1
|
Dong H, Wang X, Zheng Y, Li J, Liu Z, Wang A, Shen Y, Wu D, Cui H. Mapping the rapid growth of multi-omics in tumor immunotherapy: Bibliometric evidence of technology convergence and paradigm shifts. Hum Vaccin Immunother 2025; 21:2493539. [PMID: 40275437 PMCID: PMC12026087 DOI: 10.1080/21645515.2025.2493539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
This study aims to fill the knowledge gap in systematically mapping the evolution of omics-driven tumor immunotherapy research through a bibliometric lens. While omics technologies (genomics, transcriptomics, proteomics, metabolomics)provide multidimensional molecular profiling, their synergistic potential with immunotherapy remains underexplored in large-scale trend analyses. A comprehensive search was conducted using the Web of Science Core Collection for literature related to omics in tumor immunotherapy, up to August 2024. Bibliometric analyses, conducted using R version 4.3.3, VOSviewer 1.6.20, and Citespace 6.2, examined publication trends, country and institutional contributions, journal distributions, keyword co-occurrence, and citation bursts. This analysis of 9,494 publications demonstrates rapid growth in omics-driven tumor immunotherapy research since 2019, with China leading in output (63% of articles) yet exhibiting limited multinational collaboration (7.9% vs. the UK's 61.8%). Keyword co-occurrence and citation burst analyses reveal evolving frontiers: early emphasis on "PD-1/CTLA-4 blockade" has transitioned toward "machine learning," "multi-omics," and "lncRNA," reflecting a shift to predictive modeling and biomarker discovery. Multi-omics integration has facilitated the development of immune infiltration-based prognostic models, such as TIME subtypes, which have been validated across multiple tumor types, which inform clinical trial design (e.g. NCT06833723). Additionally, proteomic analysis of melanoma patients suggests that metabolic biomarkers, particularly oxidative phosphorylation and lipid metabolism, may stratify responders to PD-1 blockade therapy. Moreover, spatial omics has confirmed ENPP1 as a potential novel therapeutic target in Ewing sarcoma. Citation trends underscore clinical translation, particularly mutation-guided therapies. Omics technologies are transforming tumor immunotherapy by enhancing biomarker discovery and improving therapeutic predictions. Future advancements will necessitate longitudinal omics monitoring, AI-driven multi-omics integration, and international collaboration to accelerate clinical translation. This study presents a systematic framework for exploring emerging research frontiers and offers insights for optimizing precision-driven immunotherapy.
Collapse
Affiliation(s)
- Huijing Dong
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmeng Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yumin Zheng
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Li
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Zhening Liu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Aolin Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yulei Shen
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Daixi Wu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Cui
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Wen G, Niu S, Mei S, Wang S. The cancer stem cells characteristics analysis of LGR5 + cells that influence lung cancer risk by using single cell RNA-seq analysis. Sci Rep 2025; 15:16085. [PMID: 40341189 PMCID: PMC12062498 DOI: 10.1038/s41598-025-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is the most popular lung cancer type with highly mortality. We performed a single cell RNA-seq analysis to explore characteristic of cancer stem cells in LUAD. We downloaded the single cell RNA-seq data (GSE149655) from the GEO database, the scRNA-seq analysis was performed by using the "Seurat" and "harmony" R package. The FindMarkers function and "ClusterProlifer" package was used for differentially expressed genes (DEGs) and function enrichment analysis. The protein-protein interaction and transcriptional regulatory network were performed by STRING and ChIPBase database. Immunohistochemistry tests to be used to observe differences in the expression of specific genes in LUAD and paracancerous tissue samples. BEAS-2B and A549 cells was used for vitro assay and the qRT-PCR, western blotting, wound healing, trans-well assays, EdU tests, and flow cytometry were performed. A total of 9 cell clusters were obtained after scRNA-seq analysis, in which the cancer stem cells had higher proportion in LUAD samples. Subsequently, function enrichment analysis revealed that the amino sugar and nucleotide sugar metabolism and DNA replication pathways were activated in cancer stem cells (CSCs), which were further sub-divided into 3 subtypes, the LGR5 + stem cell is a major contributor to cancer progression, its hub genes, such as HLA-DPB1, CD74, CTSH and HLA-DRB5 mediated the unique transcriptional state. In addition, the marker genes of three CSCs were also overexpressed in LUAD cells and the CXCL3 played an important role in mediating cell proliferation, apoptosis, migration and invasion of tumor. We performed a scRNA-seq analysis and identified the LGR5 + stem cell as a major contributor in LUAD progression, our findings are expected to provide new insights into the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Ge Wen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Radiation Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Shaoqing Niu
- Department of Radiation Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shiqi Mei
- Department of Oncology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Senming Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Liu L, Zhang S, Ren Y, Wang R, Zhang Y, Weng S, Zhou Z, Luo P, Cheng Q, Xu H, Ba Y, Zuo A, Liu S, Liu Z, Han X. Macrophage-derived exosomes in cancer: a double-edged sword with therapeutic potential. J Nanobiotechnology 2025; 23:319. [PMID: 40287762 PMCID: PMC12034189 DOI: 10.1186/s12951-025-03321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Solid cancer contains a complicated communication network between cancer cells and components in the tumor microenvironment (TME), significantly influencing the progression of cancer. Exosomes function as key carriers of signaling molecules in these communications, including the intricate signalings of tumor-associated macrophages (TAMs) on cancer cells and the TME. With their natural lipid bilayer structures and biological activity that relates to their original cell, exosomes have emerged as efficient carriers in studies on cancer therapy. Intrigued by the heterogeneity and plasticity of both macrophages and exosomes, we regard macrophage-derived exosomes in cancer as a double-edged sword. For instance, TAM-derived exosomes, educated by the TME, can promote resistance to cancer therapies, while macrophage-derived exosomes generated in vitro have shown favorable potential in cancer therapy. Here, we depict the reasons for the heterogeneity of TAM-derived exosomes, as well as the manifold roles of TAM-derived exosomes in cancer progression, metastasis, and resistance to cancer therapy. In particular, we emphasize the recent advancements of modified macrophage-derived exosomes in diverse cancer therapies, arguing that these modified exosomes are endowed with unique advantages by their macrophage origin. We outline the challenges in translating these scientific discoveries into clinical cancer therapy, aiming to provide patients with safe and effective treatments.
Collapse
Affiliation(s)
- Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Siying Zhang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruizhi Wang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Yu J, Kong X, Feng Y. Tumor microenvironment-driven resistance to immunotherapy in non-small cell lung cancer: strategies for Cold-to-Hot tumor transformation. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:21. [PMID: 40342732 PMCID: PMC12059482 DOI: 10.20517/cdr.2025.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Non-small cell lung cancer (NSCLC) represents a formidable challenge in oncology due to its molecular heterogeneity and the dynamic suppressive nature of its tumor microenvironment (TME). Despite the transformative impact of immune checkpoint inhibitors (ICIs) on cancer therapy, the majority of NSCLC patients experience resistance, necessitating novel approaches to overcome immune evasion. This review highlights shared and subtype-specific mechanisms of immune resistance within the TME, including metabolic reprogramming, immune cell dysfunction, and physical barriers. Beyond well-characterized components such as regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor cells, emerging players - neutrophil extracellular traps, tertiary lymphoid structures, and exosomal signaling networks - underscore the TME's complexity and adaptability. A multi-dimensional framework is proposed to transform cold, immune-excluded tumors into hot, immune-reactive ones. Key strategies include enhancing immune infiltration, modulating immunosuppressive networks, and activating dormant immune pathways. Cutting-edge technologies, such as single-cell sequencing, spatial transcriptomics, and nanomedicine, are identified as pivotal tools for decoding TME heterogeneity and personalizing therapeutic interventions. By bridging mechanistic insights with translational innovations, this review advocates for integrative approaches that combine ICIs with metabolic modulators, vascular normalizers, and emerging therapies such as STING agonists and tumor vaccines. The synergistic potential of these strategies is poised to overcome resistance and achieve durable antitumor immunity. Ultimately, this vision underscores the importance of interdisciplinary collaboration and real-time TME profiling in refining precision oncology for NSCLC, offering a blueprint for extending these advances to other malignancies.
