1
|
Wang H, Yang Y, Zhang G, Yang G, Wang Y, Liu L, Du J. Roles of anoikis in hepatocellular carcinoma therapy and the assessment of anoikis-regulatory molecules as therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04088-w. [PMID: 40183941 DOI: 10.1007/s00210-025-04088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
As the fourth leading cause of death from cancer and the sixth most common neoplasm in the world, hepatocellular carcinoma (HCC) is responsible for ninety percent of all primary liver cancers. There are four mechanisms that contribute to the spread of cancer: the separation of cells from the primary neoplasm, their survivability during metastasis, extravasation, and the development of secondary tumors at remote locations. In addition to its role in the development of a scaffold for cell adhesion, the extracellular matrix (ECM) also plays a role in the stimulation of signal transduction and the regulation of essential cellular mechanisms, including proliferation, migration, differentiation, and viability. The disruption of cell-ECM interactions and the ensuing separation of cells from the primary ECM trigger anoikis, a form of programmed cell death. One of the most effective factors in suppressing anoikis is ECM receptors from the integrin family. Cell migration, proliferation, and survival are primarily governed by the formation of physical connections with the cytoskeleton and the conveyance of signals between cells and the ECM via integrin receptors.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Abdominal Oncology, Jilin Cancer Hospital, Changchun, 130000, China
| | - Yawen Yang
- Department of Abdominal Oncology, Jilin Cancer Hospital, Changchun, 130000, China
| | - Gan Zhang
- Department of Abdominal Oncology, Jilin Cancer Hospital, Changchun, 130000, China
| | - Guang Yang
- Department of Abdominal Oncology, Jilin Cancer Hospital, Changchun, 130000, China
| | - Ying Wang
- Department of Abdominal Oncology, Jilin Cancer Hospital, Changchun, 130000, China
| | - Lu Liu
- Department of Abdominal Oncology, Jilin Cancer Hospital, Changchun, 130000, China
| | - Juan Du
- Department of Abdominal Oncology, Jilin Cancer Hospital, Changchun, 130000, China.
| |
Collapse
|
2
|
Torre-Cea I, Berlana-Galán P, Guerra-Paes E, Cáceres-Calle D, Carrera-Aguado I, Marcos-Zazo L, Sánchez-Juanes F, Muñoz-Félix JM. Basement membranes in lung metastasis growth and progression. Matrix Biol 2025; 135:135-152. [PMID: 39719224 DOI: 10.1016/j.matbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies. These basement membranes play a critical role in the progression of lung metastases, influencing multiple stages of the metastatic cascade, from the acquisition of an aggressive phenotype to intravasation, extravasation and colonization of secondary sites. This review examines the biological composition of basement membranes, focusing on their core components-collagens, fibronectin, and laminin-and their specific roles in cancer progression. Additionally, we discuss the function of integrins as primary mediators of cell adhesion and signaling between tumor cells, basement membranes and the extracellular matrix, as well as their implications for metastatic growth in the lung. We also explore vascular co-option (VCO) as a form of tumor growth resistance linked to basement membranes and tumor vasculature. Finally, the review covers current clinical therapies targeting tumor adhesion, extracellular matrix remodeling, and vascular development, aiming to improve the precision and effectiveness of treatments against lung metastases.
Collapse
Affiliation(s)
- Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| | - José M Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| |
Collapse
|
3
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
4
|
Mathenjwa GS, Chakraborty A, Chakraborty A, Muller R, Akerman MP, Bode ML, Edkins AL, Veale CGL. Rationally modified SNX-class Hsp90 inhibitors disrupt extracellular fibronectin assembly without intracellular Hsp90 activity. RSC Med Chem 2024:d4md00501e. [PMID: 39290382 PMCID: PMC11403943 DOI: 10.1039/d4md00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Despite Hsp90's well documented promise as a target for developing cancer chemotherapeutics, its inhibitors have struggled to progress through clinical trials. This is, in part, attributed to the cytoprotective compensatory heat shock response (HSR) stimulated through intracellular Hsp90 inhibition. Beyond its intracellular role, secreted extracellular Hsp90 (eHsp90) interacts with numerous pro-oncogenic extracellular clients. This includes fibronectin, which in the tumour microenvironment enhances cell invasiveness and metastasis. Through the rational modification of known Hsp90 inhibitors (SNX2112 and SNX25a) we developed four Hsp90 inhibitory compounds, whose alterations restricted their interaction with intracellular Hsp90 and did not stimulate the HSR. Two of the modified cohort (compounds 10 and 11) were able to disrupt the assembly of the extracellular fibronectin network at non-cytotoxic concentrations, and thus represent promising new tool compounds for studying the druggability of eHsp90 as a target for inhibition of tumour invasiveness and metastasis.
Collapse
Affiliation(s)
- Gciniwe S Mathenjwa
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Abir Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Abantika Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Ronel Muller
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Mathew P Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01 Scottsville 3209 South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO WITS 2050 Johannesburg South Africa
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University Makhanda 6139 South Africa
| | - Clinton G L Veale
- Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
| |
Collapse
|
5
|
Lv CG, Cheng Y, Zhang L, Wu GG, Liang CY, Tao Z, Chen B. EXOSC2 Mediates the Pro-tumor Role of WTAP in Breast Cancer Cells via Activating the Wnt/β-Catenin Signal. Mol Biotechnol 2024; 66:2569-2582. [PMID: 37856011 DOI: 10.1007/s12033-023-00834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023]
Abstract
BC (breast cancer) is the leading cause of cancer death in women. Exosome component 2 (EXOSC2), an RNA exosome component, is elevated in BC tissues and may relate to BC carcinogenesis. In this work, the high EXOSC2 expression was correlated with TNM (Tumor Node Metastasis) stage. Moreover, overexpression of EXOSC2 enhanced tumorigenic capacity of BC cells via facilitating cell proliferation and cell cycle progression, increasing migration and angiogenesis, as well as exacerbating xenograft formation in vivo. Whereas, EXOSC2 knockdown showed anti-cancer effects, including inhibition of cell proliferation and angiogenesis. Mechanistically, EXOSC2 activated the wnt/β-catenin pathway, which was also abolished by EXOSC2 knockdown. In addition, there were m6A methylation modification sites in the mRNA of EXOSC2. WTAP (Wilms tumor 1-associated protein) bound to EXOSC2 mRNA and increased its m6A methylation, resulting in extending the half-life of EXOSC2 mRNA. Luciferase data also confirmed that WTAP enhanced EXOSC2 mRNA stability through binding with the 3'-UTR containing m6A sites. Furthermore, WTAP silencing exhibited cancer-inhibiting effects on cell viability, cell cycle progression and tube formation, which was effectively reversed by EXOSC2 overexpression. In conclusion, our results demonstrate that EXOSC2 promotes the malignant behaviors of BC cells via activating the wnt/β-catenin pathway. In addition, EXOSC2 mediates the function of WTAP which contributes to the m6A modification of EXOSC2. Totally, this study suggested that EXOSC2 mediated the pro-tumor role of WTAP via activating the wnt/β-catenin signal.
Collapse
Affiliation(s)
- Chen-Guang Lv
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Yao Cheng
- Department of Oncology, Panjin Central Hospital, Panjin, People's Republic of China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, People's Republic of China
| | - Guo-Gang Wu
- Department of Thyroid and Breast Surgery, Ansteel Group General Hospital, Anshan, People's Republic of China
| | - Chun-Yan Liang
- Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zuo Tao
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, People's Republic of China.
| |
Collapse
|
6
|
Deng J, Cheng Y, Li H, He X, Yu S, Ma J, Li X, Chen J, Xiao H, Guan H, Li Y. PFKFB3 facilitates cell proliferation and migration in anaplastic thyroid carcinoma via the WNT/β-catenin signaling pathway. Endocrine 2024; 85:737-750. [PMID: 38378893 DOI: 10.1007/s12020-024-03725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Despite the involvement of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase3 (PFKFB3) in the proliferation and metastasis of diverse tumor types, its biological functions and related molecular mechanisms in anaplastic thyroid carcinoma (ATC) remain largely unclear. METHODS Datasets from the Gene Expression Omnibus, the Cancer Genome Atlas and immunohistochemistry (IHC) analyses were employed to measure the expression level of PFKFB3 in ATC. A series of assays were performed to analyze the role of PFKFB3 and its inhibitor KAN0438757 in ATC cell proliferation and migration. Furthermore, Western blotting (WB), IHC and luciferase reporter assay were conducted to investigate the potential mechanisms underlying the involvement of PFKFB3 and KAN0438757 in ATC. Additionally, we established a subcutaneous xenograft tumor model in nude mice to evaluate the in vivo tumor growth. RESULTS PFKFB3 exhibited a significant increase in its expression level in ATC tissues. The overexpression of PFKFB3 resulted in the stimulation of ATC cell proliferation and migration. Furthermore, this overexpression was associated with the elevated expression levels of p-AKT (ser473), p-GSK3α/β (ser21/9), nuclear β-catenin, fibronectin1 (FN1), matrix metallopeptidase 9 (MMP-9) and cyclin D1. It also promoted the nuclear translocation of β-catenin and the transcription of downstream molecules. Conversely, contrasting results were observed with the downregulation or KAN0438757-mediated inhibition of PFKFB3 in ATC cells. The selective AKT inhibitor MK2206 was noted to reverse the increased expression of p-AKT (ser473) and p-GSK3α/β (ser21/9) induced by PFKFB3 overexpression. The level of lactate was increased in PFKFB3-overexpressing ATC cells, while the presence of KAN0438757 inhibited lactate production. Moreover, the simultaneous use of PFKFB3 downregulation and KAN0438757 was found to suppress subcutaneous tumor growth in vivo. CONCLUSION PFKFB3 can enhance ATC cell proliferation and migration via the WNT/β-catenin signaling pathway and plays a crucial role in the regulation of aerobic glycolysis in ATC cells.
