1
|
Dong D, Song Y, Wu S, Wang B, Peng C, Zhang W, Kong W, Zhang Z, Song J, Hou LH, Li S. Molecular basis of Ad5-nCoV vaccine-induced immunogenicity. Structure 2025; 33:858-868.e5. [PMID: 40112804 DOI: 10.1016/j.str.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Ad5-nCoV (Convidecia) is listed for emergency use against COVID-19 by the World Health Organization (WHO) and has been globally administered to millions of people. It utilizes human adenovirus 5 (Ad5) replication-incompetent vector to deliver the spike (S) protein gene from various SARS-CoV-2 strains. Despite promising clinical data, the molecular mechanism underlying its high immunogenicity and adverse reactions remain incompletely understood. Here, we primarily applied cryo-electron tomography (cryo-ET), fluorescence microscopy and mass spectrometry to analyze the Ad5-nCoV_Wu and Ad5-nCoV_O vaccine-induced S antigens. These antigens encode the unmodified SARS-CoV-2 Wuhan-Hu-1 S gene and the stabilized Omicron S gene, respectively. Our findings highlight the structural integrity, antigenicity, and dense distribution on cell membrane of the vaccine-induced S proteins. Ad5-nCoV_O induced S proteins exhibit improved stability and reduced syncytia formation among inoculated cells. Our work demonstrates that Ad5-nCoV is a prominent platform for antigen induction and cryo-ET can be a useful technique for vaccine characterization and development.
Collapse
Affiliation(s)
- Dongyang Dong
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yutong Song
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shipo Wu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Busen Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Cheng Peng
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weiping Zhang
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weizheng Kong
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zheyuan Zhang
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingwen Song
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Hua Hou
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Sai Li
- Beijing Frontier Research Center for Biological Structure & Tsinghua-Peking Center for Life Sciences & State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Li H, Yang C, Yin L, Liu W, Zhang Z, Liu B, Sun X, Liu W, Lin Z, Liu Z, He P, Feng Y, Wang C, Wang W, Guan S, Wang Q, Chen L, Li P. Comparative immunogenicity of monovalent and bivalent adenovirus vaccines carrying spikes of early and late SARS-CoV-2 variants. Emerg Microbes Infect 2024; 13:2387447. [PMID: 39082740 PMCID: PMC11334748 DOI: 10.1080/22221751.2024.2387447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The continuous emergence of highly immune-evasive SARS-CoV-2 variants has challenged vaccine efficacy. A vaccine that can provide broad protection is desirable. We evaluated the immunogenicity of a series of monovalent and bivalent adenovirus-vectored vaccines containing the spikes of Wildtype (WT), Beta, Delta, Omicron subvariants BA.1, BA.2, BA.2.12.1, BA.2.13, BA.3, BA.5, BQ.1.1, and XBB. Vaccination in mice using monovalent vaccines elicited the highest neutralizing titers against each self-matched strain, but against other variants were reduced 2- to 73-fold. A bivalent vaccine consisting of WT and BA.5 broadened the neutralizing breadth against pre-Omicron and Omicron subvariants except XBB. Among bivalent vaccines based on the strains before the emergence of XBB, a bivalent vaccine consisting of BA.2 and BA.5 elicited the most potent neutralizing antibodies against Omicron subvariants, including XBB. In mice primed with injected WT vaccine, intranasal booster with a bivalent vaccine containing XBB and BA.5 could elicit broad serum and respiratory mucosal neutralizing antibodies against all late Omicron subvariants, including XBB. In mice that had been sequentially vaccinated with WT and BA.5, intranasal booster with a monovalent XBB vaccine elicited greater serum and mucosal XBB neutralizing antibodies than bivalent vaccines containing XBB. Both monovalent and bivalent XBB vaccines induced neutralizing antibodies against EG.5. Unlike the antibody response, which is highly variant-specific, mice receiving either monovalent or bivalent vaccines elicited comparable T-cell responses against all variants. Furthermore, intranasal but not intramuscular booster induced antigen-specific lung resident T cells. This study provides insights into the design of the COVID-19 vaccine and vaccination strategies.