Collapse
Affiliation(s)
- Jinglu Yu
- Institute of Integrated Chinese and Western Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
- Institute of Respiratory Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
| | - Xiaoni Kong
- Institute of Integrated Chinese and Western Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Feng
- Institute of Integrated Chinese and Western Medicine, PuDong Traditional Chinese Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201200, China
| |
Collapse
|
5
|
Cui X, Liu S, Song H, Xu J, Sun Y. Single-cell and spatial transcriptomic analyses revealing tumor microenvironment remodeling after neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Mol Cancer 2025; 24:111. [PMID: 40205583 PMCID: PMC11980172 DOI: 10.1186/s12943-025-02287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the most common pathological type of lung cancer, and the combination of neoadjuvant immunotherapy with chemotherapy has emerged as the first-line treatment for NSCLC. Nevertheless, the efficacy of this therapeutic approach remains variable. The present study aims to examine the impact of chemoimmunotherapy in NSCLC patients, with a view to identifying key molecules, critical cell subpopulations, communication patterns and spatial distributions that potentially correlate with therapeutic sensitivity. A total of 16 lung cancer tissue samples were collected from a cohort of 12 NSCLC patients and subjected to single-cell RNA and spatial transcriptome sequencing. Our data demonstrated that the distribution of CD4 + Treg T cells and mCAFs indicated an immunosuppressive tumor microenvironment, while the accumulation of CD4 + Th17 T cells and iCAFs could act as a positive marker for the sensitivity to chemoimmunotherapy. Furthermore, a significant high level of SELENOP-macrophages was observed in tissues from positive responders, and a strong co-localization between SELENOP-macrophages and antigen-presenting cancer associated fibroblasts (CAFs) in the tumor boundaries was identified, indicating the cooperative roles of these two cell types in response to combined therapy. Moreover, SELENOP-macrophages were observed to be accumulated in tertiary lymphoid structures, which further suggested its critical role in recruiting lymphocytes. Furthermore, analysis of cell-cell communication, based on spatial transcriptomics, suggests that the interactions between SELENOP-macrophages, apCAFs, CD4 + and CD8 + T cells were significantly enhanced in responders. In addition, SELENOP-macrophages recruited CD4 + Naïve, Helper and CD8 + Naïve T cells through pathways such as the cholesterol, interleukin, chemokine and HLA when responding to combined therapy. The present study further unveils the dynamic spatial and transcriptional changes in the tumor microenvironment of non-small cell lung cancer in response to combination therapy.
Collapse
Affiliation(s)
- Xiaolu Cui
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Siyuan Liu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - He Song
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province , 110004, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
6
|
Nandi D, Janardhanan R, Hannenhalli S, Agrawal P. Molecular signatures bidirectionally link myocardial infarction and lung cancer. Front Med (Lausanne) 2025; 12:1576375. [PMID: 40270498 PMCID: PMC12014433 DOI: 10.3389/fmed.2025.1576375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Myocardial Infarction (MI) and lung cancers are major contributors to mortality worldwide. While seemingly diverse, the two share common risk factors, such as smoking and hypertension. There is a pressing need to identify bidirectional molecular signatures that link MI and lung cancer, in order to improve clinical outcomes for patients. In this study, we identified common differentially expressed genes between MI and lung cancer. Specifically, we identified 1,496 upregulated and 1,482 downregulated genes in the MI datasets. By focusing on the 1,000 most upregulated and downregulated genes in Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC), we identified 35 genes that are common across MI, LUAD, and LUSC. Functional enrichment analysis revealed shared biological processes, such as "inflammatory response" and "cell differentiation." The Cox proportional hazards model demonstrated a significant association between the shared genes and overall survival in lung cancer patients, as well as with smoking history in these patients. In addition, a machine learning model based on the expression of the shared genes distinguished MI patients from controls, achieving an AUROC of 0.72 and an AUPRC of 0.86. Finally, based on drug repurposing analysis, we proposed FDA-approved drugs potentially targeting the upregulated genes as novel therapeutic options for the co-occurring conditions of MI and lung cancer. Overall, our findings highlight the similarities in molecular makeup between lung cancer and MI.
Collapse
Affiliation(s)
- Dhruva Nandi
- Division of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Rajiv Janardhanan
- Division of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | | | - Piyush Agrawal
- Division of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Zhao P, Zhu Z, Zheng X, Song Y, Chen C, Xu G, Ke X. Effects of circulating RNAs on tumor metabolism in lung cancer (Review). Oncol Lett 2025; 29:204. [PMID: 40070786 PMCID: PMC11894507 DOI: 10.3892/ol.2025.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
During the development and progression of lung cancer, cell metabolism function is altered. Thus, cells rely on aerobic glycolysis and abnormal lipid and amino acid metabolism to obtain energy and nutrients for growth, proliferation and drug resistance. Circular RNAs (circRNAs), a class of non-coding RNAs, serve important biological roles in the growth and development of tumors. Functionally, circRNAs act as molecular sponges that absorb microRNAs (miRNAs) and RNA-binding proteins and as protein scaffolds that regulate gene transcription and translation through the maintenance of mRNA stability. In addition, circRNAs are important regulators of tumor metabolism and promote tumor progression through mediating tumor cell proliferation, metastasis and the induction of chemoresistance. Results of previous studies reveal that circRNAs may serve a key role in regulating tumor metabolic processes in lung cancer, through miRNA sponging and alternative mechanisms. Thus, circRNAs demonstrate potential as therapeutic targets for lung cancer. The present study aimed to review the effects of circRNAs on lung cancer cell metabolism and provide novel insights into the clinical treatment of lung cancer. The present review may also provide a novel theoretical basis for the development of lung cancer drug targets.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
8
|
Zhu Y, Song Y, Jiang W, Zhang J, Yin L, Lin X, Lu Y, Tao D, Ma Y. A novel tumor-associated macrophage risk signature predicts prognosis and immunotherapy response in lung adenocarcinoma. Am J Cancer Res 2025; 15:876-893. [PMID: 40226479 PMCID: PMC11982730 DOI: 10.62347/squf6988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE To systematically characterize tumor-associated macrophage (TAM) subsets in lung adenocarcinoma (LUAD) and establish a TAM-based prognostic risk signature for LUAD patients. METHODS Single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic data were integrated to identify TAM subsets linked to LUAD prognosis. Prognostic genes were screened using univariate Cox regression, refined via Least Absolute Shrinkage and Selection Operator (LASSO) regression, and used to construct a 10-gene risk signature. The signature's performance was validated in independent cohorts through receiver operating characteristic curves, Kaplan-Meier survival analysis, and a nomogram. Its predictive ability for immune checkpoint inhibitor (ICI) therapy response was assessed in the IMvigor210 and GSE78220 datasets. RESULTS Six distinct TAM subpopulations were identified, with two subsets significantly correlated with poor prognosis. The 10-gene risk signature, derived from TAM-related genes, demonstrated strong prognostic performance in both training and validation cohorts. High-risk patients exhibited markedly worse overall survival compared to low-risk patients. Additionally, the signature effectively stratified patients based on their response to anti-PD-L1 therapy, with high-risk patients exhibiting reduced clinical benefit. A nomogram combining the risk signature with clinicopathological parameters further enhanced survival prediction accuracy, supporting its clinical applicability. CONCLUSION This study established a novel TAM-based prognostic risk signature with robust predictive power for both survival outcomes and immunotherapy response in LUAD. These findings enhance our understanding of TAMs' clinical significance and provide a foundation for personalized immunotherapy strategies in LUAD.
