolism and Gut Microbiota: A Formula Supplement Narrowing the Metabolic Differences between Breastfed and Formula-Fed Infants. Mol Nutr Food Res 2020; 65:e2000603. [PMID: 33285021 DOI: 10.1002/mnfr.202000603] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/12/2020] [Indexed: 12/12/2022]
Abstract
SCOPE Milk fat globule membrane (MFGM) is an important component of milk that has previously been removed in the manufacture of infant formulas, but has recently gained attention owing to its potential to improve immunological, cognitive, and metabolic health. The goal of this study is to determine whether supplementing MFGM in infant formula would drive desirable changes in metabolism and gut microbiota to elicit benefits observed in prior studies. METHODS AND RESULTS The serum metabolome and fecal microbiota are analyzed using 1 H NMR spectroscopy and 16S rRNA gene sequencing respectively in a cohort of Chinese infants given a standard formula or a formula supplemented with an MFGM-enriched whey protein fraction. Supplementing MFGM suppressed protein degradation pathways and the levels of insulinogenic amino acids that are typically enhanced in formula-fed infants while facilitating fatty acid oxidation and ketogenesis, a feature that may favor brain development. MFGM supplementation did not induce significant compositional changes in the fecal microbiota but suppressed microbial diversity and altered microbiota-associated metabolites. CONCLUSION Supplementing MFGM in a formula reduced some metabolic gaps between formula-fed and breastfed infants.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California-Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California-Davis, Davis, CA, 95616, USA.,Department of Nutrition, University of California-Davis, Davis, CA, 95616, USA
| | | | | | - Yongmei Peng
- Department of Child Health Care, Children's Hospital of Fudan University, No 339 Wanyuan Road, Shanghai, 200032, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, 901 87, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California-Davis, Davis, CA, 95616, USA
| | - Zailing Li
- Department of Pediatrics, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China
| |
Collapse
|
21
|
Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020; 12:nu12113486. [PMID: 33202897 PMCID: PMC7696746 DOI: 10.3390/nu12113486] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Cow milk is the most common dairy milk and has been extensively researched for its functional, technological and nutritional properties for a wide range of products. One such product category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons, consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture infant, follow-on and young child formulas over the last 30 years. While similar in many aspects, compositional and functional differences exist between cow and goat milk. This offers the opportunity to explore different formulations or manufacturing options for formulas based on goat milk. The use of whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised. These features improve the composition and microstructure of whole goat milk-based infant formula, providing similarities to the complex human milk fat globules, and have been shown to benefit digestion, and cognitive and immune development. Recent research indicates a role for milk fat and MFGM on digestive health, the gut–brain axis and the gut–skin axis. This review highlights the lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to support healthy digestion, brain development and immunity. Further work is warranted on the role of these components in allergy development and the advantages of goat milk fat and MFGM for infant nutrition and health.
Collapse
|
22
|
Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020; 85:108465. [PMID: 32758540 DOI: 10.1016/j.jnutbio.2020.108465] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Breastfeeding confers many benefits to the breast-fed infant which are reflected by better short-term and long-term outcomes as compared to formula-fed infants. Many components of breast milk are likely to contribute to these favorable outcomes, and there has recently been focus on the milk fat globule membrane (MFGM). This fraction is a heterogenous mixture of proteins (many of them glycosylated), phospholipids, sphingolipids, gangliosides, choline, sialic acid and cholesterol which is lacking in infant formula as milk fat (which is also low in these components) is replaced by vegetable oils. Many of these components have been shown to have biological effects, and there is considerable evidence from preclinical studies and clinical trials that providing bovine MFGM results in improved outcomes, in particular with regard to infections and neurodevelopment. Since bovine MFGM is commercially available, it is possible to add it to infant formula. There are, however, considerable variations in composition among commercial sources of bovine MFGM, and as it is not known which of the individual components provide the various bioactivities, it becomes important to critically review studies to date and to delineate the mechanisms behind the activities observed. In this review, we critically examine the preclinical and clinical studies on MFGM and its components in relation to resistance to infections, cognitive development, establishment of gut microbiota and infant metabolism, and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Lauren R Brink
- Department of Nutrition, University of California, Davis, 95616
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, 95616.