Collapse
Affiliation(s)
- Hengchun Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chenchen Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Li Yin
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wenming Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Zhengyuan Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bo Liu
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Xinxin Sun
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Wenhao Liu
- School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Zihan Lin
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zijian Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Ying Feng
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Chunhua Wang
- Guangzhou nBiomed Ltd., Guangzhou, People’s Republic of China
| | - Wei Wang
- Guangzhou Bio-island Laboratory, Guangzhou, People’s Republic of China
| | - Suhua Guan
- Guangzhou nBiomed Ltd., Guangzhou, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhang Y, Fang L, Wang Z, Zhang C, Zhao J, Daemi HB, Zhang M, Yuan L, Han X, Li L, Fu ZF, Zhou M, Zhao L. A modified recombinant adenovirus vector containing dual rabies virus G expression cassettes confers robust and long-lasting humoral immunity in mice, cats, and dogs. Emerg Microbes Infect 2024; 13:2300461. [PMID: 38164714 PMCID: PMC10810672 DOI: 10.1080/22221751.2023.2300461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
During the COVID-19 epidemic, the incidence of rabies has increased in several countries, especially in remote and disadvantaged areas, due to inadequate surveillance and declining immunization coverage. Multiple vaccinations with inactivated rabies virus vaccines for pre- or post-exposure prophylaxis are considered inefficient, expensive and impractical in developing countries. Herein, three modified human recombinant adenoviruses type 5 designated Adv-RVG, Adv-E1-RVG, and Adv-RVDG, carrying rabies virus G (RVG) expression cassettes in various combinations within E1 or E3 genomic regions, were constructed to serve as rabies vaccine candidates. Adv-RVDG mediated greater RVG expression both in vitro and in vivo and induced a more robust and durable humoral immune response than the rabies vaccine strain SAD-L16, Adv-RVG, and Adv-E1-RVG by more effectively activating the dendritic cells (DCs) - follicular helper T (Tfh) cells - germinal centre (GC) / memory B cells (MBCs) - long-lived plasma cells (LLPCs) axis with 100% survival after a lethal RABV challenge in mice during the 24-week study period. Similarly, dogs and cats immunized with Adv-RVDG showed stronger and longer-lasting antibody responses than those vaccinated with a commercial inactivated rabies vaccine and showed good tolerance to Adv-RVDG. In conclusion, our study demonstrated that simultaneous insertion of protective antigens into the E1 and E3 genomic regions of adenovirus vector can significantly enhance the immunogenicity of adenoviral-vectored vaccines, providing a theoretical and practical basis for the subsequent development of multivalent and multi-conjugated vaccines using recombinant adenovirus platform. Meanwhile, our data suggest Adv-RVDG is a safe, efficient, and economical vaccine for mass-coverage immunization.
