1
|
Zhu D, Brückner D, Sosniok M, Skiba M, Feliu N, Gallego M, Liu Y, Schulz F, Falkenberg G, Parak WJ, Sanchez-Cano C. Size-dependent penetration depth of colloidal nanoparticles into cell spheroids. Adv Drug Deliv Rev 2025; 222:115593. [PMID: 40339992 DOI: 10.1016/j.addr.2025.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
The penetration of nanoparticle (NP)-based drugs into tissue is essential for their use as nanomedicines. Systematic studies about how different NP properties, such as size, influence NP penetration are helpful for the development of NP-based drugs. An overview of how NPs of different sizes may penetrate three-dimensional cell spheroids is given. In particular different techniques for experimental analysis are compared, including mass spectrometry, flow cytometry, optical fluorescence microscopy, X-ray fluorescence microscopy, and transmission electron microscopy. An experimental data set is supplemented exclusively made for this review, in which the results of different techniques are visualized. Limitations of the analysis techniques for different types of NPs, including carbon-based materials, are discussed.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121 Zhejiang, China
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Photon Science, 22607 Hamburg, Germany
| | - Martin Sosniok
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany; Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Marvin Skiba
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Yang Liu
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Florian Schulz
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Photon Science, 22607 Hamburg, Germany.
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany.
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018 Donostia-San Sebastian, Spain.
| |
Collapse
|
2
|
Abdel-Megeed RM. Biogenic nanoparticles as a promising drug delivery system. Toxicol Rep 2025; 14:101887. [PMID: 39867515 PMCID: PMC11762933 DOI: 10.1016/j.toxrep.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Nanotechnology has significantly influenced the worldwide medical services sector during the past few decades. Biological collection approaches for nanoparticles are economical, non-toxic, and ecologically benign. This review provides up-to-date information on nanoparticle production processes and biological sources, including algae, plants, bacteria, fungus, actinomycetes, and yeast. The biological technique of generating nanoparticles has advantages over chemical, physical, and biological methods, including low-toxicity and friendly to the environment, thereby providing a viable option for therapeutic applications as s promising drug delivery system. In addition to aiding researchers, the bio-mediated, obtained nanoparticles also modify particles to promote both health and safety. We also looked at the important medicinal uses of nanoparticles, including their antifungal, antimicrobial, antiviral, antidiabetic, anti-inflammatory, and antioxidant properties. The current study highlights the findings of recent research in this field and discusses various methods proposed to describe the bio-mediated acquisition of novel nanoparticles.. The production of nanoparticles via biogenic sources possess various benefits, such as low cost, bioavailability, and environmental friendliness. In addition to the determination of the bioactive chemicals mediated by nanoparticle as well as the examination of the biochemical pathways and enzyme reactions. The major focus of this review is highlighting on the essential role of biogenic nanoparticles as promising drug delivery system.
Collapse
|
3
|
Gong J, Liu M, Zuo R, Song X, Wang J, Zuo Q, Jiang Y, Long Y, Silang Y, Luo Z, Gao X, Guo D. Enrofloxacin‑silver composite nano-emulsion as a scalable synergetic antibacterial platform for accelerating infected wound healing. Int J Pharm X 2025; 9:100330. [PMID: 40230870 PMCID: PMC11995122 DOI: 10.1016/j.ijpx.2025.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
The colonization of bacterial pathogens is a major concern in wound infection and becoming a notable medical issue. Enrofloxacin (ENR) can be applied to treat skin infections, while poor water solubility and bioavailability limit its clinical application. Nanostructured lipid carriers (NLCs) enhance the solubility and bioavailability of drugs by encapsulating them, making them effective for the topical treatment of skin wound infections. Additionally, to enhance treatment efficacy and further improve wound healing, silver nanoparticles (AgNPs) were attached to the aforementioned matrix, which also improved its colloidal stability and reduced toxicity. Herein, a scalable poly (vinyl alcohol) modified NLCs-based antibacterial platform was fabricated by high-pressure homogenization method, to co-load ENR and AgNPs for treating the bacterial-infected wounds. The growth of common wound bacterial pathogens (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) was synergistically inhibited by released ENR and Ag+ from the poly (vinyl alcohol) modified enrofloxacin‑silver composite nano-emulsion (ENR@PVA-NLCs/AgNPs). In the in vivo wound model, the Staphylococcus aureus-infected wound in rat almost completely disappeared after treatment with ENR@PVA-NLCs/AgNPs, and no suppuration symptom was observed. Importantly, this nanoplatform had negligible side effects in vivo. Taken together, the above results strongly demonstrate the promising potential of ENR@PVA-NLCs/AgNPs as a synergistic therapeutic agent for clinical wound infections.
Collapse
Affiliation(s)
- Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Moxin Liu
- Shanghai Customs District, 13 Zhongshan East Road, Shanghai 200002, China
| | - Runan Zuo
- Animal-Derived Food Safety Innovation Team, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinhao Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211100, China
| | - Junqi Wang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qindan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yuzhen Silang
- Institute of Grassland Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa 850000, China
| | - Zeng Luo
- Institute of Grassland Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa 850000, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
4
|
Gao Q, Hu F, Chai Z, Zheng C, Zhang W, Pu K, Yang Z, Zhang Y, Ramrkrishna S, Wu X, Lu T. Multifunctional hydrogel with mild photothermal properties enhances diabetic wound repair by targeting MRSA energy metabolism. J Nanobiotechnology 2025; 23:380. [PMID: 40420106 PMCID: PMC12105145 DOI: 10.1186/s12951-025-03451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Diabetic wound infections, exacerbated by multidrug-resistant pathogens like MRSA, remain a critical challenge due to biofilm persistence and dysregulated oxidative-inflammatory-metabolic crosstalk. RESULTS In this work, we engineered COG-Z@P200 hydrogel, a chitosan-based hydrogel integrating polydopamine-coated ZIF-8 nanoparticles, to synergize mild photothermal therapy (40-45 °C) with metabolic-immune reprogramming. Upon NIR irradiation, COG-Z@P200 disrupted MRSA through Zn2⁺-mediated membrane destabilization and localized hyperthermia, achieving >99.5% eradication via combined physical puncture and metabolic interference. Multi-omics analyses revealed suppression of glycolysis (eno, gap downregulation), TCA cycle arrested (sucC, sdhA, icd inhibition), and disruption of arginine biosynthesis (arcA, arcC, arcD downregulation), impairing biofilm formation and pathogenicity. Concurrent silencing of quorum sensing and virulence genes (agr, sec, lac, opp, sdrD) further destabilized MRSA, while upregulation of stress-response genes (yidD, nfsA, kdpA) indicated bacterial metabolic paralysis. In diabetic murine models, the hydrogel attenuated oxidative stress (DHE-confirmed ROS reduction), polarized macrophages to pro-healing M2 phenotypes (Arg-1⁺/TNF-α↓), and enhanced angiogenesis (VEGF/CD31↑) alongside aligned collagen deposition. This multifunctional action accelerated wound closure by 48% versus controls, outperforming clinical standards. By converging nanomaterial-enabled bactericidal strategies with host microenvironment recalibration, COG-Z@P200 hydrogel redefined diabetic wound management, offering an antibiotic-free solution against multidrug-resistant infections. CONCLUSION Our work established a biomaterial paradigm that concurrently targets pathogen vulnerabilities and restores tissue homeostasis, addressing the multidimensional complexity of chronic wounds.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Fangfang Hu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Zihan Chai
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Caiyun Zheng
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Wenhui Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Ke Pu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Ziyi Yang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Yanni Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China
| | - Seeram Ramrkrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 117574, Singapore
| | - Xianglong Wu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China.
| | - Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an City, 710129, People's Republic of China.
| |
Collapse
|
5
|
Malik VK, Liao CT, Xu C, Daddi-Moussa-Ider A, Pak OS, Young YN, Feng J. Magnetically driven lipid vesicles for directed motion and light-triggered cargo release. NANOSCALE 2025. [PMID: 40396421 DOI: 10.1039/d5nr00942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Targeted drug delivery and precision medicine offer great promise for enhancing therapeutic efficacy while minimizing systemic toxicity. Among various platforms, lipid-based delivery systems have attracted significant interest due to their intrinsic biocompatibility and their ability to transport hydrophilic, hydrophobic, and amphiphilic compounds. With recent advances in bottom-up synthetic biology and microfluidics, giant unilamellar vesicles (GUVs) have emerged as a versatile candidate for drug delivery. However, achieving controlled and directed motion of GUVs remains a critical challenge. In this study, we conduct a systematic experimental investigation of GUVs encapsulating magnetic particles (magGUVs) subjected to inhomogeneous magnetic fields. We develop a lattice Boltzmann simulation framework to model the propulsion of GUVs driven by an internally encapsulated particle under a constant force, and compare the simulated speeds with experimental measurements. Furthermore, we demonstrate a proof-of-concept integrating directed motion of magGUVs with controlled, localized release of encapsulated contents via light-induced asymmetric oxidation. This work provides a foundation for the design of lipid-based drug delivery vehicles that combine navigational control with on-demand release capabilities, advancing targeted therapeutic strategies in precision medicine.