| |
Collapse
|
23
|
Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients 2020; 12:E1607. [PMID: 32486129 PMCID: PMC7352329 DOI: 10.3390/nu12061607] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Research on milk fat globule membrane (MFGM) is gaining traction. The interest is two-fold; on the one hand, it is a unique trilayer structure with specific secretory function. On the other hand, it is the basis for ingredients with the presence of phospho- and sphingolipids and glycoproteins, which are being used as food ingredients with valuable functionality, in particular, for use as a supplement in infant nutrition. This last application is at the center of this Review, which aims to contribute to understanding MFGM's function in the proper development of immunity, cognition, and intestinal trophism, in addition to other potential effects such as prevention of diseases including cardiovascular disease, impaired bone turnover and inflammation, skin conditions, and infections as well as age-associated cognitive decline and muscle loss. The phospholipid composition of MFGM from bovine milk is quite like human milk and, although there are some differences due to dairy processing, these do not result in a chemical change. The MFGM ingredients, as used to improve the formulation in different clinical studies, have indeed increased the presence of phospholipids, sphingolipids, glycolipids, and glycoproteins with the resulting benefits of different outcomes (especially immune and cognitive outcomes) with no reported adverse effects. Nevertheless, the precise mechanism(s) of action of MFGM remain to be elucidated and further basic investigation is warranted.
Collapse
Affiliation(s)
- Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Lauren Brink
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
| | - Steven Wu
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Laval University, Québec, QC G1V 0A6, Canada;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Rafael Jiménez-Flores
- Food Science and Technology Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Anto L, Warykas SW, Torres-Gonzalez M, Blesso CN. Milk Polar Lipids: Underappreciated Lipids with Emerging Health Benefits. Nutrients 2020; 12:E1001. [PMID: 32260440 PMCID: PMC7230917 DOI: 10.3390/nu12041001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Milk fat is encased in a polar lipid-containing tri-layer milk fat globule membrane (MFGM), composed of phospholipids (PLs) and sphingolipids (SLs). Milk PLs and SLs comprise about 1% of total milk lipids. The surfactant properties of PLs are important for dairy products; however, dairy products vary considerably in their polar lipid to total lipid content due to the existence of dairy foods with different fat content. Recent basic science and clinical research examining food sources and health effects of milk polar lipids suggest they may beneficially influence dysfunctional lipid metabolism, gut dysbiosis, inflammation, cardiovascular disease, gut health, and neurodevelopment. However, more research is warranted in clinical studies to confirm these effects in humans. Overall, there are a number of potential effects of consuming milk polar lipids, and they should be considered as food matrix factors that may directly confer health benefits and/or impact effects of other dietary lipids, with implications for full-fat vs. reduced-fat dairy.
Collapse
Affiliation(s)
- Liya Anto
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| | - Sarah Wen Warykas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| |
Collapse
|
25
|
Wei W, Yang J, Yang D, Wang X, Yang Z, Jin Q, Wang M, Lai J, Wang X. Phospholipid Composition and Fat Globule Structure I: Comparison of Human Milk Fat from Different Gestational Ages, Lactation Stages, and Infant Formulas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13922-13928. [PMID: 31746600 DOI: 10.1021/acs.jafc.9b04247] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We compared phospholipids (PLs), PL fatty acid (FA) composition, and milk fat globule size and structure in human milk (n = 120) from mothers of full-term and preterm infants during lactation (colostrum, transition, 1 mo, 2 mo, and 3 mo) and 8 brands of infant formulas. The absolute quantification of PLs was analyzed using 31P NMR spectroscopy. Sphingomyelin was the dominant PLs (35.01 ± 3.31%) in human milk, whereas phosphatidylcholine and phosphatidylethanolamine were the dominant PLs in infant formulas. The PL content in preterm milk increased during lactation, whereas that in term milk remained stable. Saturated FAs (mainly 16:0 and 18:0) were the most abundant (>60%) PL FA in both preterm and term milk and increased throughout lactation. The mean diameter of milk fat globules in infant formulas was much smaller than that found in human milk (200 nm vs 5.63 μm). Significant differences were observed between human milk and infant formulas with regard to PLs, suggesting that more research is needed to mimic the PL profile in infant formulas.