Collapse
Affiliation(s)
- Yuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Lingying Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Hakimeh Baghaei Daemi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mai Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Liwen Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaohu Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Linfeng Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ming Zhou
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Rabezanahary H, Gilbert C, Santerre K, Scarrone M, Gilbert M, Thériault M, Brousseau N, Masson JF, Pelletier JN, Boudreau D, Trottier S, Baz M. Live virus neutralizing antibodies against pre and post Omicron strains in food and retail workers in Québec, Canada. Heliyon 2024; 10:e31026. [PMID: 38826717 PMCID: PMC11141348 DOI: 10.1016/j.heliyon.2024.e31026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Background Measuring the ability of SARS-CoV-2 antibodies to neutralize live viruses remains an effective approach to quantify the level of protection of individuals. We assessed the neutralization activity against the ancestral SARS-CoV-2, Delta, Omicron BA.1, BA.2, BA.2.12.1, BA.4 and BA.5 strains, in 280 vaccinated restaurant/bar, grocery and hardware store workers in Québec, Canada. Methods Participants were recruited during the emergence of Omicron BA.1 variant. The neutralizing activity of participant sera was assessed by microneutralization assay. Results Serum neutralizing antibody (NtAb) titers of all participants against the ancestral SARS-CoV-2 strain were comparable with those against Delta variant (ranges of titers 10-2032 and 10-2560, respectively), however, their response was significantly reduced against Omicron BA.1, BA2, BA.2.12.1, BA.4 and BA.5 (10-1016, 10-1016, 10-320, 10-80 and 10-254, respectively). Individuals who received 2 doses of vaccine had significantly reduced NtAb titers against all SARS-CoV-2 strains compared to those infected and then vaccinated (≥1 dose), vaccinated (≥2 doses) and then infected, or those who received 3 doses of vaccine. Participants vaccinated with 2 or 3 doses of vaccine and then infected had the highest NtAb titers against all SARS-CoV-2 strains tested. Conclusion We assessed for the first time the NtAb response in food and retail workers. We found that vaccination prior to the emergence of Omicron BA.1 was associated with higher neutralizing activity against pre-Omicron variants, suggesting the importance of updating vaccines to increase antibody response against new SARS-CoV-2 variants. Vaccination followed by infection was associated with higher neutralizing activity against all SARS-CoV-2 strains tested.
Collapse
Affiliation(s)
- Henintsoa Rabezanahary
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Caroline Gilbert
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Kim Santerre
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Martina Scarrone
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Megan Gilbert
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Mathieu Thériault
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Nicholas Brousseau
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Biological Risks Department, Institut National de Santé Publique du Québec, Québec, QC, G1V 5B3, Canada
| | - Jean-François Masson
- Department of Chemistry, Quebec Center for Advanced Materials, Regroupement québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Université de Montréal, Montréal, Canada
| | - Joelle N. Pelletier
- Department of Chemistry, Department of Biochemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada
- PROTEO-The Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Denis Boudreau
- Département de Chimie et Centre d'Optique, Photonique et laser (COPL), Université Laval, Québec, Canada
| | - Sylvie Trottier
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| | - Mariana Baz
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada
| |
Collapse
|
5
|
Shen K, Zhang J, Zhao Z, Ma H, Wang Y, Zheng W, Xu J, Li Y, Wang B, Zhang Z, Wu S, Hou L, Chen W. Microparticulated Polygonatum sibiricum polysaccharide shows potent vaccine adjuvant effect. Int J Pharm 2024; 652:123802. [PMID: 38218508 DOI: 10.1016/j.ijpharm.2024.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Adjuvants are necessary for protein vaccines and have been used for nearly 100 years. However, developing safe and effective adjuvants is still urgently needed. Polysaccharides isolated from traditional Chinese medicine are considered novel vaccine adjuvant sources. This study aimed to investigate the adjuvant activity and immune-enhancing mechanisms of the microparticulated Polygonatum sibiricum polysaccharide (MP-PSP) modified by calcium carbonate. PSP demonstrated adjuvant activity, and MP-PSP further showed a higher humoral response compared to PSP. Subsequently, MP-PSP was elucidated to improving the immunity by slowing the rate of antigen release and activating dendritic cells along with interleukin-6 secretion through toll-like receptor 4 signaling, followed by T follicular helper cell and B cell interactions. Moreover, MP-PSP had a good safety profile in vaccinated mice. Thus, MP-PSP may be a promising vaccine adjuvant and warrants further investigation.