Collapse
Affiliation(s)
- Yingchuan Zhu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Yue Song
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Wenhao Jiang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Jingfei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Lan Yin
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Xinyu Lin
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Yilu Lu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Yongxin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| |
Collapse
|
9
|
Guo X, Deng Y, Jiang W, Li H, Luo Y, Zhang H, Wu H. Single cell transcriptomic analysis reveals tumor immune infiltration by macrophage cells gene signature in lung adenocarcinoma. Discov Oncol 2025; 16:261. [PMID: 40029500 DOI: 10.1007/s12672-025-01834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play pivotal roles in innate immunity and contribute to the advancement of lung cancer. We aimed to identify novel TAM-related biomarkers and significance of macrophage infiltration in lung adenocarcinoma (LUAD) through an integrative analysis of single-cell RNA-sequencing (scRNA-seq) data. To describe the cell atlas and construct a novel prognostic signature in LUAD. METHODS The gene signature linked to TAMs was identified utilizing Scanpy from the scRNA-seq dataset GSE131907. Subsequent analysis involved evaluating the expression levels of these genes, their potential molecular mechanisms, and prognostic significance in LUAD using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We also constructed a risk score models through LASSO Cox regression for these genes. The underlying mechanism was further elucidated through the application of GSEA, ESTIMATE, TIDE, and other bioinformatic algorithms. RESULTS Single-cell atlas was described by analyze 29 scRNA-seq samples from 19 LUAD patients. The TAMs-related gene signature (TGS) was identified as an independent prognostic factor by LASSO Cox regression analysis using differential expression genes (DEGs) derived from pro- and anti-inflammatory macrophage cells. Risk score model including nine TAMs-related genes (FOSL1, ZNF697, ADM, UBE2S, TICAM1, S100P, BIRC3, TLE1, and DEFB1) were obtained for prognosis construction. Moreover, the risk model underwent additional validation in four external GEO cohorts: GSE31210, GSE72094, GSE26939, and GSE30219. Interestingly, TGS-high tumors revealed enrichments in TGF-β signaling and hypoxia pathways, which shown low immune infiltration and immunosuppression by ESTIMATE and TIDE algorithm. The TGS-high risk group exhibited lower richness and diversity in the T-cell receptor (TCR) repertoire. CONCLUSION This study introduces a novel TGS score developed through LASSO Cox regression analysis, utilizing DEGs in pro- and anti-inflammatory macrophage cells. High TGS tumors exhibited enrichment in TGF-β signaling and hypoxia pathways, suggesting their potential utility in predicting prognosis and immune responses in patients with LUAD. These results offer promising implications for the development of therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Youjun Deng
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Wenjun Jiang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Hospital of Oncology, Kunming, China
| | - Yisheng Luo
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Hao Wu
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
10
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
11
|
Luo L, Xia R, Mao S, Liu Q, Du H, Jiang T, Yang S, Wang Y, Li W, Zhou F, Yu J, Gao G, Li X, Zhao C, Cheng L, Shi J, Chen X, Zhou C, Chen L, Ren S, Wu F. Differential expression of the MYC-Notch axis drives divergent responses to the front-line therapy in central and peripheral extensive-stage small-cell lung cancer. MedComm (Beijing) 2025; 6:e70112. [PMID: 39974662 PMCID: PMC11836348 DOI: 10.1002/mco2.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Central and peripheral extensive-stage small-cell lung cancer (ES-SCLC) are reported to be two distinct tumor entities, but their responses to the front-line therapies and underlying biological mechanisms remain elusive. In this study, we first compared the outcomes of central and peripheral ES-SCLC receiving front-line chemotherapy or chemo-immunotherapy with a cohort of 265 patients. Then we performed single-cell RNA sequencing (scRNA-seq) on nine treatment-naïve ES-SCLC samples to investigate potential mechanisms underlying the response differences. Under chemotherapy, the peripheral type had a lower objective response rate (44.8% vs. 71.2%, p = 0.008) and shorter progression-free survival (median 3.4 vs. 5.1 months, p = 0.001) than the central type. When comparing chemo-immunotherapy with chemotherapy, the peripheral type showed a greater potential to reduce progression (HR, 0.18 and 0.52, respectively) and death (HR, 0.44 and 0.91 respectively) risks than the central type. Concerning the scRNA-seq data, the peripheral type was associated with chemo-resistant and immune-responsive tumoral and microenvironmental features, including a higher expression level of MYC-Notch-non-neuroendocrine (MYC-Notch-non-NE) axis and a more potent antigen presentation and immune activation status. Our results revealed that central and peripheral ES-SCLC had distinct responses to front-line treatments, potentially due to differential activation statuses of the MYC-Notch-non-NE axis.
Collapse
Affiliation(s)
- Libo Luo
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Rui Xia
- Key Laboratory of Systems BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqi Mao
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Qian Liu
- Department of OncologyXiangyang No. 1 People's HospitalHubei University of MedicineXiangyangChina
| | - He Du
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Tao Jiang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Shuo Yang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yan Wang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Wei Li
- Department of RadiologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fei Zhou
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Jia Yu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Guanghui Gao
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xuefei Li
- Department of Lung Cancer and ImmunologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Chao Zhao
- Department of Lung Cancer and ImmunologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Lei Cheng
- Department of Lung Cancer and ImmunologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Jingyun Shi
- Department of RadiologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xiaoxia Chen
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Caicun Zhou
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Luonan Chen
- Key Laboratory of Systems BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesChinese Academy of SciencesHangzhouChina
| | - Shengxiang Ren
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fengying Wu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Wang Y, Guo E, Zou M, Lv C, Cui Y, Zhai S, Sang S, Xiong K, Yang X, Zhuang S, Gu Y, Liang H. Unraveling immune heterogeneity across pan-cancer and deep insights in lung adenocarcinoma based on alternative splicing. J Leukoc Biol 2025; 117:qiae104. [PMID: 38758950 DOI: 10.1093/jleuko/qiae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Alternative splicing (AS) participates in tumor development and tumor microenvironment formation. However, the landscape of immune-infiltrating AS events in pan-cancer and mechanisms of AS in lung adenocarcinoma (LUAD) have not been comprehensively characterized. We systematically profiled the immune-infiltrating AS event landscape of pan-cancer using data from The Cancer Genome Atlas, analyzing both commonalities and specific characteristics among different cancer types. We found that AS events tend to occur specifically in one cancer type rather than in multiple cancer types. AS events were used to classify 512 LUAD samples into 2 subtypes by unsupervised clustering: the aberrant splicing subtype and the immune-infiltrating subtype. The 2 subtypes showed significant differences in clinicopathology, prognosis, transcriptomics, genomics, and immune microenvironment. We constructed a classification signature comprising 10 genes involved in 14 AS events using logistic regression. The robustness of the signature was validated in 3 independent datasets using survival analysis. To explore AS mechanisms in LUAD, we constructed subtype-specific coexpression networks using Pearson correlation analysis. AS event of AKT3 regulated by splicing factor ENOX1 was associated with poor prognosis in LUAD. Overall, we outline AS events associated with immune infiltration in pan-cancer, and this study provides insights into AS mechanisms in LUAD patient classification.
Collapse
Affiliation(s)
- Yuquan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratorary-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Min Zou
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Chen Lv
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Yanrui Cui
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Songmei Zhai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Shaocong Sang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Kai Xiong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Xiuqi Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Shuping Zhuang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratorary-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratorary-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
13
|
Huang M, Huang Z, Miao S, Chen X, Tan Y, Zhou Y, Wang S, Shi J. Bioinformatics Analysis of coagulation-related genes in lung adenocarcinoma: unveiling prognostic indicators and treatment pathways. Sci Rep 2025; 15:4972. [PMID: 39929884 PMCID: PMC11811422 DOI: 10.1038/s41598-025-87669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Lung adenocarcinoma (LUAD) frequently precipitates a hypercoagulable state, resulting in venous thromboembolism and associated hemostatic complications. Furthermore, the coagulation cascade holds a pivotal role within the tumor microenvironment (TME) of LUAD. Utilizing unsupervised clustering of coagulation-related genes (CRG) and integrating clinical attributes, distinctions and correlations in clustering across various groups were assessed. Principal component analysis (PCA) was employed to derive the CRGscore for LUAD patients. Subsequently, a prognostic signature was established to contrast the impacts of immunological and pharmacological treatments across groups. The expression of PIK3CA, posited as a potential biomarker, was corroborated via immunohistochemistry(IHC) and Western blotting. This research delineated pronounced variances in immune signatures and prognostic categorizations among four coagulation-related subtypes, and delved into their associations with three gene cluster subtypes. A prognostic model based on coagulation-related scores was formulated for risk stratification and prognosis estimation. Disparities in immune infiltration, treatment modalities, and drug responsiveness among risk cohorts were discerned. Notably, an augmented expression of the coagulation-associated gene PIK3CA was observed in tumor samples. Coagulatory function is intimately linked with LUAD and its immune microenvironment, offering predictive potential for LUAD survival prognosis. Specifically, subgroups manifesting elevated PIK3CA expression might serve as foundational indicators for optimal treatment selection.