Collapse
Affiliation(s)
- Vinit Kumar Malik
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| | - Chih-Tang Liao
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, 95053 USA
| | - Chenghao Xu
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| | | | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, 95053 USA
| | - Yuan-Nan Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102 USA
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| |
Collapse
|
6
|
Wang Y, Huang R, Feng S, Mo R. Advances in nanocarriers for targeted drug delivery and controlled drug release. Chin J Nat Med 2025; 23:513-528. [PMID: 40383609 DOI: 10.1016/s1875-5364(25)60861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 12/24/2024] [Indexed: 05/20/2025]
Abstract
Nanocarrier-based drug delivery systems (nDDSs) present significant opportunities for improving disease treatment, offering advantages in drug encapsulation, solubilization, stability enhancement, and optimized pharmacokinetics and biodistribution. nDDSs, comprising lipid, polymeric, protein, and inorganic nanovehicles, can be guided by or respond to biological cues for precise disease treatment and management. Equipping nanocarriers with tissue/cell-targeted ligands enables effective navigation in complex environments, while functionalization with stimuli-responsive moieties facilitates site-specific controlled release. These strategies enhance drug delivery efficiency, augment therapeutic efficacy, and reduce side effects. This article reviews recent strategies and ongoing advancements in nDDSs for targeted drug delivery and controlled release, examining lesion-targeted nanomedicines through surface modification with small molecules, peptides, antibodies, carbohydrates, or cell membranes, and controlled-release nanocarriers responding to endogenous signals such as pH, redox conditions, enzymes, or external triggers like light, temperature, and magnetism. The article also discusses perspectives on future developments.
Collapse
Affiliation(s)
- Yuqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Renqi Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shufan Feng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Pourzadi N, Chiaverini L, Gieschen MP, Ennen I, Hütten A, Gailer J. Liquid chromatography-based metallomics and transmission electron microscopy reveal gold nanoparticle surface treatment with vicinal dithiols to abolish protein corona formation. Nanomedicine (Lond) 2025; 20:1127-1138. [PMID: 40304139 PMCID: PMC12068335 DOI: 10.1080/17435889.2025.2495546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
AIMS While gold nanoparticles (AuNPs) should allow the delivery of surface immobilized drugs to intended target tissues via the bloodstream, their interactions with plasma proteins may induce their aggregation and thus impede an effective delivery of chemotherapeutic agents to target tissues. The deliberate surface treatment of AuNPs has the potential to overcome this inherent limitation. METHODS To probe interactions between surface treated AuNPs in blood plasma, we employed a size-exclusion chromatography (SEC)-based metallomics tool together with transmission electron microscopy (TEM). RESULTS After the addition of citrate capped AuNPs to plasma, its metallomics analysis revealed a >670 kDa Au species, which TEM analysis identified as AuNP-plasma protein aggregates. To ameliorate the formation of the latter, the surface of citrate capped AuNPs was modified with dithiothreitol (DTT), meso 2,3-dimercaptosuccinic acid (DMSA), or 2,3 dimercapto-1-propionesulfonic acid (DMPS) and the effect of this surface treatment was probed after the addition of these modified AuNPs to rabbit plasma. The results for DMSA/DMPS-treated AuNPs revealed that the tight binding of these dithiols more significantly reduced protein corona formation compared to DTT-AuNPs implying that the surface treatment of AuNPs with DMSA or DMPS is a feasible strategy to control protein corona formation and thus their aggregation in plasma. CONCLUSIONS The AuNP-based delivery of immobilized drugs using targeting sequences to cancer tissues can be enhanced by their surface treatment with DMSA or DMPS. Since dithiols left over after the AuNP surface treatment mobilized iron from plasma metalloproteins, excess dithiols must be removed before injecting patients.
Collapse
Affiliation(s)
- Negar Pourzadi
- Department of Chemistry, University of Calgary, Calgary, Canada
| | | | | | - Inga Ennen
- Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Andreas Hütten
- Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Fard NT, Khademi M, Salahi‐Niri A, Esmaeili S. Nanotechnology in Hematology: Enhancing Therapeutic Efficacy With Nanoparticles. Health Sci Rep 2025; 8:e70647. [PMID: 40391271 PMCID: PMC12086657 DOI: 10.1002/hsr2.70647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/24/2025] [Indexed: 05/21/2025] Open
Abstract
Background and Aims Hematological malignancies, such as leukemia, lymphoma, and multiple myeloma, contribute significantly to global cancer diagnoses. Despite progress in conventional therapies, such as chemotherapy and immunotherapy, these treatments face limitations, including nonspecific targeting, side effects, and drug resistance. The aim of this review is to explore the potential of nanotechnology, particularly nanoparticles (NPs), to improve therapeutic outcomes for these cancers by enhancing drug delivery and reducing toxicity. Methods This review examines recent advancements in NP-based therapies, focusing on their application in hematological malignancies. We discuss different types of NPs, including liposomes, polymeric, and inorganic NPs, for their potential in targeted drug delivery. The review also evaluates the current state of clinical trials and highlights challenges in the translation of nanomedicines from preclinical research to clinical practice. Results Nanoparticles, with their unique properties, offer significant advantages in drug delivery systems, such as enhanced stability, extended circulation time, and targeted tumor delivery. Various NP formulations have shown promise in clinical trials, including liposomal formulations like Vyxeos for acute myeloid leukemia and Marqibo for Ph-negative acute lymphoblastic leukemia. However, challenges in toxicity, regulatory hurdles, and large-scale production still remain. Conclusion Nanomedicine holds transformative potential in the treatment of hematological malignancies, offering more effective and specific therapies compared to conventional treatments. Continued research is necessary to overcome the clinical challenges and maximize the benefits of NP-based therapies for patients with blood cancers.
Collapse
Affiliation(s)
- Nima Torabi Fard
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Melika Khademi
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Aryan Salahi‐Niri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Shadi Esmaeili
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Tahmasebi S, Farmanbordar H, Mohammadi R. Synthesis of magnetic bio-nanocomposite hydrogel beads based on sodium alginate and β-cyclodextrin: Potential pH-responsive oral delivery anticancer systems for colorectal cancer. Int J Biol Macromol 2025; 305:140748. [PMID: 39952529 DOI: 10.1016/j.ijbiomac.2025.140748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Developing an efficient treatment method is crucial in oral delivery systems due to its comfortable drug administration. This work aims to synthesize pH-responsive magnetic bio-nanocomposite hydrogel beads (MHBs) based on sodium alginate and β-cyclodextrin to deliver the doxorubicin (DOX) drug against colorectal cancer. The Fe3O4 NPs were used to increase the efficiency of the drug carriers in the tumor site and modified with green synthesized Ag NPs, which were reduced and stabilized by basil plant extract to increase anti-bacterial and anti-oxidant properties. FTIR, XRD, SEM, VSM, and TGA analysis confirmed the successful synthesis. The prepared MHBs were studied at different simulated digestive system pH values and represented pH-sensitive swelling behavior. The minimal and highest ratio of the drug releases from MHBs was seen at pH 1.2 < 1 % and pH 7.4 > 98 %, respectively. The antibacterial study revealed the highest activity of MHBs versus Staphylococcus aureus > 98.68 % and Escherichia coli > 99.2 %, respectively. The antioxidant study revealed the desired activity. The MTT assay of DOX-loaded MHBs on HT-29 cell lines revealed controlled release properties of MHBs with IC50 about 64 μL/mL, promising the controlled delivery of anticancer agents for colon cancer treatment.