Collapse
Affiliation(s)
- Jinmei Deng
- Internal Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Shuang Yu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Jiajing Ma
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xuhui Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Jie Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
7
|
Mukherjee D, Raikwar S. Recent Update on Nanocarrier(s) as the Targeted Therapy for Breast Cancer. AAPS PharmSciTech 2024; 25:153. [PMID: 38961013 DOI: 10.1208/s12249-024-02867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
Despite ongoing advances in cancer therapy, the results for the treatment of breast cancer are not satisfactory. The advent of nanotechnology promises to be an essential tool to improve drug delivery effectiveness in cancer therapy. Nanotechnology provides an opportunity to enhance the treatment modality by preventing degradation, improving tumour targeting, and controlling drug release. Recent advances have revealed several strategies to prevent cancer metastasis using nano-drug delivery systems (NDDS). These strategies include the design of appropriate nanocarriers loaded with anti-cancer drugs that target the optimization of physicochemical properties, modulate the tumour microenvironment, and target biomimetic techniques. Nanocarriers have emerged as a preferential approach in the chemotropic treatment for breast cancer due to their pivotal role in safeguarding the therapeutic agents against degradation. They facilitate efficient drug concentration in targeted cells, surmount the resistance of drugs, and possess a small size. Nevertheless, these nanocarrier(s) have some limitations, such as less permeability across the barrier and low bioavailability of loaded drugs. To overcome these challenges, integrating external stimuli has been employed, encompassing infrared light, thermal stimulation, microwaves, and X-rays. Among these stimuli, ultrasound-triggered nanocarriers have gained significant attention due to their cost-effectiveness, non-invasive nature, specificity, ability to penetrate tissues, and capacity to deliver elevated drug concentrations to intended targets. This article comprehensively reviews recent advancements in different nanocarriers for breast cancer chemotherapy. It also delves into the associated hurdles and offers valuable insights into the prospective directions for this innovative field.
Collapse
Affiliation(s)
- Debanjan Mukherjee
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
8
|
You Y, Zhu L, Song Y, Hu J, Chen M, Zhang J, Xu X, Huang X, Wu X, Lu J, Tong X, Ji JS, Du YZ. Self-Illuminating Nanoagonist Simultaneously Induces Dual Cell Death Pathways via Death Receptor Clustering for Cancer Therapy. ACS NANO 2024; 18:17119-17134. [PMID: 38912613 DOI: 10.1021/acsnano.4c03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Inducing death receptor 5 (DR5) clustering holds particular promise in tumor-specific therapeutics because it could trigger an apoptotic cascade in cancerous cells. Herein, we present a tumor microenvironment H2O2-responsive self-illuminating nanoagonist, which could induce dual tumor cell death pathways through enhancing DR5 clustering. By conjugating DR5 ligand peptides onto the surfaces of self-illuminating nanoparticles with cross-linking capacity, this strategy not only provides scaffolds for ligands to bind receptors but also cross-links them through photo-cross-linking. This strategy allows for efficient activation of DR5 downstream signaling, initiating the extrinsic apoptosis pathway and immunogenic cell death of tumor cells, and contributes to improved tumor-specific immune responses, resulting in enhanced antitumor efficacy and minimized systemic adverse effects.
Collapse
Affiliation(s)
- Yuchan You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Luwen Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yanling Song
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Jiahao Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, 289 Kuocang Road, Lishui 323000, P. R. China
| | - Jucong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Xinyi Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Xiajie Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Xiaochuan Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Jingyi Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Xiangmin Tong
- Department of Hematology, the Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, P. R. China
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, 289 Kuocang Road, Lishui 323000, P. R. China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Innovation Center of Transformational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, P. R. China
| |
Collapse
|
9
|
Yang N, Huang Y, Wang X, Wang D, Yao D, Ren G. Fibronectin-Targeting Dual-Modal MR/NIRF Imaging Contrast Agents for Diagnosis of Gastric Cancer and Peritoneal Metastasis. Bioconjug Chem 2024; 35:843-854. [PMID: 38775802 DOI: 10.1021/acs.bioconjchem.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The prevalence and fatality rates of gastric cancer (GC) remain elevated, with advanced stages presenting a grim prognosis. Noninvasive diagnosis of GC cancer often proves challenging until the disease has progressed to an advanced stage or metastasized. Initially, the level of fibronectin (FN) in cancer-associated fibroblasts (CAFs) of GC was at least 3.7 times higher than that in normal fibroblasts. Herein, two FN-targeting magnetic resonance/near-infrared fluorescence (MR/NIRF) imaging contrast agents were developed to detect GC and peritoneal metastasis noninvasively. The probes CREKA-Cy7-(Gd-DOTA) and CREKA-Cy7-(Gd-DOTA)3 demonstrated significant FN-targeting capability (with dissociation constants of 1.0 and 2.1 mM) and effective MR imaging performance (with proton relaxivity values of 9.66 and 27.44 mM-1 s-1 at 9.4 T, 37 °C). In vivo imaging revealed a high signal-to-noise ratio and successful visualization of GC metastasis using NIRF imaging as well as successful tumor detection in MR imaging. Therefore, this study highlights the potential of FN-targeting probes for GC diagnosis and aids in the advancement of new diagnostic strategies for the clinical detection of GC.
Collapse
Affiliation(s)
- Ningxin Yang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuelin Huang
- Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyu Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai University of Sport, Shanghai 200438, China
| | - Gang Ren
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
10
|
Liu YB, Chen XY, Yu BX, Cen Y, Huang CY, Yan MY, Liu QQ, Zhang W, Li SY, Tang YZ. Chimeric Peptide-Engineered Self-Delivery Nanomedicine for Photodynamic-Triggered Breast Cancer Immunotherapy by Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309994. [PMID: 38095445 DOI: 10.1002/smll.202309994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Indexed: 05/30/2024]
Abstract
A systemic treatment strategy is urgently demanded to suppress the rapid growth and easy metastasis characteristics of breast cancer. In this work, a chimeric peptide-engineered self-delivery nanomedicine (designated as ChiP-CeR) for photodynamic-triggered breast cancer immunotherapy by macrophage polarization. Among these, ChiP-CeR is composed of the photosensitizer of chlorine e6 (Ce6) and the TLR7/8 agonist of lmiquimod (R837), which is further modified with tumor matrix targeting peptide (Fmoc-K(Fmoc)-PEG8-CREKA. ChiP-CeR is preferred to actively accumulate at the tumor site via specific recognition of fibronectin, which can eradicate primary tumor growth through photodynamic therapy (PDT). Meanwhile, the destruction of primary tumors would trigger immunogenic cell death (ICD) effects to release high-mobility group box-1(HMGB1) and expose calreticulin (CRT). Moreover, ChiP-CeR can also polarize M2-type tumor-associated macrophages (TAMs) into M1-type TAMs, which can activate T cell antitumor immunity in combination with ICD. Overall, ChiP-CeR possesses superior antitumor effects against primary and lung metastatic tumors, which provide an applicable nanomedicine and a feasible strategy for the systemic management of metastatic breast cancer.
Collapse
Affiliation(s)
- Yi-Bin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R.China
| | - Xia-Yun Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Bai-Xue Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Chu-Yu Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Meng-Yi Yan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qian-Qian Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R.China
| |
Collapse
|
11
|
Ali K, Nabeel M, Mohsin F, Iqtedar M, Islam M, Rasool MF, Hashmi FK, Hussain SA, Saeed H. Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies. Med Oncol 2024; 41:112. [PMID: 38592510 DOI: 10.1007/s12032-024-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Despite recent advancements in the diagnosis and treatment of breast cancer (BC), patient outcomes in terms of survival, recurrence, and disease progression remain suboptimal. A significant factor contributing to these challenges is the cellular heterogeneity within BC, particularly the presence of breast cancer stem cells (BCSCs). These cells are thought to serve as the clonogenic nexus for new tumor growth, owing to their hierarchical organization within the tumor. This descriptive review focuses on the evolving strategies to target BCSCs, which have become a pivotal aspect of therapeutic development. We explore a variety of approaches, including targeting specific tumor surface markers (CD133 and CD44), transporters, heat shock proteins, and critical signaling pathways like Notch, Akt, Hedgehog, KLF4, and Wnt/β-catenin. Additionally, we discuss the modulation of the tumor microenvironment through the CXCR-12/CXCR4 axis, manipulation of pH levels, and targeting hypoxia-inducible factors, vascular endothelial growth factor, and CXCR1/2 receptors. Further, this review focuses on the roles of microRNA expression, strategies to induce apoptosis and differentiation in BCSCs, dietary interventions, dendritic cell vaccination, oncolytic viruses, nanotechnology, immunotherapy, and gene therapy. We particularly focused on studies reporting identification of BCSCs, their unique properties and the efficacy of various therapeutic modalities in targeting these cells. By dissecting these approaches, we aim to provide insights into the complex landscape of BC treatment and the potential pathways for improving patient outcomes through targeted BCSC therapies.