Collapse
Affiliation(s)
- Minliang Huang
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Zhanghao Huang
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Shichen Miao
- Medical School of Nantong University, Nantong, 226001, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong, 226001, China
| | - Yue Tan
- Medical School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shuo Wang
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
- Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
14
|
Desharnais L, Sorin M, Rezanejad M, Liu B, Karimi E, Atallah A, Swaby AM, Yu MW, Doré S, Hartner S, Fiset B, Wei Y, Kadang B, Rayes R, Joubert P, Camilleri-Broët S, Fiset PO, Quail DF, Spicer JD, Walsh LA. Spatially mapping the tumour immune microenvironments of non-small cell lung cancer. Nat Commun 2025; 16:1345. [PMID: 39905080 PMCID: PMC11794701 DOI: 10.1038/s41467-025-56546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. An enhanced understanding of the immune microenvironments within these tumours may foster more precise and efficient treatment, particularly for immune-targeted therapies. The spatial architectural differences between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are relatively unexplored. Here, we applied imaging mass cytometry to a balanced cohort of LUAD and LUSC patients, matched for clinical factors such as age, sex, and smoking history, to analyze 204 histopathology images of tumours from 102 individuals with non-small cell lung cancer (NSCLC). By analyzing interactions and broader cellular networks, we interrogate the tumour microenvironment to understand how immune cells are spatially organized in clinically matched adenocarcinoma and squamous cell carcinoma subsets. This spatial analysis revealed distinct patterns of immune cell aggregation, particularly among macrophage populations, that correlated with patient prognosis differentially in adenocarcinoma and squamous cell carcinoma, suggesting potential new strategies for therapeutic intervention. Our findings underscore the importance of analyzing NSCLC histological subtypes separately when investigating the spatial immune landscape, as microenvironmental characteristics and cellular interactions differed by subtype. Recognizing these distinctions is essential for designing precision therapies tailored to each subtype's unique immune architecture, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mark Sorin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Morteza Rezanejad
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Bridget Liu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Elham Karimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Aline Atallah
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Anikka M Swaby
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Miranda W Yu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Samuel Doré
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Saskia Hartner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Baharak Kadang
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Roni Rayes
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Philippe Joubert
- Département de biologie moléculaire, biochimie médicale et de pathologie, Laval University, Québec City, QC, Canada
| | | | | | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jonathan D Spicer
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Surgery, McGill University Health Center, Montreal, QC, Canada.
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Yuan Y, Nie X, Gao J, Tian Y, He L, Wang X, Zhang P, Ma J, Li L. Deregulated methylation and expression of PCDHGB7 in patients with non-small cell lung cancer: a novel prognostic and immunological biomarker. Front Immunol 2025; 16:1516628. [PMID: 39949775 PMCID: PMC11821955 DOI: 10.3389/fimmu.2025.1516628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Backgrounds Protocadherin gamma subfamily B, 7 (PCDHGB7), a member of the protocadherin family, plays critical roles in neuronal connections and has been implicated in female reproductive system cancers. Its function in lung cancer has not been elucidated. Methods We comprehensively investigated PCDHGB7 expression, prognosis, biological function, methylation patterns, and it's relationship with immune infiltration and immunotherapy response through public datasets (HPA, TCGA, GEO, OncoDB and MEXPRESS). Two lung cancer immunotherapy cohorts from our clinical center were enrolled to detect the relationship between methylation and protein levels of PCDHGB7 in plasma and immunotherapy outcomes. Results PCDHGB7 expression was downregulated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and associated with tumor prognosis. PCDHGB7 demonstrated a positive correlation with inhibitory immune cells and a negative correlation with tumor mutational burden (TMB) and homologous recombination deficiency (HRD). The methylation level of PCDHGB7 was upregulated in tumor tissue and negatively correlated with PCDHGB7 mRNA level. In immunotherapy cohort studies, patients with higher PCDHGB7 tissue expression showed worse prognosis. Patients with PCDHGB7 hypermethylation in baseline plasma had shorter progression-free survival (PFS) and overall survival (OS), while those with early reduction of PCDHGB7 methylation had the best prognosis. Plasma PCDHGB7 protein levels could predict responses to immune checkpoint inhibitors and function as a prognostic marker for PFS. Conclusion PCDHGB7 expression and methylation are prognostic and immunological biomarkers in non-small cell lung cancer. Plasma PCDHGB7 methylation and protein levels can be used as novel biomarkers for predicting the efficacy of immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Nie
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayi Gao
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yumeng Tian
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liuer He
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Wang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping Zhang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Ma
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Wan L, Hao W, Li L, Wang L, Song Y. Dissecting macrophage heterogeneity and kaempferol in lung adenocarcinoma: a single-cell transcriptomic approach and network pharmacology. Discov Oncol 2025; 16:104. [PMID: 39884998 PMCID: PMC11782783 DOI: 10.1007/s12672-025-01832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a leading form of non-small cell lung cancer characterized by a complex tumor microenvironment (TME) that influences disease progression and therapeutic response. Tumor-associated macrophages (TAMs) within the TME promote tumorigenesis and evasion of immune surveillance, though their heterogeneity poses challenges in understanding their roles and therapeutic targeting. Additionally, traditional Chinese medicine (TCM) offers potential anti-cancer agents that could modulate the immune landscape. METHODS We conducted single-cell RNA sequencing (scRNA-seq) on LUAD samples, performing an in-depth analysis of macrophage populations and their expression signatures. Network pharmacology was used to identify TCM components with potential TAM-modulatory effects, focusing on Astragalus membranaceus. Pseudotime trajectory analysis, immunofluorescence staining, and in vitro assays examined the functional roles of TAMs and the effects of selected compounds on macrophage polarization. RESULTS Our scRNA-seq analysis identified notable heterogeneity among macrophages, revealing predominant M2-like phenotypes within TAMs. Network pharmacology highlighted active TCM ingredients, including quercetin, isorhamnetin, and kaempferol, targeting genes related to macrophage function. Survival analysis implicated AHSA1, CYP1B1, SPP1, and STAT1 as prognostically significant factors. Further experiments demonstrated kaempferol's efficacy in inhibiting M2 polarization, underlining a selective influence on TAM functionality. CONCLUSIONS This study delineates the diverse macrophage landscape in LUAD and suggests a pivotal role for STAT1 in TAM-mediated immunosuppression. Kaempferol, identified from TCM, emerges as an influential agent capable of altering TAM polarization, potentially enhancing anti-tumoral immunity. These findings underscore the translational potential of integrating TCM-derived compounds into immunotherapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Laiyi Wan
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China.
| | - Wentao Hao
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China
| | - Leilei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China
| | - Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China.
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China.