Collapse
Affiliation(s)
- Shabnam Tahmasebi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Farmanbordar
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
10
|
Fu Y, Sun J, Yang C, Li W, Wang Y. Diversified nanocarrier design to optimize glucose oxidase-mediated anti-tumor therapy: Strategy and progress. Int J Biol Macromol 2025; 306:141581. [PMID: 40023419 DOI: 10.1016/j.ijbiomac.2025.141581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Given the inherent complexity and heterogeneity of tumors, current therapeutic approaches often fall short in meeting prognostic requirements. Starvation therapy (ST) utilizing glucose oxidase (GOx) has emerged as a promising strategy, specifically targeting tumor glucose consumption to disrupt nutrient supply. However, the therapeutic potential of GOx is significantly hampered by its inherent limitations as a protein, particularly its poor stability and short in vivo half-life. In recent years, the development of nanocarriors has provided an effective platform for intravenous and local tumor delivery of GOx. This review systematically examines three key strategies in GOx delivery: stimulus-response, biofilm modification, and local delivery. The progress in various carrier systems for GOx-mediated tumor therapy is comprehensively summarized, providing valuable insights for nanocarrier design. Furthermore, the existing challenges and future directions to advance the development of GOx-based tumor therapies are critically analyzed.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Department of medicine, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Chunyu Yang
- Department of Pathology, Harbin 242 Hospital, Harbin, Heilongjiang Province, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China.
| |
Collapse
|
11
|
Manickasamy MK, Daimary UD, Sajeev A, Abbas M, Alqahtani MS, Abdulhammed A, Kunnumakkara AB. Comprehensive review of leonurine: harnessing its therapeutic potential for chronic diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04087-x. [PMID: 40202674 DOI: 10.1007/s00210-025-04087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Chronic diseases (CD) pose a significant global health challenge, affecting millions of individuals and contributing to substantial morbidity, mortality, and healthcare burden. Therapeutic approaches primarily aim at symptom management through pharmacotherapy, lifestyle modifications, dietary interventions, and regular physical activity. Given the persistent challenge of limited treatment options, scientific research has increasingly focused on exploring natural compounds for their therapeutic potential. Leonurine, a natural compound first isolated from the plant Herba leonuri in 1930, has garnered significant attention due to its extensive pharmacological properties relevant to the treatment of CDs. Extensive studies over the past have revealed that leonurine exhibits anticancer, antidiabetic, anti-inflammatory, and antioxidant activities. These effects are mediated through the modulation of various signaling pathways, including the TGF-β/Smad2, Nrf-2, JNK, NF-κB, BDNF/TrkB/CREB, TLR4/NF-κB/TNF-α, ATF4/CHOP/ASCL4, Akt, HIF-1, SHH/GLI, and mTOR/ERK, whose dysregulation is implicated in the pathogenesis of various CDs. Furthermore, leonurine regulates the levels of multiple pro-inflammatory cytokines, including numerous interleukins and TNF-α, indicating its potential in treating a wide range of chronic conditions, including cardiovascular, neurological, skeletal, and renal diseases. This review seeks to present an in-depth analysis of leonurine's therapeutic potential, emphasizing its promise in the management of various CDs. It also outlines potential avenues for future research to fully harness its pharmacological advantages in treating these conditions.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Ayman Abdulhammed
- Department of Biochemistry and Hormone, King Fahad Central Hospital, 82666, Gizan, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
13
|
Abbasi M, Aghamollaei H, Vaez A, Amani AM, Kamyab H, Chelliapan S, Jamalpour S, Zambrano-Dávila R. Bringing ophthalmology into the scientific world: Novel nanoparticle-based strategies for ocular drug delivery. Ocul Surf 2025; 37:140-172. [PMID: 40147816 DOI: 10.1016/j.jtos.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The distinctive benefits and drawbacks of various drug delivery strategies to supply corneal tissue improvement for sense organs have been the attention of studies worldwide in recent decades. Static and dynamic barriers of ocular tissue prevent foreign chemicals from entering and inhibit the active absorption of therapeutic medicines. The distribution of different medications to ocular tissue is one of the most appealing and demanding tasks for investigators in pharmacology, biomaterials, and ophthalmology, and it is critical for cornea wound healing due to the controlled release rate and increased drug bioavailability. It should be mentioned that the transport of various types of medications into the different sections of the eye, particularly the cornea, is exceedingly challenging because of its distinctive structure and various barriers throughout the eye. Nanoparticles are being studied to improve medicine delivery strategies for ocular disease. Repetitive corneal drug delivery using biodegradable nanocarriers allows a medicine to remain in different parts of the cornea for extended periods of time and thus improve administration route effectiveness. In this review, we discussed eye anatomy, ocular delivery barriers, as well as the emphasis on the biodegradable nanomaterials ranging from organic nanostructures, such as nanomicelles, polymers, liposomes, niosomes, nanowafers, nanoemulsions, nanosuspensions, nanocrystals, cubosomes, olaminosomes, hybridized NPs, dendrimers, bilosomes, solid lipid NPs, nanostructured lipid carriers, and nanofiber to organic nanomaterials like silver, gold, and mesoporous silica nanoparticles. In addition, we describe the nanotechnology-based ophthalmic medications that are presently on the market or in clinical studies. Finally, drawing on current trends and therapeutic approaches, we discuss the challenges that innovative optical drug delivery systems confront and propose future research routes. We hope that this review will serve as a source of motivation and inspiration for developing innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Milad Abbasi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Universidad UTE, Quito, 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sajad Jamalpour
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Renato Zambrano-Dávila
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito, 170527, Ecuador
| |
Collapse
|
14
|
Abaidullah N, Muhammad K, Waheed Y. Delving Into Nanoparticle Systems for Enhanced Drug Delivery Technologies. AAPS PharmSciTech 2025; 26:74. [PMID: 40038143 DOI: 10.1208/s12249-025-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Nanotechnology, based on the utilization of nanoparticles, has revolutionized drug delivery techniques, offering groundbreaking methods for managing and diagnosing intricate ailments over the past four decades. This article aims to underscore how the use of these particles has been used to treat previously incurable diseases such as cancer, Alzheimer's, and Parkinson's disease. Recently, the integration of diagnostic imaging and targeted therapy using theranostic nanoparticles has improved cancer treatment precision. Moreover, exosome-based drug delivery has demonstrated high in vivo biocompatibility and antigen-carrying ability during vaccine development. The unique properties of these tiny particles enable their transport to specific locations inaccessible to large drug molecules. The development of these nanodrugs by either encapsulation or adsorption of drugs on particles has allowed the loading of both hydrophilic and hydrophobic drugs. Innovative engineering approaches have enabled the engineering of shear-sensitive nanoparticles for site-targeted drug release, which eliminates the requirement for frequent doses, which is common in conventional drug delivery. Factors such as size, shape as well as surface modification are considered during the top-down and bottom-up approaches for engineering nanoparticle-based systems. However, issues related to scaling up manufacturing, long-term safety, and regulatory approval for these techniques must be resolved. The use of these drug delivery systems offers many therapeutic advantages. This article examines the application of these systems across various medical domains including cancer treatment, infectious diseases, cardiovascular disorders, central nervous system ailments, and ophthalmic conditions. This fusion of nanotechnology with drug delivery has the potential to elevate healthcare standards in the future by introducing innovative frameworks for revolutionizing therapeutic practices.
Collapse
Affiliation(s)
- Nimra Abaidullah
- Department of Industrial Biotechnology, Atta-Ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 4400, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, 15551, Al Ain, UAE
| | - Yasir Waheed
- NUST School of Health Sciences, National University of Sciences and Technology (NUST), H-12 Sector, Islamabad, 44000, Pakistan.
- Near East University, Operational Research Center in Healthcare, TRNC Mersin 10, Nicosia, 99138, Turkey.