Collapse
Affiliation(s)
- Khubaib Ali
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Nabeel
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Fatima Mohsin
- Department of Biological Sciences, KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-Technology, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Furqan K Hashmi
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
| |
Collapse
|
12
|
Ramadan MA, Sharaky M, Gad S, Ahmed HA, Jaremko M, Emwas AH, Faid AH. Anticancer effect and laser photostability of ternary graphene oxide/chitosan/silver nanocomposites on various cancer cell lines. Nanomedicine (Lond) 2024; 19:709-722. [PMID: 38323335 DOI: 10.2217/nnm-2023-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Aims: The development of nanocomposites (NCs) of antitumor activity provides a new paradigm for fighting cancer. Here, a novel NC of green synthetic silver nanoparticles (AgNPs), graphene oxide (GO) and chitosan (Cs) NPs was developed. Materials & methods: The prepared GO/Cs/Ag NCs were analyzed using various techniques. Cytotoxicity of the NCs was evaluated against different cancer cell lines by Sulforhodamine B (SRB) assay. Results: GO/Cs/Ag NCs are novel and highly stable. UV-Vis showed two peaks at 227 and 469 nm, indicating the decoration of AgNPs on the surface of GO/Cs NPs. All tested cell lines were affected by GO/Cs NPs and GO/Cs/Ag NCs. Conclusion: The results indicate that GO/Cs/Ag NCs were present on tested cell lines and are a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Science (NILES) Cairo University (CU), Giza, Egypt
| | - Marwa Sharaky
- Pharmacology Unit- Cancer Biology Department - National Cancer Institute - Cairo University, Cairo, Egypt
- City of Scientific Research & Technological Applications (SRTA-City), Alexandria, Egypt
| | - Sara Gad
- City of Scientific Research & Technological Applications (SRTA-City), Alexandria, Egypt
| | - Hoda A Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Mariusz Jaremko
- Biological & Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science & Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science & Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amna H Faid
- Department of Laser Science and Interaction, National Institute of Laser Enhanced Science (NILES) Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Meng F, Zhai X, Ma J, Li A, Wang X, Bai J. Enzyme-Induced Shape-Shifting Peptide Nanocarrier Coloaded with Paclitaxel and Dipyridamole Inhibits Platelet Function and Tumor Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:166-177. [PMID: 38143309 DOI: 10.1021/acsami.3c13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Tumor-associated platelets can bind to tumor cells and protect circulating tumor cells from NK-mediated immune surveillance. Tumor-associated platelets secrete cytokines to induce the epithelial-mesenchymal transition (EMT) in tumor cells, which promotes tumor metastasis. Combining chemotherapeutic agents with antiplatelet drugs can reduce the occurrence of metastasis, but the systemic application of chemotherapeutic agents and antiplatelet drugs is prone to causing serious side effects. Therefore, delivering drugs to the tumor microthrombus site for long-lasting inhibition is a problem that needs to be addressed. Here, we show that small molecule peptide nanoparticles containing the Cys-Arg-Glu-Lys-Ala (CREKA) peptide can deliver the platelet inhibitor dipyridamole (DIP) and the chemotherapeutic drug paclitaxel (PTX) to tumor tissues, thereby inhibiting tumor-associated platelet function while killing tumor cells. The drug-loaded nanoparticles PD/Pep1 inhibited platelet-tumor cell interactions, were effectively taken up by tumor cells, and underwent morphological transformation induced by alkaline phosphatase (ALP) to prolong the retention time of the drugs. After intravenous injection, PD/Pep1 can target tumors and inhibit tumor metastasis. Thus, this small molecule peptide nanoformulation provides a simple strategy for efficient drug delivery and shows promise as a novel cancer therapy platform.
Collapse
Affiliation(s)
- Fanhu Meng
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaoqing Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jihong Ma
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Aimei Li
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xizhen Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
14
|
Ling J, Gu R, Liu L, Chu R, Wu J, Zhong R, Ye S, Liu J, Fan S. Versatile Design of Organic Polymeric Nanoparticles for Photodynamic Therapy of Prostate Cancer. ACS MATERIALS AU 2024; 4:14-29. [PMID: 38221923 PMCID: PMC10786136 DOI: 10.1021/acsmaterialsau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024]
Abstract
Radical prostatectomy is a primary treatment option for localized prostate cancer (PCa), although high rates of recurrence are commonly observed postsurgery. Photodynamic therapy (PDT) has demonstrated efficacy in treating nonmetastatic localized PCa with a low incidence of adverse events. However, its limited efficacy remains a concern. To address these issues, various organic polymeric nanoparticles (OPNPs) loaded with photosensitizers (PSs) that target prostate cancer have been developed. However, further optimization of the OPNP design is necessary to maximize the effectiveness of PDT and improve its clinical applicability. This Review provides an overview of the design, preparation, methodology, and oncological aspects of OPNP-based PDT for the treatment of PCa.
Collapse
Affiliation(s)
- Jiacheng Ling
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongrong Gu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Lulu Liu
- School
of Resources and Environment, Anhui Agricultural
University, 130 Changjiang
West Road, Hefei 230036, China
| | - Ruixi Chu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junchao Wu
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongfang Zhong
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Sheng Ye
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jian Liu
- Inner
Mongolia University Hohhot, Inner
Mongolia 010021, China
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- DICP-Surrey
Joint Centre for Future Materials, Department of Chemical and Process
Engineering and Advanced Technology Institute, University of Surrey, Guilford,
Surrey GU27XH, U.K.
| | - Song Fan
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
15
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
16
|
Choi AS, Moon TJ, Abuhashim W, Bhalotia A, Qian H, Paulsen KE, Lorkowski M, Ndamira C, Gopalakrishnan R, Krishnamurthy A, Schiemann WP, Karathanasis E. Can targeted nanoparticles distinguish cancer metastasis from inflammation? J Control Release 2023; 362:812-819. [PMID: 37011838 PMCID: PMC10548349 DOI: 10.1016/j.jconrel.2023.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Targeting ligands have been widely used to increase the intratumoral accumulation of nanoparticles and their uptake by cancer cells. However, these ligands aim at targets that are often also upregulated in inflamed tissues. Here, we assessed the ability of targeted nanoparticles to distinguish metastatic cancer from sites of inflammation. Using common targeting ligands and a 60-nm liposome as a representative nanoparticle, we generated three targeted nanoparticle (NP) variants that targeted either fibronectin, folate, or αvβ3 integrin, whose deposition was compared against that of standard untargeted NP. Using fluorescently labeled NPs and ex vivo fluorescence imaging of organs, we assessed the deposition of the NPs into the lungs of mice modeling 4 different biological landscapes, including healthy lungs, aggressive metastasis in lungs, dormant/latent metastasis in lungs, and lungs with general pulmonary inflammation. Among the four NP variants, fibronectin-targeting NP and untargeted NP exhibited the highest deposition in lungs harboring aggressive metastases. However, the deposition of all targeted NP variants in lungs with metastasis was similar to the deposition in lungs with inflammation. Only the untargeted NP was able to exhibit higher deposition in metastasis than inflammation. Moreover, flow-cytometry analysis showed all NP variants accumulated predominantly in immune cells rather than cancer cells. For example, the number of NP+ macrophages and dendritic cells was 16-fold greater than NP+ cancer cells in the case of fibronectin-targeting NP. Overall, targeted NPs were unable to distinguish cancer metastasis from general inflammation, which may have clinical implications to the nanoparticle-mediated delivery of cancer drugs.