Collapse
Affiliation(s)
- Kai Shen
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China; Department of Pharmacy, Affiliated Hospital of Nantong University, 20 West Temple Road, Nantong 226001, China
| | - Jinlong Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Zhenghao Zhao
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Hao Ma
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yudong Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Wanru Zheng
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Jinghan Xu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Yao Li
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Busen Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Zhe Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China.
| | - Wei Chen
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing 100071, China.
| |
Collapse
|
6
|
Amado LA, Coelho WLDCNP, Alves ADR, Carneiro VCDS, Moreira ODC, de Paula VS, Lemos AS, Duarte LA, Gutman EG, Fontes-Dantas FL, Gonçalves JPDC, Ramos CHF, Ramos Filho CHF, Cavalcanti MG, Amaro MP, Kader RL, Medronho RDA, Sarmento DJDS, Alves-Leon SV. Clinical Profile and Risk Factors for Severe COVID-19 in Hospitalized Patients from Rio de Janeiro, Brazil: Comparison between the First and Second Pandemic Waves. J Clin Med 2023; 12:2568. [PMID: 37048652 PMCID: PMC10094970 DOI: 10.3390/jcm12072568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 03/30/2023] Open
Abstract
Since COVID-19 was declared a pandemic, Brazil has become one of the countries most affected by this disease. A year into the pandemic, a second wave of COVID-19 emerged, with a rapid spread of a new SARS-CoV-2 lineage of concern. Several vaccines have been granted emergency-use authorization, leading to a decrease in mortality and severe cases in many countries. However, the emergence of SARS-CoV-2 variants raises the alert for potential new waves of transmission and an increase in pathogenicity. We compared the demographic and clinical data of critically ill patients infected with COVID-19 hospitalized in Rio de Janeiro during the first and second waves between July 2020 and October 2021. In total, 106 participants were included in this study; among them, 88% had at least one comorbidity, and 37% developed severe disease. Disease severity was associated with older age, pre-existing neurological comorbidities, higher viral load, and dyspnea. Laboratory biomarkers related to white blood cells, coagulation, cellular injury, inflammation, renal, and liver injuries were significantly associated with severe COVID-19. During the second wave of the pandemic, the necessity of invasive respiratory support was higher, and more individuals with COVID-19 developed acute hepatitis, suggesting that the progression of the second wave resulted in an increase in severe cases. These results can contribute to understanding the behavior of the COVID-19 pandemic in Brazil and may be helpful in predicting disease severity, which is a pivotal for guiding clinical care, improving patient outcomes, and defining public policies.
Collapse
Affiliation(s)
- Luciane Almeida Amado
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | | | - Arthur Daniel Rocha Alves
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Vanessa Cristine de Souza Carneiro
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Otacilio da Cruz Moreira
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Andreza Salvio Lemos
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
| | - Larissa Araujo Duarte
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Elisa Gouvea Gutman
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Fabricia Lima Fontes-Dantas
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
| | - Carlos Henrique Ferreira Ramos
- Unit of Intensive Treatment, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Marta Guimarães Cavalcanti
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Marisa Pimentel Amaro
- Post-Graduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Rafael Lopes Kader
- Post-Graduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | | | - Soniza Vieira Alves-Leon
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Department of Neurology, Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
7
|
Wang Y, Wang B, Zhao Z, Xu J, Zhang Z, Zhang J, Chen Y, Song X, Zheng W, Hou L, Wu S, Chen W. Effects of SARS-CoV-2 Omicron BA.1 Spike Mutations on T-Cell Epitopes in Mice. Viruses 2023; 15:763. [PMID: 36992472 PMCID: PMC10056712 DOI: 10.3390/v15030763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
T-cell immunity plays an important role in the control of SARS-CoV-2 and has a great cross-protective effect on the variants. The Omicron BA.1 variant contains more than 30 mutations in the spike and severely evades humoral immunity. To understand how Omicron BA.1 spike mutations affect cellular immunity, the T-cell epitopes of SARS-CoV-2 wild-type and Omicron BA.1 spike in BALB/c (H-2d) and C57BL/6 mice (H-2b) were mapped through IFNγ ELISpot and intracellular cytokine staining assays. The epitopes were identified and verified in splenocytes from mice vaccinated with the adenovirus type 5 vector encoding the homologous spike, and the positive peptides involved in spike mutations were tested against wide-type and Omicron BA.1 vaccines. A total of eleven T-cell epitopes of wild-type and Omicron BA.1 spike were identified in BALB/c mice, and nine were identified in C57BL/6 mice, only two of which were CD4+ T-cell epitopes and most of which were CD8+ T-cell epitopes. The A67V and Del 69-70 mutations in Omicron BA.1 spike abolished one epitope in wild-type spike, and the T478K, E484A, Q493R, G496S and H655Y mutations resulted in three new epitopes in Omicron BA.1 spike, while the Y505H mutation did not affect the epitope. These data describe the difference of T-cell epitopes in SARS-CoV-2 wild-type and Omicron BA.1 spike in H-2b and H-2d mice, providing a better understanding of the effects of Omicron BA.1 spike mutations on cellular immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shipo Wu
- Correspondence: (S.W.); (W.C.); Tel.: +86-10-66948692 (S.W.)