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2025; 45:576-628. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
16
|
Patel MN, Patel AJ, Nandpal MN, Raval MA, Patel RJ, Patel AA, Paudel KR, Hansbro PM, Singh SK, Gupta G, Dua K, Patel SG. Advancing against drug-resistant tuberculosis: an extensive review, novel strategies and patent landscape. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2127-2150. [PMID: 39377922 DOI: 10.1007/s00210-024-03466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Drug-resistant tuberculosis (DR-TB) represents a pressing global health issue, leading to heightened morbidity and mortality. Despite extensive research efforts, the escalation of DR-TB cases underscores the urgent need for enhanced prevention, diagnosis, and treatment strategies. This review delves deep into the molecular and genetic origins of different types of DR-TB, highlighting recent breakthroughs in detection and diagnosis, including Rapid Diagnostic Tests like Xpert Ultra, Whole Genome Sequencing, and AI-based tools along with latest viewpoints on diagnosis and treatment of DR-TB utilizing newer and repurposed drug molecules. Special emphasis is given to the pivotal role of novel drugs and discusses updated treatment regimens endorsed by governing bodies, alongside innovative personalized drug-delivery systems such as nano-carriers, along with an analysis of relevant patents in this area. All the compiled information highlights the inherent challenges of current DR-TB treatments, discussing their complexity, potential side effects, and the socioeconomic strain they impose, particularly in under-resourced regions, emphasizing the cost-effective and accessible solutions. By offering insights, this review aims to serve as a compass for researchers, healthcare practitioners, and policymakers, emphasizing the critical need for ongoing R&D to improve treatments and broaden access to crucial TB interventions.
Collapse
Affiliation(s)
- Meghana N Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Archita J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manish N Nandpal
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Manan A Raval
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Amit A Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Samir G Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.
| |
Collapse
|
17
|
Palabiyik AA, Palabiyik E. Pharmacological approaches to enhance mitochondrial biogenesis: focus on PGC-1Α, AMPK, and SIRT1 in cellular health. Mol Biol Rep 2025; 52:270. [PMID: 40019682 DOI: 10.1007/s11033-025-10368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Mitochondrial biogenesis is essential for cellular energy balance and metabolic stability. Its dysregulation is linked to various metabolic and neurodegenerative diseases, making it a significant therapeutic target. Pharmacological approaches aimed at enhancing mitochondrial function have gained attention for their potential to restore cellular metabolism. OBJECTIVES This review examines recent advancements in pharmacological strategies targeting mitochondrial biogenesis, focusing on the roles of PGC-1α, AMPK, and SIRT1, alongside novel therapeutic agents and drug delivery systems. METHODS A systematic review of studies published between 2018 and 2023 was conducted using databases such as PubMed, Web of Science, and Elsevier. Keywords related to mitochondrial biogenesis and pharmacological modulation were used to identify relevant literature. RESULTS Various pharmacological agents, including resveratrol, curcumin, and metformin, activate mitochondrial biogenesis through different pathways. SIRT1 activators and AMPK agonists have shown promise in improving mitochondrial function. Advances in mitochondria-targeted drug delivery systems enhance therapeutic efficacy, yet challenges remain in clinical translation due to the complexity of mitochondrial regulation. CONCLUSION Pharmacological modulation of mitochondrial biogenesis holds therapeutic potential for metabolic and neurodegenerative diseases. While preclinical studies are promising, further research is needed to optimize drug efficacy, delivery methods, and personalized treatment strategies.
Collapse
Affiliation(s)
| | - Esra Palabiyik
- Department of Molecular Biology and Genetics, Department of Genetics, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
18
|
Kumbham S, Md Mahabubur Rahman K, Foster BA, You Y. A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacol Transl Sci 2025; 8:286-307. [PMID: 39974639 PMCID: PMC11833730 DOI: 10.1021/acsptsci.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system globally. It is also one of the most expensive cancers to manage, due to the need for extensive treatment and follow-ups that often involve invasive and costly procedures. Although there have been some improvements in treatment options, the quality of life they offer has not improved at the same rate as other cancers. Therefore, there is an urgent need to find new alternatives to ease the burden of bladder cancer on patients. Recent discoveries have opened new avenues for the diagnosis and management of bladder cancer even though the clinical approach has largely remained the same for years. The decline in bladder cancer-specific mortality in regions that promote social awareness of risk factors and reduction of carcinogenic exposure demonstrates the effectiveness of such measures. New agents have been approved for patients who have undergone radical cystectomy after Bacillus Calmette-Guérin failure. Current best practices for diagnosing and treating bladder cancer are presented in this review. The review discusses radiation therapy, photodynamic therapy, gene therapy, chemotherapy, and nanomedicine in relation to non muscle-invasive cancers and muscle-invasive bladder cancers, as well as systemic treatments.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Barbara A. Foster
- Department
of Pharmacology & Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
19
|
Zhu P, Zhao Z, Gao Y. Advances in hydrogel for diagnosis and treatment for Parkinson's disease. Front Pharmacol 2025; 16:1552586. [PMID: 40012627 PMCID: PMC11860083 DOI: 10.3389/fphar.2025.1552586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Currently, few symptomatic and palliative care options are available for patients with Parkinson's disease (PD). Interdisciplinary research in materials engineering and regenerative medicine has stimulated the development of innovative therapeutic strategy for patients with PD. Hydrogels, which are versatile and accessible to modify, have garnered considerable interests. Hydrogels are a kind of three-dimensional hydrophilic network structure gels that are widely employed in biological materials. Hydrogels are conspicuous in many therapeutic applications, including neuron regeneration, neuroprotection, and diagnosis. This review focuses on the advantageous applications of hydrogel-based biomaterials in diagnosing and treating the patients with PD, including cell culture, disease modeling, carriers for cells, medications and proteins, as well as diagnostic and monitoring biosensors.
Collapse
Affiliation(s)
- Peining Zhu
- China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-Oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-Oncology, Changchun, China
| | - Zenghui Zhao
- China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-Oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-Oncology, Changchun, China
| | - Yufei Gao
- China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-Oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-Oncology, Changchun, China
| |
Collapse
|
20
|
Okafor NI, Omoteso OA, Choonara YE. The modification of conventional liposomes for targeted antimicrobial delivery to treat infectious diseases. DISCOVER NANO 2025; 20:19. [PMID: 39883380 PMCID: PMC11782757 DOI: 10.1186/s11671-024-04170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary. However, as the pathological understanding of infectious diseases become more known, the need for more advanced liposomal technologies was born to continue having a profound effect on targeted chemotherapy for infectious diseases. This review therefore provides a concise incursion into the most recent and vogue liposomal formulations used to treat infectious diseases. An appraisal of immunological, stimuli-responsive, biomimetic and functionalized liposomes and other novel modifications to conventional liposomes is assimilated in sync with mutations of resistant pathogens.
Collapse
Affiliation(s)
- Nnamdi Ikemefuna Okafor
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | | | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
21
|
Gayathri VG, Richard B, Chacko JT, Bayry J, Rasheed PA. Non-Ti MXenes: new biocompatible and biodegradable candidates for biomedical applications. J Mater Chem B 2025; 13:1212-1228. [PMID: 39688533 DOI: 10.1039/d4tb01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
MXenes are a class of two-dimensional nanomaterials with the general formula Mn+1XnTx, where M denotes a transition metal, X denotes either carbon or nitrogen and Tx refers to surface terminations, such as -OH, -O, -F or -Cl. The unique properties of MXenes, including their tunable surface chemistry and high surface area-to-volume ratio, make them promising candidates for various biomedical applications, such as targeted drug delivery, photothermal therapy and so on. Among the family of MXenes, titanium (Ti)-based MXenes, especially Ti3C2Tx, have been extensively explored for biomedical applications. However, despite their potential, Ti-based MXenes have shown some limitations, such as low biocompatibility. Recent studies have also indicated that Ti MXenes may disrupt spermatogenesis and accumulate in the uterus. Non-Ti MXenes are emerging as promising alternatives to Ti-based MXenes due to their superior biodegradability and enhanced biocompatibility. Recently, non-Ti MXenes have been explored for a range of biomedical applications, including drug delivery, photothermal therapy, chemodynamic therapy and sonodynamic therapy. In addition, some non-Ti MXenes exhibit enzyme-mimicking activity, such as superoxide dismutase and peroxidase-like functions, which play a major role in scavenging reactive oxygen species (ROS). This review discusses the properties of non-Ti MXenes, such as biocompatibility, biodegradability, antibacterial activity, and neuroprotective effects, highlighting their potential in various biomedical applications. These properties can be leveraged to mitigate oxidative stress and develop safe and innovative strategies for managing chronic diseases. This review provides a comprehensive analysis of the various biomedical applications of non-Ti MXenes, including their use in drug delivery and combinatorial therapies and as nanozymes for sensing and therapeutic purposes. The theranostic applications of non-Ti MXenes are also discussed. Finally, the antibacterial properties of non-Ti MXenes and the proposed mechanisms are discussed. The review concludes with a summary of the key findings and future perspectives. In short, this review provides a thorough analysis of the biomedical applications of non-Ti MXenes, emphasizing their unique properties, potential opportunities and challenges in the field.