Collapse
Affiliation(s)
- Andrew S Choi
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Taylor J Moon
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Walid Abuhashim
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Anubhuti Bhalotia
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Huikang Qian
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Kai E Paulsen
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Morgan Lorkowski
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Crystal Ndamira
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Ramamurthy Gopalakrishnan
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Animesha Krishnamurthy
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - William P Schiemann
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America.
| |
Collapse
|
17
|
Li R, Zhang J, Liu Q, Tang Q, Jia Q, Xiong Y, He J, Li Y. CREKA-modified liposomes target activated hepatic stellate cells to alleviate liver fibrosis by inhibiting collagen synthesis and angiogenesis. Acta Biomater 2023; 168:484-496. [PMID: 37392933 DOI: 10.1016/j.actbio.2023.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Activated hepatic stellate cells (HSCs) are considered the key driver of excessive extracellular matrix and abnormal angiogenesis, which are the main pathological manifestations of hepatic fibrosis. However, the absence of specific targeting moieties has rendered the development of HSC-targeted drug delivery systems a significant obstacle in the treatment of liver fibrosis. Here we have identified a notable increase in fibronectin expression on HSCs, which positively correlates with the progression of hepatic fibrosis. Thus, we decorated PEGylated liposomes with CREKA, a peptide with high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to activated HSCs. The CREKA-coupled liposomes exhibited enhanced cellular uptake in the human hepatic stellate cell line LX2 and selective accumulation in CCl4-induced fibrotic liver through the recognition of fibronectin. When loaded with sorafenib, the CREKA-modified liposomes effectively suppressed HSC activation and collagen accumulation in vitro. Furthermore. in vivo results demonstrated that the administration of sorafenib-loaded CREKA-liposomes at a low dose significantly mitigated CCl4-induced hepatic fibrosis, prevented inflammatory infiltration and reduced angiogenesis in mice. These findings suggest that CREKA-coupled liposomes have promising potential as a targeted delivery system for therapeutic agents to activated HSCs, thereby providing an efficient treatment option for hepatic fibrosis. STATEMENT OF SIGNIFICANCE: In liver fibrosis, activated hepatic stellate cells (aHSCs) are the key driver of extracellular matrix and abnormal angiogenesis. Our investigation has revealed a significant elevation in fibronectin expression on aHSCs, which is positively associated with the progression of hepatic fibrosis. Thus, we developed PEGylated liposomes decorated with CREKA, a molecule with a high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to aHSCs. The CREKA-coupled liposomes can specifically target aHSCs both in vitro and in vivo. Loading sorafenib into CREKA-Lip significantly alleviated CCl4-induced liver fibrosis, angiogenesis and inflammation at low doses. These findings suggest that our drug delivery system holds promise as a viable therapeutic option for liver fibrosis with minimal risk of adverse effects.
Collapse
Affiliation(s)
- Rui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
18
|
Zhu M, Zhu L, You Y, Sun M, Jin F, Song Y, Zhang J, Xu X, Ji J, Du Y. Positive Chemotaxis of CREKA-Modified Ceria@Polydopamine Biomimetic Nanoswimmers for Enhanced Penetration and Chemo-photothermal Tumor Therapy. ACS NANO 2023; 17:17285-17298. [PMID: 37595091 DOI: 10.1021/acsnano.3c05232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Tumor interstitial pressure represents the greatest barrier against drug diffusion into the depth of the tumor. Biometric nanomotors highlight the possibility of enhanced deep penetration and improve cellular uptake. However, control of their directionality remains difficult to achieve. Herein, we report cysteine-arginine-glutamic acid-lysine-alanine (CREKA)-modified ceria@polydopamine nanobowls as tumor microenvironment-fueled nanoscale motors for positive chemotaxis into the tumor depth or toward tumor cells. Upon laser irradiation, this nanoswimmer rapidly depletes the tumor microenvironment-specific hydrogen peroxide (H2O2) in the nanobowl, contributing to a self-generated gradient and subsequently propulsion (9.5 μm/s at 46 °C). Moreover, the asymmetrical modification of CREKA on nanobowls could automatically reconfigure the motion direction toward tumor depth or tumor cells in response to receptor-ligand interaction, leading to a deep penetration (70 μm in multicellular spheroids) and enhanced antitumor effects over conventional nanomedicine-induced chemo-photothermal therapy (tumor growth inhibition rate: 84.2% versus 56.9%). Thus, controlling the direction of nanomotors holds considerable potential for improved antitumor responses, especially in solid tumors with high tumor interstitial pressure.
Collapse
Affiliation(s)
- Minxia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Mingchen Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiansong Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
19
|
Farooq F, Amin A, Wani UM, Lone A, Qadri RA. Shielding and nurturing: Fibronectin as a modulator of cancer drug resistance. J Cell Physiol 2023; 238:1651-1669. [PMID: 37269547 DOI: 10.1002/jcp.31048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
Resistance to chemotherapy and targeted therapies constitute a common hallmark of most cancers and represent a dominant factor fostering tumor relapse and metastasis. Fibronectin, an abundant extracellular matrix glycoprotein, has long been proposed to play an important role in the pathobiology of cancer. Recent research has unraveled the role of Fibronectin in the onset of chemoresistance against a variety of antineoplastic drugs including DNA-damaging agents, hormone receptor antagonists, tyrosine kinase inhibitors, microtubule destabilizing agents, etc. The current review summarizes the role played by Fibronectin in mediating drug resistance against diverse anticancer drugs. We have also discussed how the aberrant expression of Fibronectin drives the oncogenic signaling pathways ultimately leading to drug resistance through the inhibition of apoptosis, promotion of cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Faizah Farooq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Umer Majeed Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Lone
- Department of Biochemistry, Deshbandu College, University of Delhi, Delhi, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
20
|
Jiang G, Xiang Z, Fang Q. Engineering magnetotactic bacteria MVs to synergize chemotherapy, ferroptosis and immunotherapy for augmented antitumor therapy. NANOSCALE HORIZONS 2023; 8:1062-1072. [PMID: 37306000 DOI: 10.1039/d3nh00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One main obstacle to targeted cancer therapies is the immunosuppressive tumor microenvironment, which can facilitate tumor growth and induce resistance to antitumor treatments. Recent studies have indicated that treatment combined with immunotherapy often yields a better prognosis than monotherapy. Bacterial membrane vesicles (MVs), nanostructures released from the membrane of bacteria, can be used as natural nanocarriers for drug delivery and stimulate an immune response because of their immunogenicity. Inspired by the development of synergistic therapeutic strategies, we herein propose a novel nanovaccine-based platform to achieve chemotherapy, ferroptosis therapy, and immunotherapy simultaneously. By simply culturing magnetotactic bacteria in the medium with doxorubicin (DOX) and then extracting specialized MVs (BMVs), BMV@DOX, which are membrane vesicles containing iron ions and DOX, were obtained. We confirmed that in BMV@DOX, the BMV component can stimulate the innate immune system, DOX acts as the chemotherapeutic agent and iron ions will induce ferroptosis. Furthermore, BMV@DOX vesicles modified with DSPE-PEG-cRGD peptides (T-BMV@DOX) have minimized systemic toxicity and increased tumor-specificity. We demonstrated that the smart MVs-based nanovaccine system not only showed superior performance in the treatment of 4T1 breast cancer but also effectively restrained the growth of drug-resistant MCF-7/ADR tumors in mice. Moreover, the nanovaccine could abrogate in vivo lung metastasis of tumor cells in a 4T1-Luc cell induced-lung breast cancer metastasis model. Collectively, the MVs-based nanoplatform offers an alternative promise for surmounting the limitations of monotherapy and may deserve further study for application in synergistic cancer therapy.
Collapse
Affiliation(s)
- Gexuan Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichu Xiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
| |
Collapse
|
21
|
Wang C, Wang H, Yang H, Xu C, Wang Q, Li Z, Zhang Z, Guan J, Yu X, Yang X, Yang X, Li Z. Targeting cancer-associated fibroblasts with hydroxyethyl starch nanomedicine boosts cancer therapy. NANO RESEARCH 2023; 16:7323-7336. [DOI: 10.1007/s12274-023-5394-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 03/28/2025]
|
22
|
Cheng Z, Jin Y, Li J, Shi G, Yu L, Shao B, Tian J, Du Y, Yuan Z. Fibronectin-targeting and metalloproteinase-activatable smart imaging probe for fluorescence imaging and image-guided surgery of breast cancer. J Nanobiotechnology 2023; 21:112. [PMID: 36978072 PMCID: PMC10053476 DOI: 10.1186/s12951-023-01868-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Residual lesions in the tumor bed have been a challenge for conventional white-light breast-conserving surgery. Meanwhile, lung micro-metastasis also requires improved detection methods. Intraoperative accurate identification and elimination of microscopic cancer can improve surgery prognosis. In this study, a smart fibronectin-targeting and metalloproteinase-activatable imaging probe CREKA-GK8-QC is developed. CREKA-GK8-QC possesses an average diameter of 21.7 ± 2.5 nm, excellent MMP-9 protein responsiveness and no obvious cytotoxicity. In vivo experiments demonstrate that NIR-I fluorescence imaging of CREKA-GK8-QC precisely detects orthotopic breast cancer and micro-metastatic lesions (nearly 1 mm) of lungs with excellent imaging contrast ratio and spatial resolution. More notably, fluorescence image-guided surgery facilitates complete resection and avoids residual lesions in the tumor bed, improving survival outcomes. We envision that our newly developed imaging probe shows superior capacity for specific and sensitive targeted imaging, as well as providing guidance for accurate surgical resection of breast cancer.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jiaqian Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guangyuan Shi
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Leyi Yu
- Haidian Section of Peking University Third Hospital, Beijing, 100080, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| |
Collapse
|
23
|
Zhao M, Xu R, Yang Y, Tong L, Liang J, Jiang Q, Fan Y, Zhang X, Sun Y. Bioabsorbable nano-micelle hybridized hydrogel scaffold prevents postoperative melanoma recurrence. J Control Release 2023; 356:219-231. [PMID: 36889462 DOI: 10.1016/j.jconrel.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
The residual and scattered small tumor tissue or cells after surgery are the main reason for tumor recurrence. Chemotherapy has a powerful ability to eradicate tumors but always accompanied by serious side effects. In this work, tissue-affinity mercapto gelatin (GelS) and dopamine-modified hyaluronic acid (HAD) were employed to fabricate a hybridized cross-linked hydrogel scaffold (HG) by multiple chemical reactions, which could integrate the doxorubicin (DOX) loaded reduction-responsive nano-micelle (PP/DOX) into this scaffold via click reaction to obtain the bioabsorbable nano-micelle hybridized hydrogel scaffold (HGMP). With the degradation of HGMP, PP/DOX was slowly released and formed targeted PP/DOX with degraded gelatin fragments as target molecules, which increased the intracellular accumulation, and inhibited the aggregation of B16F10 cells in vitro. In mouse models, HGMP absorbed the scattered B16F10 cells and released targeted PP/DOX to suppress tumorigenesis. For another, implantation of HGMP at the surgical site reduced the recurrence rate of postoperative melanoma and inhibited the growth of recurrent tumors. Meanwhile, HGMP significantly relieved the damage of free DOX to hair follicle tissue. This bioabsorbable nano-micelle hybridized hydrogel scaffold provided a valuable strategy for adjuvant therapy after tumor surgery.