Collapse
Affiliation(s)
| | | | - Dan Yang
- Nutrition & Health Research Institute, Beijing Key Laboratory of Nutrition & Health and Food Safety , COFCO Corporation , Beijing 102209 , China
| | - Xiangyu Wang
- Nutrition & Health Research Institute, Beijing Key Laboratory of Nutrition & Health and Food Safety , COFCO Corporation , Beijing 102209 , China
| | - Zhenyu Yang
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | | | - Manyi Wang
- Nutrition & Health Research Institute, Beijing Key Laboratory of Nutrition & Health and Food Safety , COFCO Corporation , Beijing 102209 , China
| | - Jianqiang Lai
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | | |
Collapse
|
26
|
Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 2019; 73:108224. [DOI: 10.1016/j.jnutbio.2019.108224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
27
|
He X, Parenti M, Grip T, Lönnerdal B, Timby N, Domellöf M, Hernell O, Slupsky CM. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: a randomized controlled trial. Sci Rep 2019; 9:11589. [PMID: 31406230 PMCID: PMC6690946 DOI: 10.1038/s41598-019-47953-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Human milk delivers an array of bioactive components that safeguard infant growth and development and maintain healthy gut microbiota. Milk fat globule membrane (MFGM) is a biologically functional fraction of milk increasingly linked to beneficial outcomes in infants through protection from pathogens, modulation of the immune system and improved neurodevelopment. In the present study, we characterized the fecal microbiome and metabolome of infants fed a bovine MFGM supplemented experimental formula (EF) and compared to infants fed standard formula (SF) and a breast-fed reference group. The impact of MFGM on the fecal microbiome was moderate; however, the fecal metabolome of EF-fed infants showed a significant reduction of several metabolites including lactate, succinate, amino acids and their derivatives from that of infants fed SF. Introduction of weaning food with either human milk or infant formula reduces the distinct characteristics of breast-fed- or formula-fed- like infant fecal microbiome and metabolome profiles. Our findings support the hypothesis that higher levels of protein in infant formula and the lack of human milk oligosaccharides promote a shift toward amino acid fermentation in the gut. MFGM may play a role in shaping gut microbial activity and function.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mariana Parenti
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Tove Grip
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Niklas Timby
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Carolyn M Slupsky
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Martin CR. Breast Milk Lipidomics: Insights to Infant Health Requirements and Targeted Strategies for the Vulnerable. Breastfeed Med 2019; 14:S13-S14. [PMID: 30985208 DOI: 10.1089/bfm.2019.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Camilia R Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, Massachusetts
| |
Collapse
|
29
|
Wei W, Jin Q, Wang X. Human milk fat substitutes: Past achievements and current trends. Prog Lipid Res 2019; 74:69-86. [DOI: 10.1016/j.plipres.2019.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
|
30
|
Metabolic phenotype of breast-fed infants, and infants fed standard formula or bovine MFGM supplemented formula: a randomized controlled trial. Sci Rep 2019; 9:339. [PMID: 30674917 PMCID: PMC6344597 DOI: 10.1038/s41598-018-36292-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Formula-fed (FF) infants exhibit a different metabolic profile than breast-fed (BF) infants. Two potential mechanisms are the higher protein level in formula compared with breast milk and the removal of the milk fat and associated milk fat globule membranes (MFGM) during production of infant formula. To determine whether MFGM may impact metabolism, formula-fed infants were randomly assigned to receive either an MFGM isolate-supplemented experimental formula (EF) or a standard formula (SF) from 2 until 6 months and compared with a BF reference group. Infants consuming EF had higher levels of fatty acid oxidation products compared to infants consuming SF. Although the protein level in the study formula was approximately 12 g/L (lower than most commercial formulas), a metabolic difference between FF and BF remained such that FF infants had higher levels of amino acid catabolism by-products and a low efficiency of amino acid clearance (preference for protein metabolism). BF infants had higher levels of fatty acid oxidation products (preference for fat metabolism). These unique, energy substrate-driven metabolic outcomes did not persist after diet was shifted to weaning foods and appeared to be disrupted by complementary feeding. Our results suggest that MFGM may have a role in directing infant metabolism.
Collapse
|