- TB Center, Shanghai Emerging and Re-Emerging Infectious Disease Institute, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Long D, Ding Y, Wang P, Wei L, Ma K. Multi-Omics Analysis Reveals Immune Infiltration and Clinical Significance of Phosphorylation Modification Enzymes in Lung Adenocarcinoma. Int J Mol Sci 2025; 26:1066. [PMID: 39940833 PMCID: PMC11817228 DOI: 10.3390/ijms26031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Protein phosphorylation is a dynamic and reversible modification involved in almost all cellular processes. Numerous investigations have shown that protein phosphorylation modification enzymes (PPMEs) that regulate protein phosphorylation play an important role in the occurrence and treatment of tumors. However, there is still a lack of effective insights into the value of PPMEs in the classification and treatment of patients with lung adenocarcinoma (LUAD). Here, four topological algorithms identified 15 hub PPMEs from a protein-protein interaction (PPI) network. This PPI network was constructed using 124 PPMEs significantly correlated with 35 cancer hallmark-related pathways. Our study illustrates that these hub PPMEs can affect the survival of patients with LUAD in the form of somatic mutation or expression perturbation. Consistency clustering based on hub PPMEs recognized two phosphorylation modification subtypes (namely cluster1 and cluster2) from LUAD. Compared with patients in cluster1, the survival prognosis of patients in cluster2 is worse. This disparity is probably attributed to the higher tumor mutation burden, the higher male proportion, and the more significant expression disturbance in patients in cluster2. Moreover, phosphorylation modification subtypes also have different characteristics in terms of immune activity, immune infiltration level, immunotherapy response, and drug sensitivity. We constructed a PSig scoring system by using a principal component analysis algorithm to estimate the level of phosphorylation modification in individual LUAD patients. Patients in the high and low PSig score groups demonstrated different characteristics in terms of survival rate, tumor mutation burden, somatic gene mutation rate, immune cell abundance, and sensitivity to immunotherapy and drug treatment. This work reveals that phosphorylation plays a non-negligible role in the tumor microenvironment and immunotherapy of LUAD. Evaluating the phosphorylation status of individual LUAD patients by the PSig score can contribute to enhancing our cognition of the tumor microenvironment and guiding the formulation of more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Deyu Long
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lili Wei
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| |
Collapse
|
18
|
Zhou Y, Zhao L, Cai M, Luo D, Pang Y, Chen J, Luo Q, Lin Q. Utilizing sc-linker to integrate single-cell RNA sequencing and human genetics to identify cell types and driver genes associated with non-small cell lung cancer. BMC Cancer 2025; 25:130. [PMID: 39849454 PMCID: PMC11755902 DOI: 10.1186/s12885-025-13525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) provide a powerful method for identifying the loci and genes that contribute to disease. However, in many cases, the specific cell types and states that confer disease risk through these genes remain unknown. Determining this relationship is crucial for identifying pathogenic processes and developing therapeutic strategies. METHODS In this study, we utilized the sc-linker framework developed by Jagadeesh, which is an integrated framework that combines single-cell RNA sequencing (scRNA-seq), epigenomic single nucleotide polymorphism (SNP)-to-gene mapping, and GWAS summary statistics to infer potential cell types and diseases affected by genetic variations. RESULTS Using normal cell type programs in the sc-linker, we identified type 2 alveolar cells in normal lung tissues that are closely associated with non-small cell lung cancer (NSCLC). Additionally, we identified cancer-associated fibroblasts (CAFs) associated with lung cancer using disease-dependent programs. By integrating extensive single-cell data from NSCLC, we discerned heterogeneity among CAFs subgroups. Finally, using MAGMA, we identified RAB31 as a driver gene in disease-related fibroblasts. Proteins from the RAB family are involved in the dynamic regulation of cell membrane compartments and are dysregulated in various tumor types, potentially altering biological properties such as the proliferation, migration, and invasion of cancer cells. We found that the Ras-related protein Rab-31 (RAB31) was significantly overexpressed in tumor-associated fibroblasts compared to that in normal fibroblasts and was closely associated with poor prognosis in patients with NSCLC. CONCLUSIONS By integrating scRNA-seq, epigenomic, and GWAS datasets, we found that ACT2 and CAFs have specific disease heritability in lung cancer and identified the driver gene RAB31 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yangfan Zhou
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Liang Zhao
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Meimei Cai
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Doudou Luo
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jianhao Chen
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qicong Luo
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
| |
Collapse
|
19
|
Chen Z, Mei K, Tan F, Zhou Y, Du H, Wang M, Gu R, Huang Y. Integrative multi-omics analysis for identifying novel therapeutic targets and predicting immunotherapy efficacy in lung adenocarcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:3. [PMID: 39935429 PMCID: PMC11810459 DOI: 10.20517/cdr.2024.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025]
Abstract
Aim: Lung adenocarcinoma (LUAD), the most prevalent subtype of non-small cell lung cancer (NSCLC), presents significant clinical challenges due to its high mortality and limited therapeutic options. The molecular heterogeneity and the development of therapeutic resistance further complicate treatment, underscoring the need for a more comprehensive understanding of its cellular and molecular characteristics. This study sought to delineate novel cellular subpopulations and molecular subtypes of LUAD, identify critical biomarkers, and explore potential therapeutic targets to enhance treatment efficacy and patient prognosis. Methods: An integrative multi-omics approach was employed to incorporate single-cell RNA sequencing (scRNA-seq), bulk transcriptomic analysis, and genome-wide association study (GWAS) data from multiple LUAD patient cohorts. Advanced computational approaches, including Bayesian deconvolution and machine learning algorithms, were used to comprehensively characterize the tumor microenvironment, classify LUAD subtypes, and develop a robust prognostic model. Results: Our analysis identified eleven distinct cellular subpopulations within LUAD, with epithelial cells predominating and exhibiting high mutation frequencies in Tumor Protein 53 (TP53) and Titin (TTN) genes. Two molecular subtypes of LUAD [consensus subtype (CS)1 and CS2] were identified, each showing distinct immune landscapes and clinical outcomes. The CS2 subtype, characterized by increased immune cell infiltration, demonstrated a more favorable prognosis and higher sensitivity to immunotherapy. Furthermore, a multi-omics-driven machine learning signature (MOMLS) identified ribonucleotide reductase M1 (RRM1) as a critical biomarker associated with chemotherapy response. Based on this model, several potential therapeutic agents targeting different subtypes were proposed. Conclusion: This study presents a comprehensive multi-omics framework for understanding the molecular complexity of LUAD, providing insights into cellular heterogeneity, molecular subtypes, and potential therapeutic targets. Differential sensitivity to immunotherapy among various cellular subpopulations was identified, paving the way for future immunotherapy-focused research.
Collapse
Affiliation(s)
- Zilu Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Authors contributed equally
| | - Kun Mei
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
- Authors contributed equally
| | - Foxing Tan
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yuheng Zhou
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Haolin Du
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Yan Huang
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu, China
| |
Collapse
|
20
|
Wang S, Ao L, Lin H, Wei H, Wu Z, Lu S, Liang F, Shen R, Zhang H, Miao T, Shen X, Lin J, Zhong G. Single-cell transcriptomic analysis of the senescent microenvironment in bone metastasis. Cell Prolif 2025; 58:e13743. [PMID: 39231761 PMCID: PMC11693537 DOI: 10.1111/cpr.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Bone metastasis (BM) is a mortality-related event of late-stage cancer, with non-small cell lung cancer (NSCLC) being a common origin for BM. However, the detailed molecular profiling of the metastatic bone ecosystem is not fully understood, hindering the development of effective therapies for advanced patients. In this study, we examined the cellular heterogeneity between primary tumours and BM from tissues and peripheral blood by single-cell transcriptomic analysis, which was verified using multiplex immunofluorescence staining and public datasets. Our results demonstrate a senescent microenvironment in BM tissues of NSCLC. BM has a significantly higher infiltration of malignant cells with senescent characteristics relative to primary tumours, accompanied by aggravated metastatic properties. The endothelial-mesenchymal transition involved with SOX18 activation is related to the cellular senescence of vascular endothelial cells from BM. CD4Tstr cells, with pronounced stress and senescence states, are preferentially infiltrated in BM, indicating stress-related dysfunction contributing to the immunocompromised environment during tumour metastasis to bone. Moreover, we identify the SPP1 pathway-induced cellular crosstalk among T cells, vascular ECs and malignant cells in BM, which activates SOX18 and deteriorates patient survival. Our findings highlight the roles of cellular senescence in modulating the microenvironment of BM and implicate anti-senescence therapy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Shenglin Wang
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
- Institute of Precision MedicineFujian Medical UniversityFuzhouChina
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University)Ministry of EducationFuzhouChina
| | - Huangfeng Lin
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hongxiang Wei
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhaoyang Wu
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shuting Lu
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Fude Liang
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Rongkai Shen
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Huarong Zhang
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Tongjie Miao
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
| | - Xiaopei Shen
- Department of Bioinformatics, Fujian Key Laboratory of Medical BioinformaticsSchool of Medical Technology and Engineering, Fujian Medical UniversityFuzhouChina
- Institute of Precision MedicineFujian Medical UniversityFuzhouChina
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University)Ministry of EducationFuzhouChina
| | - Jianhua Lin
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Guangxian Zhong
- Department of OrthopaedicsFujian Institute of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
21
|
Song L, Yu X, Wu Y, Zhang W, Zhang Y, Shao Y, Hou Z, Yang C, Gao Y, Zhao Y. Integrin β8 Facilitates Macrophage Infiltration and Polarization by Regulating CCL5 to Promote LUAD Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406865. [PMID: 39535362 PMCID: PMC11727125 DOI: 10.1002/advs.202406865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The tumor microenvironment (TME) influences cancer progression and metastasis. Integrin β8 (ITGβ8), a member of the integrin family, is upregulated in various cancers. In this study, it is determined as a key factor that mediates the interaction between lung adenocarcinoma (LUAD) cells and macrophages. Increased expression levels of ITGβ8 are associated with increased numbers of CD163+ macrophages and poor prognosis in LUAD patients. The overexpression of ITGβ8 in LUAD cells promotes the polarization of THP-1 macrophages toward the M2 phenotype. In contrast, TCM (conditioned medium from the co-culture system) from THP-1 macrophages and ITGβ8-overexpressing A549 cells promoted the proliferation and invasion of A549 cells. Mechanistically, chemokine (C-C motif) ligand 5 (CCL5) plays an important role in mediating ITGβ8-induced macrophage polarization, and the phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT)/interferon regulatory factor 9 (IRF9) pathway is involved in this process. Moreover, interleukin 8 (IL8) and interleukin 10 (IL10) produced by M2-like macrophages regulate the expression of ITGβ8 in LUAD cells through the spi-1 proto-oncogene (SPI1). This study elucidates the feedback mechanism of ITGβ8 between LUAD cells and macrophages.