Collapse
Affiliation(s)
- Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yuedi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; Sichuan Testing Centre for Biomaterials and Medical Devices, No.29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| |
Collapse
|
24
|
Wan J, Ren L, Li X, He S, Fu Y, Xu P, Meng F, Xian S, Pu K, Wang H. Photoactivatable nanoagonists chemically programmed for pharmacokinetic tuning and in situ cancer vaccination. Proc Natl Acad Sci U S A 2023; 120:e2210385120. [PMID: 36787350 PMCID: PMC9974508 DOI: 10.1073/pnas.2210385120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Immunotherapy holds great promise for the treatment of aggressive and metastatic cancers; however, currently available immunotherapeutics, such as immune checkpoint blockade, benefit only a small subset of patients. A photoactivatable toll-like receptor 7/8 (TLR7/8) nanoagonist (PNA) system that imparts near-infrared (NIR) light-induced immunogenic cell death (ICD) in dying tumor cells in synchrony with the spontaneous release of a potent immunoadjuvant is developed here. The PNA consists of polymer-derived proimmunoadjuvants ligated via a reactive oxygen species (ROS)-cleavable linker and polymer-derived photosensitizers, which are further encapsulated in amphiphilic matrices for systemic injection. In particular, conjugation of the TLR7/8 agonist resiquimod to biodegradable macromolecular moieties with different molecular weights enabled pharmacokinetic tuning of small-molecule agonists and optimized delivery efficiency in mice. Upon NIR photoirradiation, PNA effectively generated ROS not only to ablate tumors and induce the ICD cascade but also to trigger the on-demand release of TLR agonists. In several preclinical cancer models, intravenous PNA administration followed by NIR tumor irradiation resulted in remarkable tumor regression and suppressed postsurgical tumor recurrence and metastasis. Furthermore, this treatment profoundly shifted the tumor immune landscape to a tumoricidal one, eliciting robust tumor-specific T cell priming in vivo. This work highlights a simple and cost-effective approach to generate in situ cancer vaccines for synergistic photodynamic immunotherapy of metastatic cancers.
Collapse
Affiliation(s)
- Jianqin Wan
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250117, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou310003, P. R. China
| | - Xiaoyan Li
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou310003, P. R. China
- Department of Chemical Engineering, Zhejiang University, Hangzhou310027, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore637457, Singapore
| | - Yang Fu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, P. R. China
| | - Peirong Xu
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou310003, P. R. China
- Department of Chemical Engineering, Zhejiang University, Hangzhou310027, P. R. China
| | - Fanchao Meng
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou310003, P. R. China
| | - Shiyun Xian
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou310003, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore637457, Singapore
| | - Hangxiang Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250117, P. R. China
| |
Collapse
|
25
|
Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, Jian L, Ma J, Yu J, Yang Z, Wu P, Li G, Liu X, Kang Z, Wang Z, Wang L, Wang H, Xu W. Transformable ECM Deprivation System Effectively Suppresses Renal Cell Carcinoma by Reversing Anoikis Resistance and Increasing Chemotherapy Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203518. [PMID: 36004775 DOI: 10.1002/adma.202203518] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Extracellular matrix (ECM) is crucial in various biological functions during tumor progression, including induction of anoikis resistance and cell adhesion-mediated drug resistance (CAM-DR). Fibronectin (FN) is a vital ECM component with direct regulatory effects on ECM-mediated anoikis resistance and CAM-DR, making it an attractive and innovative therapeutic target for depriving ECM in tumor tissue. Herein, an ECM deprivation system (EDS) is developed based on FN targeting self-assembly peptide for constructing nanofibers in the ECM of renal cell carcinoma (RCC), which contributes to: i) targeting and recognizing FN to form nanofibers for long-term retention in ECM, ii) reversing anoikis resistance via arresting the FN signaling pathway, and iii) serving as a drug-loading platform for sensitizing chemotherapy by ameliorating CAM-DR. The results reveal that EDS significantly reverses anoikis resistance of RCC cells by inhibiting the phosphorylation of FAK, a positive regulator of the FN signaling pathway. Meanwhile, EDS serves as a chemotherapy-sensitizer of cancer, exerting significant synergistic effects with doxorubicin (DOX). In vivo validation experiments show that EDS effectively suppresses metastasis and tumor growth with chemotherapy resistance. Collectively, the innovative EDS notably inhibits the tumor-promoting effect of ECM and may provide a novel approach for suppressing ECM and enhancing chemo-drug sensitivity.
Collapse
Affiliation(s)
- Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Cong Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jiaqi Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yulin Lv
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Bo Fu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Lingrui Jian
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jinpeng Ma
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Jiaao Yu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Zongzheng Yang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Peng Wu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Guangbin Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Xiao Liu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Zhijian Kang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Ziqi Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| | - Lei Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Heilongjiang Province, Harbin, 150001, China
| |
Collapse
|
26
|
Wang G, Li W, Shi G, Tian Y, Kong L, Ding N, Lei J, Jin Z, Tian J, Du Y. Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. Eur J Nucl Med Mol Imaging 2022; 49:2723-2734. [PMID: 35590110 PMCID: PMC9206605 DOI: 10.1007/s00259-022-05834-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/01/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE A sensitive and specific imaging method to detect metastatic cancer cells in lymph nodes to detect the early-stage breast cancer is still a challenge. The purpose of this study was to investigate a novel breast cancer-targeting and tumour microenvironment ATP-responsive superparamagnetic iron oxide nanoparticles (SPIOs) imaging probe (abbreviated as SPIOs@A-T) that was developed to detect lymph node metastasis through fluorescence molecular imaging (FMI) and magnetic particle imaging (MPI). METHODS The conjugation of the targeted peptide CREKA and SPIOs was via linker sulfo-SMCC, while the dsDNA-Cy5.5 was modified on SPIOs through the conjugation between maleimide group in sulfo-SMCC and sulfydryl group in dsDNA-Cy5.5. SPIOs@A-T was characterised for its imaging properties, targeting ability and toxicity in vitro. Mice with metastatic lymph node (MLN) of breast cancer were established to evaluate the FMI and MPI imaging strategy in vivo. Healthy mice with normal lymph node (NLN) were used as control group. Histological examination and biosafety evaluation were performed for further assessment. RESULTS After injection with SPIOs@A-T, the obvious high fluorescent intensity and MPI signal were observed in MLN group than those in NLN group. FMI can specifically light up MLN using an ATP-responsive fluorescence design. On the other hand, MPI could complement the limitation of imaging depth from FMI and could detect MLN more sensitively. Besides, the biosafety evaluation results showed SPIOs@A-T had no detectable biological toxicity. CONCLUSION SPIOs@A-T imaging probe in combination with FMI and MPI can provide a promising novel method for the precise detection of MLN in vivo.
Collapse
Affiliation(s)
- Guorong Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guangyuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yu Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Lingyan Kong
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ning Ding
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Lei
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100083, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
27
|
Qiu F, Long H, Zhang L, Liu J, Yang Z, Huang X. Dermcidin Enhances the Migration, Invasion, and Metastasis of Hepatocellular Carcinoma Cells In Vitro and In Vivo. J Clin Transl Hepatol 2022; 10:429-438. [PMID: 35836774 PMCID: PMC9240242 DOI: 10.14218/jcth.2021.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/09/2021] [Accepted: 09/17/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a common primary liver neoplasm with high mortality. Dermcidin (DCD), an antimicrobial peptide, has been reported to participate in oncogenesis. This study assessed the effects and underlying molecular events of DCD overexpression and knockdown on the regulation of HCC progression in vitro and in vivo. METHODS The serum DCD level was detected using enzyme-linked immunosorbent assay. DCD overexpression, knockdown, and Ras-related C3 botulinum toxin substrate 1 (Rac1) rescue were performed in SK-HEP-1 cells using plasmids. Immunofluorescence staining, quantitative PCR, and Western blotting were used to detect the expression of different genes and proteins. Differences in HCC cell migration and invasion were detected by Transwell migration and invasion assays. A nude mouse HCC cell orthotopic model was employed to verify the in vitro data. RESULTS The level of serum DCD was higher in patients with HCC and in SK-HEP-1 cells. DCD overexpression caused upregulation of DCD, fibronectin, Rac1, and cell division control protein 42 homologue (Cdc42) mRNA and proteins as well as actin-related protein 2/3 (Arp2/3) protein (but reduced Arp2/3 mRNA levels) and activated Rac1 and Cdc42. Phenotypically, DCD overexpression induced HCC cell migration and invasion in vitro, whereas knockout of DCD expression had the opposite effects. A Rac1 rescue experiment in DCD-knockdown HCC cells increased HCC cell migration and invasion and increased the levels of active Rac1/total Rac1, Wiskott-Aldrich syndrome family protein (WASP), Arp2/3, and fibronectin. DCD overexpression induced HCC cell metastasis to the abdomen and liver in vivo. CONCLUSIONS DCD promotes HCC cell migration, invasion, and metastasis through upregulation of noncatalytic region of tyrosine kinase adaptor protein 1 (Nck1), Rac1, Cdc42, WASP, and Arp2/3, which induce actin cytoskeletal remodeling and fibronectin-mediated cell adhesion in HCC cells.