Collapse
Affiliation(s)
- Vijayakumar G Gayathri
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - Bartholomew Richard
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jithin Thomas Chacko
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| |
Collapse
|
22
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
23
|
Kodel HDAC, Alizadeh P, Ebrahimi SN, Machado TOX, Oliveira MBPP, Fathi F, Souto EB. Liposomes and Niosomes: New trends and applications in the delivery of bioactive agents for cancer therapy. Int J Pharm 2025; 668:124994. [PMID: 39586512 DOI: 10.1016/j.ijpharm.2024.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Lipid-based nanocarriers have been in continuous development as strategies to enhance drug delivery efficiency. Liposomes are delivery systems primarily composed of phospholipids and cholesterol (or other suitable stabilizers) that have transformed the pharmaceutical field by improving drug targeting and release control. The success of this technology is strongly attributed to phospholipids, which are components of cell membranes, forming a biocompatible system. Nevertheless, drawbacks related to their production cost and stability under certain conditions led to the development of niosomes by replacing phospholipids with non-ionic surfactants. Both liposomes and niosomes have been widely studied and optimized for the delivery of bioactive agents targeting many diseases, including cancer. They can improve the efficacy of cancer therapy by reducing toxicity and off-target effects. Due to the complexity of this disease, many approaches should be considered, and the composition and physical properties of liposomes and niosomes influence the outcomes. In this review, we discuss the role of liposomes and niosomes in delivering bioactives for cancer therapy, emphasizing their specific characteristics, associated challenges, and the latest advancements aimed at enhancing their effectiveness.
Collapse
Affiliation(s)
- Helena de A C Kodel
- Rede Nordeste de Biotecnologia-RENORBIO, University of Tiradentes, Farolândia, 49010-390, Aracaju, Sergipe, Brazil
| | - Paria Alizadeh
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Tatiane O X Machado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Jorge de Viterbo Ferreira, 4050-313, Porto, Portugal; Department of Agroindustry, Federal Institute of Sertão Pernambucano, Campus Petrolina Zona Rural, PE 647, Km 22, PISNC N4, 56302-970, Petrolina, Pernambuco, Brazil
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
24
|
Rasool A, Kanagaraj T, Herwahyu Krismastuti FS. Green approach of cobalt sulfide nanoparticles from novel red stigma of Crocus sativus and multifaceted biomedical advancement. INORG CHEM COMMUN 2025; 171:113417. [DOI: 10.1016/j.inoche.2024.113417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Singh RP, Sonali. Current Trends and Challenges in Targeting Tumor Mitochondrial Glycolysis and Oxidative Phosphorylation Pathways for Cancer Therapy. Curr Protein Pept Sci 2025; 26:2-5. [PMID: 38963112 DOI: 10.2174/0113892037307636240612112408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Rahul Pratap Singh
- Department of Pharmacy, School of Healthcare and Allied Sciences, GD Goenka University, Sohna, Gurugram Road- 122103, Haryana, India
| | - Sonali
- Department of Pharmacy, Guru Teg Bahadur Hospital, Dilshad Garden, Delhi-110095, India
| |
Collapse
|
26
|
Karim A, Ullah N, Iqbal M, Malekshah RE, Ali S, Hsu SCN. In silico drug encapsulation using 2-hydroxypropyl-β-CD, tyrosine kinase and tyrosinase inhibition of dinuclear Cu(II) carboxylate complexes. J Mol Graph Model 2025; 134:108903. [PMID: 39541649 DOI: 10.1016/j.jmgm.2024.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
In recent years, copper carboxylate complexes have garnered significant interest for biological applications. This study focuses on 20 Cu(II) carboxylate complexes selected from our previous research. Due to the hydrophobic nature of these complexes, the 2-hydroxypropyl-β-cyclodextrin (2HPβCD) was employed as a carrier to reduce toxicity and increase solubility for controlling drug delivery. Monte Carlo calculations were performed to confirm the interaction between the optimized structures of Cu(II) complexes and 2HPβCD, forming a host-guest system. All the structures were simulated and optimized using DFT-D calculations in Material Studio 2017. The results indicated that a neutral medium is more favorable for the adsorption of these complexes into 2HPβCD. More negative binding energy values suggested strong and energetically favorable adsorption on 2HPβCD. Complexes 4, 5, and 7 exhibited the highest interaction, making them excellent candidates for drug delivery systems. DFT-D calculations were also used to investigate the release of complexes, revealing that complexes 5, 14, and 19 were difficult to release due to their lowest energy. In contrast, complexes 8, 9, and 16 were found to be most efficient to release due to weak non-covalent interactions with 2HPβCD as we can predict from binding energy obtained by DFT-D. No specific trend was observed in the interaction of the complexes with 2HPβCD. Additionally, the effects of these complexes on c-kit tyrosine kinase and Mushroom tyrosinase were studied by molecular docking. The results demonstrated that all the complexes interacted with the active site of respective receptors through hydrophobic interactions. Complexes containing 1,10-phenanthroline and 2,2-bipyrdine were identified as having a strong, spontaneous binding ability with receptors.
Collapse
Affiliation(s)
- Amir Karim
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry Bacha Khan University Charsadda 24420, KPK, Pakistan
| | - Najeeb Ullah
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry Bacha Khan University Charsadda 24420, KPK, Pakistan
| | - Muhammad Iqbal
- Department of Chemistry Bacha Khan University Charsadda 24420, KPK, Pakistan
| | - Rahime Eshaghi Malekshah
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry, Semnan University, Semnan, Iran.