Collapse
Affiliation(s)
- Lei Song
- Department of Internal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Xi Yu
- Department of Gynecological OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Yang Wu
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Wenwen Zhang
- Department of Gynecological OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Yu Zhang
- Department of Internal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Yanchi Shao
- Department of Internal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Zhenxin Hou
- Department of Internal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Chen Yang
- Department of Internal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Yue Gao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinHeilongjiang150081China
| | - Yanbin Zhao
- Department of Internal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| |
Collapse
|
22
|
Xu J, Zhang K, Chen H, Wu W, Li X, Huang Y, Wu Y, Zhang J. Squamous cell carcinoma predicts worse prognosis in stage IA (≤ 2 cm) non-small cell lung cancer patients following sublobectomy: a population-based study. Sci Rep 2024; 14:30998. [PMID: 39730612 DOI: 10.1038/s41598-024-81965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Recent studies recommend sublobectomy as a surgical approach for non-small cell lung cancer (NSCLC) tumors that are 2 cm or smaller. However, it remains unclear whether NSCLC patients with squamous cell carcinoma (SCC) have comparable outcomes to those with adenocarcinoma (ADC) following sublobectomy. To that end, this study aims to compare the survival outcomes between SCC and ADC in patients with stage IA NSCLC (≤ 2 cm) who have undergone sublobectomy. We identified stage IA (≤ 2 cm) NSCLC patients diagnosed with lung squamous cell carcinoma or adenocarcinoma pathology and underwent sublobectomy from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2020. Overall survival (OS) was determined using the Kaplan-Meier method, and Cox proportional hazards regression was employed to identify risk factors for OS. A total of 9,831 patients diagnosed with stage IA NSCLC (≤ 2 cm) were evaluated. Of these, 2,078 patients met the inclusion criteria, including 1,565 with adenocarcinoma (ADC) and 513 with squamous cell carcinoma (SCC). Notably, SCC was associated with worse overall survival compared to ADC (HR: 2.02, 95% CI: 1.34-3.05, P = 0.03). Subgroup analyses revealed that SCC was comparable to ADC in terms of OS for tumors ≤ 1 cm (HR: 1.22, 95% CI: 0.47-3.18, P = 0.83), while patients with SCC displayed worse OS compared to ADC for tumors > 1 to 2 cm (HR: 2.05, 95% CI: 1.31-3.23, P = 0.002). Cox proportional hazards regression analysis identified female sex (HR: 1.53, 95% CI: 1.08-2.19, P = 0.017), high tumor grade (HR: 1.76, 95% CI: 1.02-3.03, P = 0.011), and SCC (HR: 1.58, 95% CI: 1.08-2.30, P = 0.017) as independent risk factors for OS. In patients with stage IA (≤ 2 cm) NSCLC who underwent sublobectomy, SCC is associated with worse overall survival compared to ADC. Furthermore, being female, having a high tumor grade, and SCC pathology are independent risk factors for OS in these patients.
Collapse
Affiliation(s)
- Jiannan Xu
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Zhang
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huiguo Chen
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Li
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanheng Huang
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yonghui Wu
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jian Zhang
- Department of Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Zhong J, Fei K, Wu L, Li B, Wang Z, Cheng Y, Li X, Wang X, Han L, Wu X, Fan Y, Yu Y, Lv D, Shi J, Huang J, Zhou S, Han B, Sun G, Guo Q, Ji Y, Zhu X, Hu S, Zhang W, Wang Q, Jia Y, Wang Z, Song Y, Wu J, Shi M, Li X, Han Z, Liu Y, Yu Z, Liu AW, Wang X, Zhou C, Zhong D, Miao L, Zhang Z, Zhao H, Yang J, Wang D, Wang Y, Li Q, Zhang X, Ji M, Yang Z, Cui J, Gao B, Wang B, Liu H, Nie L, He M, Jin S, Gu W, Shu Y, Zhou T, Feng J, Yang X, Huang C, Zhu B, Yao Y, Yao S, Yu J, Cai SL, Cai Y, Xu J, Zhuang W, Luo X, Duan J, Wang J. Toripalimab plus chemotherapy for first line treatment of advanced non-small cell lung cancer (CHOICE-01): final OS and biomarker exploration of a randomized, double-blind, phase 3 trial. Signal Transduct Target Ther 2024; 9:369. [PMID: 39715755 DOI: 10.1038/s41392-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
A randomized double-blind phase 3 trial (CHOICE-01, NCT03856411) demonstrated that combining toripalimab with chemotherapy substantially improves progression-free survival (PFS) in advanced non-small cell lung cancer (NSCLC) patients without pretreatment. This study presents the prespecified final analysis of overall survival (OS) and biomarkers utilizing circulating tumor DNA (ctDNA) and tissue-based sequencing. Additionally, the analysis revealed a higher median overall survival (OS, 23.8 months) in the toripalimab group than that in the control group (17.0 months). (HR = 0.69, 95%CI: 0.57-0.93, nominal P = 0.01). This survival benefit was particularly notable in the non-squamous subgroup. As the first phase 3 study to perform both baseline tissue whole-exome sequencing (WES) and peripheral blood ctDNA testing, we investigated efficacy predictive biomarkers based on both tissue and ctDNA, Genomic sequencing of ctDNA showed high concordance with tumor tissue independently confirmed that individuals exhibiting a high tumor mutational burden, as well as mutations in the FA-PI3K-Akt and IL-7 signaling pathways benefited more from the toripalimab treatment. Furthermore, a ctDNA response observed on cycle 3 day 1, was associated with improved clinical outcomes for patients treated with the combination therapy. In conclusion, Toripalimab plus chemotherapy yields significant improvements in OS as a first-line treatment. The study highlights the utility of ctDNA as a proxy for tumor tissue, providing novel prospects for predicting efficacy of immuno-chemotherapy through continuous ctDNA monitoring.