Collapse
Affiliation(s)
- Fanghua Qiu
- Department of Hospital Acquired Infection Control, Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Long
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieyuan Liu
- University of California, San Diego, Warren College, San Diego, CA, USA
| | - Zetian Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianzhang Huang
- Department of Clinical Laboratory, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence to: Xianzhang Huang, Department of Clinical Laboratory, Second Affiliated Hospital to Guangzhou University of Chinese Medicine, 58 Dade Road, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-4320-9181. Tel: +86-13544549165, Fax: +86-20-81887233, E-mail:
| |
Collapse
|
28
|
Zhang N, Xin X, Feng N, Wu D, Zhang J, Yu T, Jiang Q, Gao M, Yang H, Zhao S, Tian Q, Zhang Z. Combining Fruquintinib and Doxorubicin in Size-Converted Nano-Drug Carriers for Tumor Therapy. ACS Biomater Sci Eng 2022; 8:1907-1920. [PMID: 35482571 DOI: 10.1021/acsbiomaterials.1c01606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-modality tumor therapy confronts many challenges, such as incomplete tumor ablation, tumor metastasis, and limited tumor tissue penetration. Combination therapy simultaneously achieves deep drug delivery to fully exert synergistic effects and has received increasing attention. Herein, based on the excellent efficacy of anti-angiogenesis therapy combined with chemotherapy and the specific size of the poly-amidoamine dendrimer (PAMAM), we developed a pH-triggered size-converted nano-drug delivery system to co-deliver fruquintinib (FRU) and doxorubicin (DOX). This study used cyclic Arg-Gly-Asp (cRGD) as the target, pH-responsive liposomes (PRLs), and PAMAM as the drug carrier. The FRU and DOX-loaded small-particle-size complex polyamide-amine-doxorubicin (PD) was encapsulated into PRLs with the target to construct a size-converted nano-drug delivery system, PRL-PD/FRU-cRGD. This nanoparticle (∼120 nm) actively targeted tumor tissues and used the acidic microenvironment outside tumor cells to release FRU and small-particle-size complex PD (∼15 nm), enabling the conversion of large-size nanoparticles to small-size nanoparticles and resulting in efficient tumor accumulation. In addition, the released PD could realize the deep delivery of DOX, showing efficient deep tumor penetration and further enhancing the tumor-suppressing effect. The results of in vivo and in vitro experiments showed that PRL-PD/FRU-cRGD exhibited the excellent synergistic effects of anti-angiogenesis therapy combined with chemotherapy and effectively inhibited tumor cell proliferation and metastasis, thereby achieving efficient tumor therapy. Thus, PRL-PD/FRU-cRGD shows great potential for combined tumor therapy.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangying Xin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Nannan Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Deqiao Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tong Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qianqian Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Siyuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qingfeng Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
29
|
Jin X, Wang D, Lei M, Guo Y, Cui Y, Chen F, Sun W, Chen X. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J Transl Med 2022; 20:191. [PMID: 35509067 PMCID: PMC9066866 DOI: 10.1186/s12967-022-03370-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Triosephosphate isomerase 1 (TPI1), as a key glycolytic enzyme, is upregulated in multiple cancers. However, expression profile and regulatory mechanism of TPI1 in breast cancer (BRCA) remain mysterious. Methods Western blotting and immunohistochemistry (IHC) assays were used to investigate the expression of TPI1 in BRCA specimens and cell lines. TPI1 correlation with the clinicopathological characteristics and prognosis of 362 BRCA patients was analyzed using a tissue microarray. Overexpression and knockdown function experiments in cells and mice models were performed to elucidate the function and mechanisms of TPI1-induced BRCA progression. Related molecular mechanisms were clarified using co-IP, IF, mass spectrometric analysis, and ubiquitination assay. Results We have found TPI1 is highly expressed in BRCA tissue and cell lines, acting as an independent indicator for prognosis in BRCA patients. TPI1 promotes BRCA cell glycolysis, proliferation and metastasis in vitro and in vivo. Mechanistically, TPI1 activates phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway to regulate epithelial–mesenchymal transformation (EMT) and aerobic glycolysis, which is positively mediated by cell division cycle associated 5 (CDCA5). Moreover, TPI1 interacts with sequestosome-1 (SQSTM1)/P62, and P62 decreases the protein expression of TPI1 by promoting its ubiquitination in MDA-MB-231 cells. Conclusions TPI1 promotes BRCA progression by stabilizing CDCA5, which then activates the PI3K/AKT/mTOR pathway. P62 promotes ubiquitin-dependent proteasome degradation of TPI1. Collectively, TPI1 promotes tumor development and progression, which may serve as a therapeutic target for BRCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03370-2.
Collapse
Affiliation(s)
- Xiaoying Jin
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Dandan Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Mengxia Lei
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yan Guo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yuqing Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Fengzhi Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Weiling Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| |
Collapse
|
30
|
Zhang W, Wang J, Xie Z, Zou H, Chen Q, Xu L, Hu L, Fang N, Xu J, Zhou J, Liu J, Ran H, Wang Z, Zhang Y, Guo D. Antithrombotic Therapy by Regulating the ROS-Mediated Thrombosis Microenvironment and Specific Nonpharmaceutical Thrombolysis Using Prussian Blue Nanodroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106252. [PMID: 35246943 DOI: 10.1002/smll.202106252] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
In thrombotic diseases, the effects of reactive oxygen species (ROS)-mediated oxidative stress as a "perpetrator" in thrombosis must be resolved. Accordingly, an insufficient understanding of thrombus therapy prompted the authors to pursue a more comprehensive and efficient antithrombotic treatment strategy. A Prussian blue (PB)-based nanodroplet system (PB-PFP@PC) is designed using PB and perfluorinated pentane (PFP) in the core, and a targeting peptide (CREKA, Cys-Arg-Glu-Lys-Ala) is attached to poly(lactic-coglycolic acid) (PLGA) as the delivery carrier shell. Upon near-infrared (NIR) laser irradiation, PB and PFP jointly achieve an unprecedented dual strategy for drug-free thrombolysis: photothermal therapy (PTT) combined with optical droplet vaporization (ODV). PB, a nanoenzyme, also regulates the vascular microenvironment via its antioxidant activity to continuously scavenge abnormally elevated ROS and correspondingly reduce inflammatory factors in the thrombus site. This study provides a demonstration of not only the potential of ODV in thrombus therapy but also the mechanism underlying PTT thrombolysis due to thermal ablation-induced fibrin network structural damage. Moreover, PB catalyzes ROS to generate oxygen (O2 ), which combines with the ODV effect, enhancing the ultrasound signal. Thus, regulation of the thrombosis microenvironment combined with specific nonpharmaceutical thrombolysis by PB nanodroplets provides a more comprehensive and efficient antithrombotic therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Junrui Wang
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Zhuoyan Xie
- Department of Ultrasound, Chongqing General Hospital of Chinese Academy of Sciences, Chongqing, 401121, China
| | - Hongmi Zou
- Department of Ophthalmology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Qiaoqi Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Lian Xu
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Liu Hu
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Ni Fang
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Jie Xu
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Jun Zhou
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Jia Liu
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Yu Zhang
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| | - Dajing Guo
- Department of Radiology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
31
|
Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov Today 2022; 27:1495-1512. [DOI: 10.1016/j.drudis.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
|
32
|
López Mendoza CM, Alcántara Quintana LE. Smart Drug Delivery Strategies for Cancer Therapy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.753766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the most widely used strategies to fight cancer, although it has disadvantages such as accumulation in healthy organs and lack of specificity by cancer cells (non-targeted molecules), among others, resulting in adverse effects on patients that limit the dose or follow-up with the same. However, the treatment can also fail due to the resistance mechanisms that cancer cells have to these agents. Because of these limitations, smart drug delivery strategies have been developed to overcome treatment challenges. These smart drug strategies are made with the aim of passively or actively releasing the drug into the tumor environment, increasing the uptake of the chemotherapeutic agent by the cancer cells, thus reducing the adverse effects on other vital organs. Also, these strategies can be guided with molecules on their surface that interact with the tumor microenvironment or with specific receptors on the cancer cell membrane, thus conferring high affinity. This mini review summarizes advances in the development of drug delivery techniques for cancer treatment, including different smart nanocarriers with single or multifunctional stimuli responsiveness. At the same time, we highlight the toxicity and delivery of these strategies in in vivo models. Despite innovation in smart delivery techniques, there are still biodistribution and customization challenges to be overcome in future research.