| | - Saqib Ali
- Department of Chemistry Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
27
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
28
|
Chaudhary S, Sharma S, Fuloria S. A Panoramic Review on the Management of Rheumatoid Arthritis through Herbalism. Curr Rheumatol Rev 2025; 21:4-24. [PMID: 38591212 DOI: 10.2174/0115733971279100240328063232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Arthritis is a chronic inflammatory condition that affects millions of individuals worldwide. The conventional treatment options for arthritis often come with limitations and potential side effects, leading to increased interest in herbal plants as alternative therapies. This article provides a comprehensive overview of the use of herbal plants in arthritis treatment, focusing on their traditional remedies, active components, mechanisms of action, and pharmaceutical approaches for enhancing their delivery. Various herbal plants, including turmeric, ginger, Boswellia, and willow bark, have shown anti-inflammatory and analgesic properties, making them valuable options for managing arthritis symptoms. The active components of these herbal plants, such as curcumin, gingerols, and boswellic acids, contribute to their therapeutic effects. To enhance the delivery of herbal medicines, pharmaceutical approaches like nanoparticle-based drug delivery systems, liposomes, polymeric nanoparticles, nanoemulsions, microneedles, and inhalation systems have been explored. These approaches aim to improve bioavailability, targeted delivery, and controlled release of herbal compounds. Safety considerations, including potential interactions with medications and the risk of allergic reactions, are also discussed. Future perspectives for this field involve conducting well-designed clinical studies, enhancing standardization and quality control measures, exploring novel drug delivery systems, and fostering collaborations between traditional medicine practitioners and healthcare professionals. Continued research and development in these areas will help unlock the full potential of herbal plants in arthritis treatment, offering personalized and effective care for affected individuals.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Bedong, Kedah Aman, Malaysia
| |
Collapse
|
29
|
Bisht A, Avinash D, Sahu KK, Patel P, Das Gupta G, Kurmi BD. A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv Transl Res 2025; 15:102-133. [PMID: 38884850 DOI: 10.1007/s13346-024-01648-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Doxorubicin is a key treatment for breast cancer, but its effectiveness often comes with significant side effects. Its actions include DNA intercalation, topoisomerase II inhibition, and reactive oxygen species generation, leading to DNA damage and cell death. However, it can also cause heart problems and low blood cell counts. Current trials aim to improve doxorubicin therapy by adjusting doses, using different administration methods, and combining it with targeted treatments or immunotherapy. Nanoformulations show promise in enhancing doxorubicin's effectiveness by improving drug delivery, reducing side effects, and overcoming drug resistance. This review summarizes recent progress and difficulties in using doxorubicin for breast cancer, highlighting its mechanisms, side effects, ongoing trials, and the potential impact of nanoformulations. Understanding these different aspects is crucial in optimizing doxorubicin's use and improving outcomes for breast cancer patients. This review examines the toxicity of doxorubicin, a drug used in breast cancer treatment, and discusses strategies to mitigate adverse effects, such as cardioprotective agents and liposomal formulations. It also discusses clinical trials evaluating doxorubicin-based regimens, the evolving landscape of combination therapies, and the potential of nanoformulations to optimize delivery and reduce systemic toxicity. The review also discusses the potential of liposomes, nanoparticles, and polymeric micelles to enhance drug accumulation within tumor tissues while sparing healthy organs.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Dubey Avinash
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Chaumuhan, Mathura, 281406, UP, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
30
|
Vikal A, Maurya R, Patel P, Kurmi BD. Nano Revolution: Harnessing Nanoparticles to Combat Antibiotic-resistant Bacterial Infections. Curr Pharm Des 2025; 31:498-506. [PMID: 39484761 DOI: 10.2174/0113816128337749241021084050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
Nanoparticles, defined as particles ranging from 1 to 100 nanometers in size, are revolutionizing the approach to combating bacterial infections amid a backdrop of escalating antibiotic resistance. Bacterial infections remain a formidable global health challenge, causing millions of deaths annually and encompassing a spectrum from common illnesses like Strep throat to severe diseases such as tuberculosis and pneumonia. The misuse of antibiotics has precipitated the rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and carbapenem-resistant Enterobacteriaceae (CRE), underscoring the critical need for innovative therapeutic strategies. Nanotechnology offers a promising avenue in this crisis. Nanoparticles possess unique physical and chemical properties that distinguish them from traditional antibiotics. Their high surface area to volume ratio, ability to be functionalized with various molecules, and distinctive optical, electronic, and magnetic characteristics enable them to exert potent antibacterial effects. Mechanisms include physical disruption of bacterial membranes, generation of reactive oxygen species (ROS), and release of metal ions that disrupt bacterial metabolism. Moreover, nanoparticles penetrate biofilms and bacterial cell walls more effectively than conventional antibiotics and can be precisely targeted to minimize off-target effects. Crucially, nanoparticles mitigate the development of bacterial resistance by leveraging multiple simultaneous mechanisms of action, which make it challenging for bacteria to adapt through single genetic mutations. As research advances, nanotechnology holds immense promise in transforming antibacterial treatments, offering effective solutions that address current infections and combat antibiotic resistance globally. This review provides a comprehensive overview of nanoparticle applications in antibacterial therapies, highlighting their mechanisms, advantages over antibiotics, and future directions in healthcare innovation.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| |
Collapse
|
31
|
Yang Z, Shi X, Qiu L. Tunable supramolecular self-assemblies based on cyclodextrin polymer as a loading platform for water-soluble drugs. Carbohydr Polym 2025; 347:122743. [PMID: 39486972 DOI: 10.1016/j.carbpol.2024.122743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Drug loading capacity is a crucial character of nano-scaled drug carriers to achieve high quality pharmaceutical preparations. However, efficient encapsulation of water-soluble small molecular drugs still faces large obstacles in many cases. Herein, we designed a novel supramolecular delivery system constructed by poly(β-cyclodextrin) containing benzoic acid groups (PCD-PA) and adamantyl terminated poly(ethylene glycol) (PEG-AD) to provide multiple intermolecular interactions for competent loading of water-soluble small-molecular drugs. PCD-PA had multiple host molecules, and PEG-AD could be inserted via host-guest interaction in different proportion to adjust the composition of supramolecular carrier. Meanwhile, π-π stacking and electrostatic interaction furnished by benzoic acid groups served as binding force for drug entrapment, which led to considerable loading capacity for several water-soluble drugs. Among the drugs with different chemical structures, mitoxantrone hydrochloride and doxorubicin hydrochloride bearing anthraquinone rings and several protonable amino groups acquired the highest loading content as about 14 % in PCD-PA3/PEG-AD supramolecular self-assemblies. Further computational simulations investigated the mechanism of drug loading based on the interactions between the carrier materials and the payloads. In addition, the weakly acidic environment obviously accelerated the release of certain drugs. All in all, this self-assembled supramolecular nano-system displayed great potentials as a delivery platform for diverse water-soluble drugs.
Collapse
Affiliation(s)
- Zhuting Yang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuezhang Shi
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Álvarez K, Cruz JT, Giraldo LF, Orozco VH, Vásquez G, Rojas-López M. Pluronic F127/lecithin PLGA nanoparticles as carriers of monocyte-targeted jakinibs: a potential therapeutic platform. Nanomedicine (Lond) 2025; 20:9-22. [PMID: 39469848 PMCID: PMC11730121 DOI: 10.1080/17435889.2024.2415877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Aim: In this study, PLGA nanoparticles (PNPs) emulsified in Pluronic F127 (F127)/Lecithin (LEC) were designed to load Itacitinib (ITA), a selective JAK1 inhibitor, for targeting human monocytes.Materials & methods: The physicochemical characteristics of empty and ITA-loaded F127/LEC PNPs were analyzed. The binding and internalization of NPs in leukocytes were evaluated. The effect of NPs on monocyte activation and JAK1 inhibition was assessed.Results: F127/LEC PNPs were selectively bound and internalized by monocytes, sparing other leukocytes. ITA-F127/LEC PNPs significantly dampened monocyte activation. They also inhibited the monocyte's ability to promote T-cell proliferation and inhibited proinflammatory cytokine production.Conclusion: ITA-loaded F127/LEC PNPs showed potential for monocyte-targeted therapy, offering new avenues for disease treatment.
Collapse
Affiliation(s)
- Karen Álvarez
- Cellular Immunology & Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Flow Cytometry Core, University Research Headquarters (SIU), University of Antioquia, Medellin, Colombia
| | - Jennifer T Cruz
- Polymer Research Laboratory, University of Antioquia, Medellin, Colombia
- Faculty of Basic Sciences, University of the Amazonia (UDLA), Florencia, Colombia
| | - Luis F Giraldo
- Polymer Research Laboratory, University of Antioquia, Medellin, Colombia
| | - Víctor H Orozco
- Polymer Research Laboratory, University of Antioquia, Medellin, Colombia
| | - Gloria Vásquez
- Cellular Immunology & Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Rheumatology Service, Hospital Universitario San Vicente Fundación, Medellin, Colombia
| | - Mauricio Rojas-López
- Cellular Immunology & Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Flow Cytometry Core, University Research Headquarters (SIU), University of Antioquia, Medellin, Colombia
| |
Collapse
|
33
|
Zhang T, Li G, Ren H, Yang L, Yang X, Tan R, Tang Y, Guo D, Zhao H, Shang W, Shen Y. Sub-millimeter fiberscopic robot with integrated maneuvering, imaging, and biomedical operation abilities. Nat Commun 2024; 15:10874. [PMID: 39738028 PMCID: PMC11685957 DOI: 10.1038/s41467-024-55199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.95 mm achieved by microscale 3D printing and magnetic spray, this continuum robot delivers competitive imaging performance and extends obstacle detection distance up to ~9.4 mm, a tenfold improvement from the theoretical limits. Besides, the robot showcases remarkable motion precision (less than 30 μm) and substantially widens the imaging region by ~25 times the inherent view. Through ex vivo trials, we validate the robot's practicality in navigating constrained channels, such as the lung end bronchus, and executing multifunctional operations including sampling, drug delivery, and laser ablation. The proposed submillimeter continuum robot marks a significant advancement in developing biomedical robots, unlocking numerous potential applications in biomedical engineering.