Collapse
Affiliation(s)
- Jia Zhong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Baolan Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Xiaoling Li
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xicheng Wang
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liang Han
- Xuzhou Central Hospital, Xuzhou, China
| | - Xiaohong Wu
- Jiangnan University Affiliated Hospital, Wuxi, China
| | - Yun Fan
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Yan Yu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongqing Lv
- Taizhou Hospital of Zhejiang Province, Linhai, China
| | | | - Jianjin Huang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shaozhang Zhou
- Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Baohui Han
- Shanghai Chest Hospital, Shanghai, China
| | - Guogui Sun
- Tangshan People's Hospital, Tangshan, China
| | - Qisen Guo
- Shangdong Cancer Hospital, Jinan, China
| | - Youxin Ji
- Qingdao Central Hospital, Qingdao, China
| | - Xiaoli Zhu
- Zhongda Hospital Southeast University, Nanjing, China
| | - Sheng Hu
- Hubei Cancer Hospital, Wuhan, China
| | - Wei Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | | | - Yuming Jia
- The Second People's Hospital of Yibin, Yibin, China
| | - Ziping Wang
- Peking University Cancer Hospital, Beijing, China
| | - Yong Song
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingxun Wu
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Meiqi Shi
- Jiangsu Cancer Hospital, Nanjing, China
| | - Xingya Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Han
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yunpeng Liu
- The First Hospital of China Medical University, Shenyang, China
| | - Zhuang Yu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Wen Liu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuwen Wang
- Qilu Hospital of Shandong University, Jinan, China
| | - Caicun Zhou
- Shanghai Pulmonary Hospital, Shanghai, China
| | | | - Liyun Miao
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Hui Zhao
- The Second Hospital of Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong Wang
- Army Medical Center of PLA, Daping Hospital, Daping, China
| | - Yingyi Wang
- Peking Union Medical College Hospital, Beijing, China
| | - Qiang Li
- Shanghai East Hospital of Tongji University, Shanghai, China
| | | | - Mei Ji
- The First People's Hospital of Changzhou, Changzhou, China
| | - Zhenzhou Yang
- The Second Affiliated Hospital of Chongqing University, Chongqing, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Jilin, China
| | - Beili Gao
- Ruijin Hospital Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Buhai Wang
- Subei People's Hospital of Jiangsu Province, Yanghzou, China
| | - Hu Liu
- Anhui Provincial Cancer Hospital, Hefei, China
| | - Lei Nie
- Shaanxi Provincial Cancer Hospital, Xian, China
| | - Mei He
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shi Jin
- Cancer Hospital of Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Wei Gu
- Nanjing First Hospital, Nanjing, China
| | - Yongqian Shu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Zhou
- ChangZhou Cancer Hospital, Changzhou, China
| | - Jian Feng
- Affiliated Hospital of Nantong University, Nantong, China
| | | | | | - Bo Zhu
- Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Yu Yao
- First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Sheng Yao
- TopAlliance Biosciences, Rockville, MD, USA
- Shanghai Junshi Biosciences, Shanghai, China
| | - Jianjun Yu
- TopAlliance Biosciences, Rockville, MD, USA
- Shanghai Junshi Biosciences, Shanghai, China
| | | | - Yiran Cai
- Burning Rock Biotech, Guangdong, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianmin Luo
- Shanghai Junshi Biosciences, Shanghai, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
24
|
Li X, Dong X, Zhang W, Shi Z, Liu Z, Sa Y, Li L, Ni N, Mei Y. Multi-omics in exploring the pathophysiology of diabetic retinopathy. Front Cell Dev Biol 2024; 12:1500474. [PMID: 39723239 PMCID: PMC11668801 DOI: 10.3389/fcell.2024.1500474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading global cause of vision impairment, with its prevalence increasing alongside the rising rates of diabetes mellitus (DM). Despite the retina's complex structure, the underlying pathology of DR remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) and recent advancements in multi-omics analyses have revolutionized molecular profiling, enabling high-throughput analysis and comprehensive characterization of complex biological systems. This review highlights the significant contributions of scRNA-seq, in conjunction with other multi-omics technologies, to DR research. Integrated scRNA-seq and transcriptomic analyses have revealed novel insights into DR pathogenesis, including alternative transcription start site events, fluctuations in cell populations, altered gene expression profiles, and critical signaling pathways within retinal cells. Furthermore, by integrating scRNA-seq with genetic association studies and multi-omics analyses, researchers have identified novel biomarkers, susceptibility genes, and potential therapeutic targets for DR, emphasizing the importance of specific retinal cell types in disease progression. The integration of scRNA-seq with metabolomics has also been instrumental in identifying specific metabolites and dysregulated pathways associated with DR. It is highly conceivable that the continued synergy between scRNA-seq and other multi-omics approaches will accelerate the discovery of underlying mechanisms and the development of novel therapeutic interventions for DR.
Collapse
Affiliation(s)
- Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - XiaoJing Dong
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhizhou Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yalian Sa
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Li Li
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ninghua Ni
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
Liu Z, Ke SR, Shi ZX, Zhou M, Sun L, Sun QH, Xiao B, Wang DL, Huang YJ, Lin JS, Wang HS, Zhang QK, Pan CN, Liang XW, Chen RX, Mao Z, Lin XC. Dynamic transition of Tregs to cytotoxic phenotype amid systemic inflammation in Graves' ophthalmopathy. JCI Insight 2024; 9:e181488. [PMID: 39365735 PMCID: PMC11601897 DOI: 10.1172/jci.insight.181488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Graves' disease (GD) is an autoimmune condition that can progress to Graves' ophthalmopathy (GO), leading to irreversible damage to orbital tissues and potential blindness. The pathogenic mechanism is not fully understood. In this study, we conducted single-cell multi-omics analyses on healthy individuals, patients with GD without GO, newly diagnosed patients with GO, and treated patients with GO. Our findings revealed gradual systemic inflammation during GO progression, marked by overactivation of cytotoxic effector T cell subsets, and expansion of specific T cell receptor clones. Importantly, we observed a decline in the immunosuppressive function of activated Treg (aTreg) accompanied by a cytotoxic phenotypic transition. In vitro experiments revealed that dysfunction and transition of GO-autoreactive Treg were regulated by the yin yang 1 (YY1) upon secondary stimulation of thyroid stimulating hormone receptor (TSHR) under inflammatory conditions. Furthermore, adoptive transfer experiments of the GO mouse model confirmed infiltration of these cytotoxic Treg into the orbital lesion tissues. Notably, these cells were found to upregulate inflammation and promote pathogenic fibrosis of orbital fibroblasts (OFs). Our results reveal the dynamic changes in immune landscape during GO progression and provide direct insights into the instability and phenotypic transition of Treg, offering potential targets for therapeutic intervention and prevention of autoimmune diseases.
Collapse
|
26
|
Huang S, Chung JYF, Li C, Wu Y, Qiao G, To KF, Tang PMK. Cellular dynamics of tumor microenvironment driving immunotherapy resistance in non-small-cell lung carcinoma. Cancer Lett 2024; 604:217272. [PMID: 39326553 DOI: 10.1016/j.canlet.2024.217272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have profoundly reshaped the treatment paradigm for non-small cell lung cancer (NSCLC). Despite these advancements, primary and secondary resistance to ICIs remain prevalent challenges in managing advanced NSCLC. Recent studies have highlighted the significant role of the tumor microenvironment (TME) in modulating treatment responses. This review aims to comprehensively examine the interactive roles of immune/stromal cells-such as T cells, B cells, neutrophils, macrophages, and CAFs within the TME, elucidating how these diverse cellular interactions contribute to immunotherapy resistance. It focuses on the dynamic interactions among diverse cell types such as the varying states of T cells under the influence of TME constituents like immune cells and cancer-associated fibroblasts (CAFs). By exploring the mechanisms involved in the complex cellular interactions, we highlight novel therapeutic targets and strategies aimed at overcoming resistance, thereby enhancing the efficacy of ICIs in NSCLC. Our synthesis of recent research provides critical insights into the multifaceted mechanisms of resistance and paves the way for the development of more effective, personalized treatment approaches.