Collapse
|
33
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
34
|
Liang X, Chen M, Bhattarai P, Hameed S, Tang Y, Dai Z. Complementing Cancer Photodynamic Therapy with Ferroptosis through Iron Oxide Loaded Porphyrin-Grafted Lipid Nanoparticles. ACS NANO 2021; 15:20164-20180. [PMID: 34898184 DOI: 10.1021/acsnano.1c08108] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials that combine multimodality imaging and therapeutic functions within a single nanoplatform have drawn extensive attention for molecular medicines and biological applications. Herein, we report a theranostic nanoplatform based on a relatively smaller (<20 nm) iron oxide loaded porphyrin-grafted lipid nanoparticles (Fe3O4@PGL NPs). The amphiphilic PGL easily self-assembled on the hydrophobic exterior surface of ultrasmall Fe3O4 NPs, resulting in a final ultrasmall Fe3O4@PGL NPs with diameter of ∼10 nm. The excellent self-assembling nature of the as-synthesized PGL NPs facilitated a higher loading of porphyrins, showed a negligible dark toxicity, and demonstrated an excellent photodynamic effect against HT-29 cancer cells in vitro. The in vivo experimental results further confirmed that Fe3O4@PGL NPs were ideally qualified for both the fluorescence and magnetic resonance (MR) imaging guided nanoplatforms to track the biodistribution and therapeutic responses of NPs as well as to simultaneously trigger the generation of highly cytotoxic reactive oxygen species (ROS) necessary for excellent photodynamic therapy (PDT). After recording convincing therapeutic responses, we further evaluated the ability of Fe3O4@PGL NPs/Fe3O4@Lipid NPs for ferroptosis therapy (FT) via tumor microenvironment (TME) modulation for improved anticancer activity. We hypothesized that tumor-associated macrophages (TAMs) could significantly improve the efficacy of FT by accelerating the Fenton reaction in vitro. In our results, the Fe ions released in vitro directly contributed to the Fenton reaction, whereas the presence of RAW 264.7 macrophages further accelerated the ROS generation as observed by the fluorescence imaging. The significant increase in the ROS during the coincubation of NPs, endocytosed by HT-29 cells and RAW264.7 cells, further induced increased cellular toxicity of cancer cells.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Min Chen
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Department of Biophotonics, Phutung Research Institute, Kathmandu 12335, Nepal
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Yida Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021; 13:1972. [PMID: 34834387 PMCID: PMC8619749 DOI: 10.3390/pharmaceutics13111972] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a significant health problem worldwide. Unfortunately, current therapeutic strategies lack a sufficient level of specificity and can harm adjacent healthy cells. Consequently, to address the clinical need, novel approaches to improve treatment efficiency with minimal side effects are required. Nanotechnology can substantially contribute to the generation of differentiated products and improve patient outcomes. Evidence from previous research suggests that nanotechnology-based drug delivery systems could provide a promising platform for the targeted delivery of traditional chemotherapeutic drugs and novel small molecule therapeutic agents to treat lung cancer cells more effectively. This has also been found to improve the therapeutic index and reduce the required drug dose. Nanodrug delivery systems also provide precise control over drug release, resulting in reduced toxic side effects, controlled biodistribution, and accelerated effects or responses. This review highlights the most advanced and novel nanotechnology-based strategies, including targeted nanodrug delivery systems, stimuli-responsive nanoparticles, and bio-nanocarriers, which have recently been employed in preclinical and clinical investigations to overcome the current challenges in lung cancer treatments.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - David O’Sullivan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
| | - Seamas C. Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
36
|
Zegheb N, Boubekri C, Lanez T, Lanez E, Küçükkılınç TT, Öz E, Khennoufa A, Khamouli S, Belaidi S. In Vitro and In Silico Determination of some N-ferrocenylmethylaniline Derivatives as Anti-Proliferative Agents against MCF-7 Human Breast Cancer Cell Lines. Anticancer Agents Med Chem 2021; 22:1426-1437. [PMID: 34170810 DOI: 10.2174/1871520621666210624141712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Since the binding of estradiol to its receptor promotes breast cancer cell proliferation (in the ER+ tumours), many molecules targeting this protein have been synthesized to counteract the estradiol action. Ferrocene derivatives have proved their efficiency against hormone-dependent breast cancer cells (MCF-7). OBJECTIVE In this study, we aimed to find new ferrocene derivatives having pharmacochemistry properties as potential drugs against human breast cancer cells. METHODS A series of 29 N-ferrocenylmethylaniline derivatives A0-A28 were synthesised, and their anti-proliferative activity against both hormone-dependent (MCF-7) and independent (MDA-MB 231) human breast cancer cell lines were performed using the MTT test. Molecular docking and drug-likeness prediction were also performed for the five most active derivatives towards MCF-7. A QSAR model was also developed for the perdition of the anti-proliferative activity against MCF-7 cell lines using molecular descriptors and MLR analysis. RESULTS All studied derivatives demonstrated better cytotoxicity against MCF-7 compared to the MDA-MB-231 cell lines, and compounds A2, A9, A14, A17, and A27 were the most potent ones; however, but still less active than the standard anti-cancer drug crizotinib. The QSAR study revealed good predictive ability as shown by R2cv = 0.848. CONCLUSION In vitro and in silico results indicated that derivatives A2, A9, A14, A17, and A27 possess the highest anti-proliferative activity, t. These results can be used to design more potent N-ferrocenylmethylaniline derivatives as anti-proliferative agents.
Collapse
Affiliation(s)
- Nadjiba Zegheb
- VTRS Laboratory, University of El Oued B.P.789, 39000, El Oued, Algeria
| | - Cherifa Boubekri
- Department of Material Sciences, University of Biskra B. P. 145 RP, Biskra 07000, Algeria
| | - Touhami Lanez
- VTRS Laboratory, University of El Oued B.P.789, 39000, El Oued, Algeria
| | - Elhafnaoui Lanez
- VTRS Laboratory, University of El Oued B.P.789, 39000, El Oued, Algeria
| | | | - Esin Öz
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ali Khennoufa
- VTRS Laboratory, University of El Oued B.P.789, 39000, El Oued, Algeria
| | - Saida Khamouli
- Department of Material Sciences, University of Biskra B. P. 145 RP, Biskra 07000, Algeria
| | - Salah Belaidi
- Department of Material Sciences, University of Biskra B. P. 145 RP, Biskra 07000, Algeria
| |
Collapse
|
37
|
Gallorini M, Carradori S. Understanding collagen interactions and their targeted regulation by novel drugs. Expert Opin Drug Discov 2021; 16:1239-1260. [PMID: 34034595 DOI: 10.1080/17460441.2021.1933426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Among protein and fibers in the extracellular matrix (ECM), collagen is the most copious and widely employed in cosmetic, food, pharmaceutical, and biomedical industries due to its extensive biocompatible and versatile properties. In the last years, the knowledge about functions of collagens increased and expanded dramatically. Once considered only crucial for the ECM scaffolding and mechanotransduction, additional functional roles have now been ascribed to the collagen superfamily which are defined by other recently discovered domains, supramolecular assembly and receptors.Areas covered: Given the importance of each step in the collagen biosynthesis, folding and signaling, medicinal chemists have explored small molecules, peptides, and monoclonal antibodies to modulate enzymes, receptors and interactions with the physiological ligands of collagen. These compounds were also explored toward diseases and pathological conditions. The authors discuss this providing their expert perspectives on the subject area.Expert opinion: Understanding collagen protein properties and its interactome is beneficial for therapeutic drug design. Nevertheless, compounds targeting collagen-based interactome suffered from the presence of different isoforms for each target and the lack of specific 3D crystal structures able to guide properly drug design.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
38
|
Antitumor immune responses induced by photodynamic and sonodynamic therapy: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
40
|
Dash BS, Jose G, Lu YJ, Chen JP. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int J Mol Sci 2021; 22:2989. [PMID: 33804239 PMCID: PMC8000837 DOI: 10.3390/ijms22062989] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the deadliest diseases in human history with extremely poor prognosis. Although many traditional therapeutic modalities-such as surgery, chemotherapy, and radiation therapy-have proved to be successful in inhibiting the growth of tumor cells, their side effects may vastly limited the actual benefits and patient acceptance. In this context, a nanomedicine approach for cancer therapy using functionalized nanomaterial has been gaining ground recently. Considering the ability to carry various anticancer drugs and to act as a photothermal agent, the use of carbon-based nanomaterials for cancer therapy has advanced rapidly. Within those nanomaterials, reduced graphene oxide (rGO), a graphene family 2D carbon nanomaterial, emerged as a good candidate for cancer photothermal therapy due to its excellent photothermal conversion in the near infrared range, large specific surface area for drug loading, as well as functional groups for functionalization with molecules such as photosensitizers, siRNA, ligands, etc. By unique design, multifunctional nanosystems could be designed based on rGO, which are endowed with promising temperature/pH-dependent drug/gene delivery abilities for multimodal cancer therapy. This could be further augmented by additional advantages offered by functionalized rGO, such as high biocompatibility, targeted delivery, and enhanced photothermal effects. Herewith, we first provide an overview of the most effective reducing agents for rGO synthesis via chemical reduction. This was followed by in-depth review of application of functionalized rGO in different cancer treatment modalities such as chemotherapy, photothermal therapy and/or photodynamic therapy, gene therapy, chemotherapy/phototherapy, and photothermal/immunotherapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan;
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
41
|
Yang H, Liu R, Xu Y, Qian L, Dai Z. Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment. NANO-MICRO LETTERS 2021; 13:35. [PMID: 34138222 PMCID: PMC8187547 DOI: 10.1007/s40820-020-00561-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/31/2020] [Indexed: 05/13/2023]
Abstract
Patients with pancreatic cancer (PCa) have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) is a minimally invasive treatment modality whose efficacy and safety in treating unresectable localized PCa have been corroborated in clinic. Yet, it suffers from certain limitations during clinical exploitation, including insufficient photosensitizers (PSs) delivery, tumor-oxygenation dependency, and treatment escape of aggressive tumors. To overcome these obstacles, an increasing number of researchers are currently on a quest to develop photosensitizer nanoparticles (NPs) by the use of a variety of nanocarrier systems to improve cellular uptake and biodistribution of photosensitizers. Encapsulation of PSs with NPs endows them significantly higher accumulation within PCa tumors due to the increased solubility and stability in blood circulation. A number of approaches have been explored to produce NPs co-delivering multi-agents affording PDT-based synergistic therapies for improved response rates and durability of response after treatment. This review provides an overview of available data regarding the design, methodology, and oncological outcome of the innovative NPs-based PDT of PCa.