Collapse
Affiliation(s)
- Tieshan Zhang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gen Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Ren
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Liu Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiong Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rong Tan
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yifeng Tang
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Dong Guo
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Haoxiang Zhao
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanfeng Shang
- National Engineering Laboratory of Big Data System Computing Technology, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
| | - Yajing Shen
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
34
|
Alam M, Gulzar M, Akhtar MS, Rashid S, Zulfareen, Tanuja, Shamsi A, Hassan MI. Epigallocatechin-3-gallate therapeutic potential in human diseases: molecular mechanisms and clinical studies. MOLECULAR BIOMEDICINE 2024; 5:73. [PMID: 39725830 PMCID: PMC11671467 DOI: 10.1186/s43556-024-00240-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Green tea has garnered increasing attention across age groups due to its numerous health benefits, largely attributed to Epigallocatechin 3-gallate (EGCG), its key polyphenol. EGCG exhibits a wide spectrum of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and neuroprotective properties, as well as benefits for cardiovascular and oral health. This review provides a comprehensive overview of recent findings on the therapeutic potential of EGCG in various human diseases. Neuroprotective effects of EGCG include safeguarding neurons from damage and enhancing cognitive function, primarily through its antioxidant capacity to reduce reactive oxygen species (ROS) generated during physiological stress. Additionally, EGCG modulates key signaling pathways such as JAK/STAT, Delta-Notch, and TNF, all of which play critical roles in neuronal survival, growth, and function. Furthermore, EGCG is involved in regulating apoptosis and cell cycle progression, making it a promising candidate for the treatment of metabolic diseases, including cancer and diabetes. Despite its promising therapeutic potential, further clinical trials are essential to validate the efficacy and safety of EGCG and to optimize its delivery to target tissues. While many reviews have addressed the anticancer properties of EGCG, this review focuses on the molecular mechanisms and signaling pathways by which EGCG used in specific human diseases, particularly cancer, neurodegenerative and metabolic diseases. It serves as a valuable resource for researchers, clinicians, and healthcare professionals, revealing the potential of EGCG in managing neurodegenerative disorders, cancer, and metabolic diseases and highlighting its broader therapeutic values.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Tanuja
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, P.O. Box 346, Ajman, UAE.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
35
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
37
|
Mashweu AR, Azov VA. Nanotechnology in Drug Delivery: Anatomy and Molecular Insight into the Self-Assembly of Peptide-Based Hydrogels. Molecules 2024; 29:5654. [PMID: 39683812 PMCID: PMC11643151 DOI: 10.3390/molecules29235654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability, release, and stability of pharmaceuticals under physicochemical conditions is the major cause of drug candidates failing during their clinical trials. Therefore, extensive efforts have been invested in the development of novel drug delivery systems that are able to transport drugs to a desired site and improve bioavailability. Hydrogels, and peptide hydrogels in particular, have been extensively investigated due to their excellent biocompatibility and biodegradability properties. However, peptide hydrogels often have weak mechanical strength, which limits their therapeutic efficacy. Therefore, a number of methods for improving their rheological properties have been established. This review will cover the broad area of drug delivery, focusing on the recent developments in this research field. We will discuss the variety of different types of nanocarrier drug delivery systems and then, more specifically, the significance and perspectives of peptide-based hydrogels. In particular, the interplay of intermolecular forces that govern the self-assembly of peptide hydrogels, progress made in understanding the distinct morphologies of hydrogels, and applications of non-canonical amino acids in hydrogel design will be discussed in more detail.
Collapse
Affiliation(s)
- Adelaide R. Mashweu
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Vladimir A. Azov
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
38
|
Manral K, Singh A, Singh Y. Nanotechnology as a potential treatment for diabetes and its complications: A review. Diabetes Metab Syndr 2024; 18:103159. [PMID: 39612615 DOI: 10.1016/j.dsx.2024.103159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIM Diabetes mellitus is a chronic metabolic disorder that causes multiple complications in various organs, such as the kidney, liver and cardiovascular system. These complications are the main causes of morbidity and mortality in patients with diabetes. Nanotechnology offers new opportunities for the therapy of diabetes and its multiple complications through site-specific and precise drug delivery. This review summarizes the various studies demonstrating the potential applications of different nanoparticles in diabetes-associated complications. METHOD A literature search was conducted using PubMed, Google Scholar and Scopus databases, focusing on the role of nanoparticles in the improved delivery of various hypoglycemic agents for the treatment of microvascular and macrovascular diabetic complications. RESULTS Numerous studies have shown that nanoparticles, such as nanoliposomes, polymeric micelles, dendrimers and metallic nanoparticles, improve the delivery of various hypoglycemic agents. Moreover, nanoparticles have been found to be safer, with improved pharmacokinetic and pharmacodynamic profiles. CONCLUSION This review outlines the significant role of nanotechnology in diabetes and related complications and its superiority over conventional drug delivery.
Collapse
Affiliation(s)
- Kanika Manral
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Anita Singh
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Yuvraj Singh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, India.
| |
Collapse
|
39
|
Zhuang J, Zhang H, Wu J, Hu D, Meng T, Xue J, Xu H, Wang G, Wang H, Zhang G. Redox-Responsive AIEgen Diselenide-Covalent Organic Framework Composites Targeting Hepatic Macrophages for Treatment of Drug-induced Liver Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402656. [PMID: 39140196 DOI: 10.1002/smll.202402656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/03/2024] [Indexed: 08/15/2024]
Abstract
The escalating misuse of antipyretic and analgesic drugs, alongside the rising incidents of acute drug-induced liver injury, underscores the need for a precisely targeted drug delivery system. Herein, two isoreticular covalent organic frameworks (Se-COF and Se-BCOF) are developed by Schiff-base condensation of emissive tetraphenylethylene and diselenide-bridged monomers. Leveraging the specific affinity of macrophages for mannose, the first precise targeting of these COFs to liver macrophages is achieved. The correlation is also explored between the therapeutic effects of COFs and the NLRP3/ASC/Caspase-1 signaling pathway. Utilizing this innovative delivery vehicle, the synergistic delivery of matrine and berberine are accomplished, compounds extracted from traditional Chinese medicine. This approach not only demonstrated the synergistic effects of the drugs but also mitigated their toxicity. Notably, berberine, through phosphorylation of JNK and up-regulation of nuclear Nrf-2 and its downstream gene Mn-SOD expression, simultaneously countered excessive ROS and suppressed the activation of the NLRP3/ASC/Caspase-1 signaling pathway in injured liver tissues. This multifaceted approach proved highly effective in safeguarding against acute drug-induced liver injury, ultimately restoring liver health to normalcy. These findings present a novel and promising strategy for the treatment of acute drug-induced liver injury.