| | - Wei Chen
- Correspondence: (S.W.); (W.C.); Tel.: +86-10-66948692 (S.W.)
| |
Collapse
|
8
|
Li X, Liu J, Li W, Peng Q, Li M, Ying Z, Zhang Z, Liu X, Wu X, Zhao D, Yang L, Cao S, Huang Y, Shi L, Xu H, Wang Y, Yue G, Suo Y, Nie J, Huang W, Li J, Li Y. Heterologous prime-boost immunisation with mRNA- and AdC68-based 2019-nCoV variant vaccines induces broad-spectrum immune responses in mice. Front Immunol 2023; 14:1142394. [PMID: 37006275 PMCID: PMC10050358 DOI: 10.3389/fimmu.2023.1142394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) variants has been associated with the transmission and pathogenicity of COVID-19. Therefore, exploring the optimal immunisation strategy to improve the broad-spectrum cross-protection ability of COVID-19 vaccines is of great significance. Herein, we assessed different heterologous prime-boost strategies with chimpanzee adenovirus vector-based COVID-19 vaccines plus Wuhan-Hu-1 (WH-1) strain (AdW) and Beta variant (AdB) and mRNA-based COVID-19 vaccines plus WH-1 strain (ARW) and Omicron (B.1.1.529) variant (ARO) in 6-week-old female BALB/c mice. AdW and AdB were administered intramuscularly or intranasally, while ARW and ARO were administered intramuscularly. Intranasal or intramuscular vaccination with AdB followed by ARO booster exhibited the highest levels of cross-reactive IgG, pseudovirus-neutralising antibody (PNAb) responses, and angiotensin-converting enzyme-2 (ACE2)-binding inhibition rates against different 2019-nCoV variants among all vaccination groups. Moreover, intranasal AdB vaccination followed by ARO induced higher levels of IgA and neutralising antibody responses against live 2019-nCoV than intramuscular AdB vaccination followed by ARO. A single dose of AdB administered intranasally or intramuscularly induced broader cross-NAb responses than AdW. Th1-biased cellular immune response was induced in all vaccination groups. Intramuscular vaccination-only groups exhibited higher levels of Th1 cytokines than intranasal vaccination-only and intranasal vaccination-containing groups. However, no obvious differences were found in the levels of Th2 cytokines between the control and all vaccination groups. Our findings provide a basis for exploring vaccination strategies against different 2019-nCoV variants to achieve high broad-spectrum immune efficacy.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Jingjing Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhifang Ying
- Department of Respiratory Virus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zelun Zhang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xinyu Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohong Wu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Lihong Yang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Shouchun Cao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yanqiu Huang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Leitai Shi
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Hongshan Xu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yunpeng Wang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Guangzhi Yue
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Suo
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianhui Nie
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|