Collapse
Affiliation(s)
- Huanyu Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| |
Collapse
|
42
|
Xu Y, Liu R, Dai Z. Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. NANOSCALE 2020; 12:21001-21014. [PMID: 33078813 DOI: 10.1039/d0nr05452f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CRISPR-Cas9, the breakthrough genome-editing technology, has emerged as a promising tool to prevent and cure various diseases. The efficient genome editing technology strongly relies on the specific and effective delivery of CRISPR/Cas9 cargos. However, the lack of a safe, specific, and efficient non-viral delivery system for in vivo genome editing remains a major limit for its clinical translation. In this review, we will first briefly introduce the working mechanism of CRISPR/Cas9 and the patterns of CRISPR/Cas9 delivery. Furthermore, the physiological obstacles for the delivery process in vivo are elaborated. Finally, the key considerations will be deeply discussed in designing non-viral nanovectors for therapeutic CRISPR/Cas9 delivery in vivo, including the effective encapsulation of large-size macromolecules, targeting specific tissues and cells, efficient endosomal escape and safety concerns of the vector systems, in the hope of inviting more comprehensive studies on the development of safe, specific, and efficient non-viral nanovectors for delivering a CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China. and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
43
|
Liang Z, Li J, Zhu B. Lung Cancer Combination Treatment: Evaluation of the Synergistic Effect of Cisplatin Prodrug, Vinorelbine and Retinoic Acid When Co-Encapsulated in a Multi-Layered Nano-Platform. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4519-4531. [PMID: 33149550 PMCID: PMC7602907 DOI: 10.2147/dddt.s251749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Purpose Lung cancer remains the leading cancer-associated deaths worldwide. Cisplatin (CIS) was often used in combination with other drugs for the treatment of non-small cell lung cancer (NSCLC). Prodrug is an effective strategy to improve the efficiency of drugs and reduce the toxicity. The aim of this study was to prepare and characterize CIS prodrug, vinorelbine (VNR), and all-trans retinoic acid (ATRA) co-delivered multi-layered nano-platform, evaluating their antitumor activity in vitro and in vivo. Methods Cisplatin prodrug (CISP) was synthesized. A multi-layered nano-platform contained CISP, VNR and ATRA were prepared and named CISP/VNR/ATRA MLNP. The physicochemical properties of CISP/VNR/ATRA MLNP were investigated. In vitro cytotoxicity against CIS-resistant NSCLC cells (A549/CIS cells) and Human normal lung epithelial cells (BEAS-2B cells) was investigated, and in vivo anti-tumor efficiency was evaluated on mice bearing A549/CIS cells xenografts. Results CISP/VNR/ATRA MLNP were spherical particles with particle size and zeta potential of 158 nm and 12.3 mV. CISP/VNR/ATRA MLNP (81.36%) was uptake by cancer cells in vitro. CISP/VNR/ATRA MLNP could significantly inhibit the in vivo antitumor growth and suspended the tumor volume from 1440 mm3 to 220 mm3. Conclusion It could be concluded that the CISP/VNR/ATRA MLNP may be used as a promising system for lung cancer combination treatment.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Juan Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Day Oncology Unit, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Budong Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Day Oncology Unit, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| |
Collapse
|
44
|
Mehrotra N, Kharbanda S, Singh H. Peptide-based combination nanoformulations for cancer therapy. Nanomedicine (Lond) 2020; 15:2201-2217. [PMID: 32914691 DOI: 10.2217/nnm-2020-0220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Research in cancer therapy is moving towards the use of biomolecules in combination with conventional approaches for improved disease outcome. Among the biomolecules explored, peptides are strong contenders due to their small size, high specificity, low systemic toxicity and wide inter/intracellular targets. The use of nanoformulations for such combination approaches can lead to further improvement in efficacy by reducing off-target cytotoxicity, increasing circulation time, tumor penetration and accumulation. This review focuses on nanodelivery systems for peptide-based combinations with chemo, immuno, radiation and hormone therapy. It gives an overview of the latest therapeutic research being conducted using combination nanoformulations with anticancer peptides, cell penetrating/tumor targeting peptides, peptide nanocarriers, peptidomimetics, peptide-based hormones and peptide vaccines. The challenges hindering clinical translation are also discussed.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Surender Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
45
|
Arolt C, Meyer M, Hoffmann F, Wagener-Ryczek S, Schwarz D, Nachtsheim L, Beutner D, Odenthal M, Guntinas-Lichius O, Buettner R, von Eggeling F, Klußmann JP, Quaas A. Expression Profiling of Extracellular Matrix Genes Reveals Global and Entity-Specific Characteristics in Adenoid Cystic, Mucoepidermoid and Salivary Duct Carcinomas. Cancers (Basel) 2020; 12:cancers12092466. [PMID: 32878206 PMCID: PMC7564650 DOI: 10.3390/cancers12092466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The extracellular matrix (ECM), an important factor in tumour metastasis and therapy resistance, has not been studied in salivary gland carcinomas (SGC), so far. In this retrospective study, we profiled the RNA expression of 28 ECM-related genes in 11 adenoid cystic (AdCy), 14 mucoepidermoid (MuEp) and 9 salivary duct carcinomas (SaDu). Also, we validated our results in a multimodal approach. MuEp and SaDu shared a common gene signature involving an overexpression of COL11A1. In contrast, nonhierarchical clustering revealed a more specific gene expression pattern for AdCy, characterized by overexpression of COL27A1. In situ studies at RNA level indicated that in AdCy, ECM production results from tumour cells and not from cancer-associated fibroblasts as is the case in MuEp and SaDu. For the first time, we characterized the ECM composition in SGC and identified several differentially expressed genes, which are potential therapeutic targets. Abstract The composition of the extracellular matrix (ECM) plays a pivotal role in tumour initiation, metastasis and therapy resistance. Until now, the ECM composition of salivary gland carcinomas (SGC) has not been studied. We quantitatively analysed the mRNA of 28 ECM-related genes of 34 adenoid cystic (AdCy; n = 11), mucoepidermoid (MuEp; n = 14) and salivary duct carcinomas (SaDu; n = 9). An incremental overexpression of six collagens (including COL11A1) and four glycoproteins from MuEp and SaDu suggested a common ECM alteration. Conversely, AdCy and MuEp displayed a distinct overexpression of COL27A1 and LAMB3, respectively. Nonhierarchical clustering and principal component analysis revealed a more specific pattern for AdCy with low expression of the common gene signature. In situ studies at the RNA and protein level confirmed these results and indicated that, in contrast to MuEp and SaDu, ECM production in AdCy results from tumour cells and not from cancer-associated fibroblasts (CAFs). Our findings reveal different modes of ECM production leading to common and distinct RNA signatures in SGC. Of note, an overexpression of COL27A1, as in AdCy, has not been linked to any other neoplasm so far. Here, we contribute to the dissection of the ECM composition in SGC and identified a panel of deferentially expressed genes, which could be putative targets for SGC therapy and overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Christoph Arolt
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
- Correspondence: ; Tel.: +49-221-478-4726
| | - Moritz Meyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, MALDI Imaging and Innovative Biophotonics, Jena University Hospital, 07747 Jena, Germany;
| | - Svenja Wagener-Ryczek
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - David Schwarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Lisa Nachtsheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Margarete Odenthal
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Head and Neck Surgery, Jena University Hospital, 07747 Jena, Germany;
| | - Reinhard Buettner
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, MALDI Imaging, Core Unit Proteome Analysis, DFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL), Jena University Hospital, 07747 Jena, Germany;
| | - Jens Peter Klußmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Alexander Quaas
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| |
Collapse
|