Collapse
Affiliation(s)
- Jialu Zhuang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Hao Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hanyang Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
40
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
42
|
Maity S, Dubey DK, Meena J, Shekher A, Singh RS, Maiti P. Doxorubicin-Intercalated Li-Al-Based LDHs as Potential Drug Delivery Nanovehicle with pH-Responsive Therapeutic Cargo for Tumor Treatment. ACS Biomater Sci Eng 2024; 10:6377-6396. [PMID: 39259706 DOI: 10.1021/acsbiomaterials.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Clinical oncology is currently experiencing a technology bottleneck due to the expeditious evolution of therapy defiance in tumors. Although drugs used in chemotherapy work for a sort of cell death with potential clinical application, the effectiveness of chemotherapy-inducing drugs is subject to several endogenous conditions when used alone, necessitating the urgent need for controlled mechanisms. A tumor-targeted drug delivery therapy using Li-Al (M+/M3+)-based layered double hydroxide (LDHs) family has been proposed with the general chemical formula [M+1-x M3+x (OH)]2x+[(Am-)2x/m. n(H2O)]2x-, which is fully biodegradable and works in connection with the therapeutic interaction between LDH nanocarriers and anticancerous doxorubicin (DOX). Compositional variation of Li and Al in LDHs has been used as a nanoplatform, which provides a functional balance between circulation lifetime, drug loading capacity, encapsulation efficiency, and tumor-specific uptake to act as self-regulatory therapeutic cargo to be released intracellularly. First-principle analyses based on DFT have been employed to investigate the interaction of bonding and electronic structure of LDH with DOX and assess its capability and potential for a superior drug carrier. Following the internalization into cancer cells, nanoformulations are carried to the nucleus via lysosomes, and the mechanistic pathways have been revealed. Additionally, in vitro along with in vivo therapeutic assessments on melanoma-bearing mice show a dimensional effect of nanoformulation for better biocompatibility and excellent synergetic anticancer activity. Further, the severe toxic consequences associated with traditional chemotherapy have been eradicated by using injectable hydrogel placed just beneath the tumor site, and regulated release of the drug has been confirmed through protein expression applying various markers. However, Li-Al-based LDH nanocarriers open up new design options for multifunctional nanomedicine, which has intriguing potential for use in cancer treatment through sustained drug delivery.
Collapse
Affiliation(s)
- Swapan Maity
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dipesh Kumar Dubey
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Jairam Meena
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Anusmita Shekher
- Department of General surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
43
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
44
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Marine-derived bioactive materials as antibiofilm and antivirulence agents. Trends Biotechnol 2024; 42:1288-1304. [PMID: 38637243 DOI: 10.1016/j.tibtech.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
45
|
Zhang J, Deng M, Xu C, Li D, Yan X, Gu Y, Zhong M, Gao H, Liu Y, Zhang J, Qu X, Zhang J. Dual-Prodrug-Based Hyaluronic Acid Nanoplatform Provides Cascade-Boosted Drug Delivery for Oxidative Stress-Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50459-50473. [PMID: 39258403 DOI: 10.1021/acsami.4c11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Insufficient drug accumulation in tumors severely limits the antitumor efficiency of hyaluronic acid (HA) nanomedicine in solid tumors due to superficial penetration depth, low cell uptake, and nonspecific drug release. Hence, we constructed a dual NO prodrug (alkynyl-JSK) and doxorubicin prodrug (cis-DOX)-conjugated HA nanoparticle (HA-DOX-JSK NPs), which achieved cascade-boosted drug delivery efficiency based on a relay strategy of NO-mediated deep tumor penetration─HA target CD44 tumor cell uptake─tumor microenvironment (TME)-responsive drug release. The nanoparticle demonstrated sustained and locoregionally GSH/GST-triggered NO release and GSH/pH-responsive DOX release in the tumor. The released NO first mediated collagen degradation, causing deep tumor penetration of nanoparticles in the dense extracellular matrix. Immediately, HA was relayed to enhance CD44-targeted tumor cell uptake, and then, the nanoparticles were finally triggered by specific TME to release DOX and NO in the deep tumor. Relying on the relayed delivery strategy, a significant improvement of DOX accumulation in tumors was realized. Moreover, NO depleted GSH-induced intracellular reactive oxygen species, enhancing DOX chemotherapy. Based on this strategy, the tumor inhibition rate in breast cancer was up to 87.8% in vivo. The relay drug-delivery HA system would greatly cascade-boost drug accumulation in deep tumors for efficient solid tumor therapy.
Collapse
Affiliation(s)
- Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chang Xu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchun Liu
- Jinghua Plastics Industry Company Limited, Langfang 065800, P. R. China
| | - Jiqing Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250000, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
46
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
47
|
Ghosh Majumdar A, Pany B, Parua SS, Mukherjee D, Panda A, Mohanty M, Das B, Si S, Mohanty PS. Stimuli-Responsive Nanogel/Microgel Hybrids as Targeted Drug Delivery Systems: A Comprehensive Review. BIONANOSCIENCE 2024; 14:3496-3521. [DOI: 10.1007/s12668-024-01577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 01/06/2025]
|
48
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
49
|
Barlas FB, Olceroglu B, Ag Seleci D, Gumus ZP, Siyah P, Dabbek M, Garnweitne G, Stahl F, Scheper T, Timur S. Enhancing chemotherapeutic efficacy: Niosome-encapsulated Dox-Cis with MUC-1 aptamer. Cancer Med 2024; 13:e70079. [PMID: 39118454 PMCID: PMC11310550 DOI: 10.1002/cam4.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. OBJECTIVE This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox-Cis), encapsulated within niosomes and modified with MUC-1 aptamers to enhance biocompatibility and target specific cancer cells. METHODS The chemical structure of the Dox-Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC-1 positive HeLa cells and MUC-1 negative U87 cells. RESULTS The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox-Cis/MUC-1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox-Cis/MUC-1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). CONCLUSION The study underscores the potential of the Dox-Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.
Collapse
Affiliation(s)
- Firat Baris Barlas
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Bilge Olceroglu
- Institue of Nanotechnology and Biotechnologyİstanbul University‐CerrahpaşaİstanbulTurkey
| | - Didem Ag Seleci
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
| | - Pinar Siyah
- Department of Biochemistry, School of PharmacyBahçeşehir UniversityIstanbulTurkey
| | - Meriam Dabbek
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Georg Garnweitne
- Institute for Particle Technology (iPAT)Technische Universität BraunschweigBraunschweigGermany
| | - Frank Stahl
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Thomas Scheper
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research CenterEge UniversityIzmirTurkey
- Department of Biochemistry, Faculty of ScienceEge UniversityIzmirTurkey
| |
Collapse
|
50
|
Farooq MU, Dovzhenko AP, Zairov RR, Abyzbekova G, Harb M, Arkook B, Akylbekov N, Tapalova A, Makhlouf MM. Insights into the Engineered Gold Nanoparticle-Based Remedy for Supplementation Therapy of Ovarian Carcinoma. ACS OMEGA 2024; 9:33033-33043. [PMID: 39100344 PMCID: PMC11292810 DOI: 10.1021/acsomega.4c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Chronic diseases, notably cancer, pose a significant global threat to human life. Oncologists and medical professionals addressing malignancies confront challenges such as toxicity and multidrug resistance. To tackle these issues, the focus has shifted toward the employment of multifunctional colloidal gold nanoparticles. This study aims to design pH-sensitive doxorubicin-loaded gold nanoparticles using polyvinylpyrrolidone. The cytotoxic efficacy of the designed gold nanoarchitecture and its doxorubicin counterpart was assessed in an in vitro model using the HeLa cell. In comparison to the free drug, experimental evaluations showed that the gold nanoarchitecture outperformed significantly lower unspecific drug leaching and efficiently delivered the payload in a controlled manner, boosting the chemotherapy outcomes. This work opens a streamlined approach for engineering gold nanoarchitecture that could be further expanded to incorporate other therapeutics and/or functional moieties that require optimized controlled delivery, offering a one-size-fits-all solution and paving the revolutionary adjustments to healthcare procedures.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 200240 Shanghai, China
- A.
M. Butlerov Institute of Chemistry, Kazan
Federal University, 1/29
Lobachevskogo str., Kazan 420008, Russian Federation
| | - Alexey P. Dovzhenko
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan 420088, Russian
Federation
| | - Rustem R. Zairov
- A.
M. Butlerov Institute of Chemistry, Kazan
Federal University, 1/29
Lobachevskogo str., Kazan 420008, Russian Federation
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan 420088, Russian
Federation
| | - Gulmira Abyzbekova
- Department
of Biology, Geography and Chemistry, Korkyt
Ata Kyzylorda University, Aiteke bi Str. 29A, Kyzylorda 120014, Kazakhstan
| | - Moussab Harb
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Bassim Arkook
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Nurgali Akylbekov
- Laboratory
of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str. 29A, Kyzylorda 120014, Kazakhstan
| | - Anipa Tapalova
- Department
of Biology, Geography and Chemistry, Korkyt
Ata Kyzylorda University, Aiteke bi Str. 29A, Kyzylorda 120014, Kazakhstan
| | - Mohamed M. Makhlouf
- Department
of Sciences and Technology, Ranyah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|