Collapse
Affiliation(s)
- Shujie Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
27
|
Chen G, Wang W, Wei X, Chen Y, Peng L, Qu R, Luo Y, He S, Liu Y, Du J, Lu R, Li S, Fan C, Chen S, Dai Y, Yang L. Single-cell transcriptomic analysis reveals that the APP-CD74 axis promotes immunosuppression and progression of testicular tumors. J Pathol 2024; 264:250-269. [PMID: 39161125 DOI: 10.1002/path.6343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Testicular tumors represent the most common malignancy among young men. Nevertheless, the pathogenesis and molecular underpinning of testicular tumors remain largely elusive. We aimed to delineate the intricate intra-tumoral heterogeneity and the network of intercellular communication within the tumor microenvironment. A total of 40,760 single-cell transcriptomes were analyzed, encompassing samples from six individuals with seminomas, two patients with mixed germ cell tumors, one patient with a Leydig cell tumor, and three healthy donors. Five distinct malignant subclusters were identified in the constructed landscape. Among them, malignant 1 and 3 subclusters were associated with a more immunosuppressive state and displayed worse disease-free survival. Further analysis identified that APP-CD74 interactions were significantly strengthened between malignant 1 and 3 subclusters and 14 types of immune subpopulations. In addition, we established an aberrant spermatogenesis trajectory and delineated the global gene alterations of somatic cells in seminoma testes. Sertoli cells were identified as the somatic cell type that differed the most from healthy donors to seminoma testes. Cellular communication between spermatogonial stem cells and Sertoli cells is disturbed in seminoma testes. Our study delineates the intra-tumoral heterogeneity and the tumor immune microenvironment in testicular tumors, offering novel insights for targeted therapy. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Wei
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yulin Chen
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Liao Peng
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rui Qu
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yi Luo
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Shengyin He
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yugao Liu
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Jie Du
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Ran Lu
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Siying Li
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Chuangwen Fan
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sujun Chen
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yi Dai
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Luo Yang
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
28
|
Singh P, Tabassum G, Masood M, Anwar S, Syed MA, Dev K, Hassan MI, Haque MM, Dohare R, Singh IK. Investigating the role of prognostic mitophagy-related genes in non-small cell cancer pathogenesis via multiomics and network-based approach. 3 Biotech 2024; 14:273. [PMID: 39444988 PMCID: PMC11493942 DOI: 10.1007/s13205-024-04127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
As one of the most prevalent malignancies, lung cancer displays considerable biological variability in both molecular and clinical characteristics. Lung cancer is broadly categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) with the latter being most prevalent. The primary histological subtypes of NSCLC are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). In the present work, we primarily extracted mRNA count data from a publicly accessible database followed by differentially expressed genes (DEGs) and differentially expressed mitophagy-related genes (DEMRGs) identification in case of both LUAD and LUSC cohorts. Next, we identified important DEMRGs via clustering approach followed by enrichment, survival, and mutational analyses. Lastly, the finalized prognostic biomarker was validated using wet-lab experimentations. Primarily, we obtained 986 and 1714 DEGs across LUAD and LUSC cohorts. Only 7 DEMRGs from both cohorts had significant membership values as indicated by the clustering analysis. Most significant pathway, Gene Ontology (GO)-biological process (BP), GO-molecular function (MF), GO-cellular compartment (CC) terms were macroautophagy, GTP metabolic process, magnesium ion binding, mitochondrial outer membrane. Among all, only TDRKH reported significant overall survival (OS) and 14% amplification across LUAD patients. Lastly, we validated TDRKH via immunohistochemistry (IHC) and semi-quantitative polymerase chain reaction (PCR). In conclusion, our findings advocate for the exploration of TDRKH and their genetic alterations in precision oncology therapeutic approaches for LUAD, emphasizing the potential for target-driven therapy and early diagnostics. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04127-y.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Gulnaz Tabassum
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology & DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
29
|
Miao C, Chen Y, Zhang H, Zhao W, Wang C, Ma Z, Zhu S, Hu X. Heterogeneity in peripheral blood immune lymphocyte subsets predicts the response of immunotherapy or chemoradiotherapy in advanced lung cancer: an analysis across different pathological types, treatment modalities and age. Front Immunol 2024; 15:1464728. [PMID: 39483483 PMCID: PMC11524866 DOI: 10.3389/fimmu.2024.1464728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background The shaping of the tumor immune microenvironment does not only rely on tumor-infiltrating lymphocytes but on the recruitment of lymphocytes in peripheral blood. Monitoring peripheral blood lymphocyte subsets level (PBLSL) can predict treatment response and prognosis with immune checkpoint inhibitors. This study investigated the heterogeneity of PBLSL in response to chemoradiotherapy (CRT) or combined with immunotherapy (CRIT) in advanced lung cancer patients. Methods 77 patients with advanced lung cancer receiving CRT or CRIT were divided into treatment-responsive and non-responsive groups based on efficacy. The study analyzed short-term efficacy and progression-free survival (PFS) according to baseline PBLSL and explored the impact under different stratifications, including treatment modality, pathology type, and age. Results In all patients, higher levels of B cells, higher CD4+/CD8+ T cell ratios, and lower CD8+ T cell levels were associated with better short-term outcomes (P = 0.0035, P = 0.044, P = 0.022). Subgroup analysis revealed that in the CRT group, higher B cell levels correlated with improved efficacy (P = 0.011) and superior PFS (P = 0.048, HR = 0.3886, 95% CI = 0.1696 to 0.8902). In the CRIT group, higher CD4+ T cell levels, lower CD8+ T cell levels, and higher CD4+/CD8+ T cell ratios were linked to better efficacy (P = 0.038, P = 0.047, P = 0.017). For adenocarcinoma patients, higher CD4+/CD8+ T cell ratios and lower CD8+ T cell levels predicted better efficacy (P = 0.0155, P = 0.0119). B cell levels were significant in squamous cell carcinoma (P = 0.0291), while no PBLSL was predictive for small cell lung cancer. Among patients under 65, higher B cell levels were linked to improved efficacy and prolonged PFS (P = 0.0036, P = 0.0332, HR = 0.4111, 95% CI = 0.1973 to 0.8563). For patients over 65, differences in CD4+ T cell levels and CD4+/CD8+ T cell ratios were significant (P = 0.0433, P = 0.0338). Conclusion PBLSL predicted efficacy and prognosis in various patient stratifications, suggesting PBLSL is a reliable predictor for CRT and CRIT in advanced lung cancer. Detecting different cellular subpopulations helps identify patients with significant treatment responses across different stratifications.
Collapse
Affiliation(s)
- Chuanwang Miao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanji Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Clinical Medicine, Shandong First Medical University, Jinan, Shandong, China
| | - Hao Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunliang Wang
- Department of Radiotherapy, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Zeliang Ma
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Shan Zhu
- Department of Radiation Oncology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Xudong Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
30
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
31
|
Li Z, Pei S, Wang Y, Zhang G, Lin H, Dong S. Advancing predictive markers in lung adenocarcinoma: A machine learning-based immunotherapy prognostic prediction signature. ENVIRONMENTAL TOXICOLOGY 2024; 39:4581-4593. [PMID: 38591820 DOI: 10.1002/tox.24284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
The prognosis of lung adenocarcinoma (LUAD) is generally poor. Immunotherapy has emerged as a promising therapeutic modality, demonstrating remarkable potential for substantially prolonging the overall survival of individuals afflicted with LUAD. However, there is currently a lack of reliable signatures for identifying patients who would benefit from immunotherapy. We conducted a comparative analysis of two immunotherapy cohorts (OAK and POPLAR) and utilized single-factor COX regression to identify genes that significantly impact the prognosis of LUAD. Based on the TCGA-LUAD dataset, we employed a combination of 101 machine learning algorithms to construct a model and selected the optimal model. The model was validated on five GEO datasets and compared with 144 previously published signatures to assess its performance. Subsequently, we explored the underlying biological mechanisms through tumor mutation burden analysis, enrichment analysis, and immune infiltration analysis. An immunotherapy prognostic prediction signature (IPPS) was constructed based on 13 genes, showing robust performance in the TCGA-LUAD dataset. IPPS exhibited consistent predictive accuracy in the validation cohorts. Compared to 144 previously published signatures, IPPS consistently ranked among the top in terms of C-index values. Further exploration revealed differences between high and low-IPPS groups in terms of tumor mutation burden, pathway enrichment, and immune infiltration. IPPS demonstrates strong predictive capabilities for the prognosis of LUAD patients, offering the potential to identify suitable candidates for immunotherapy and contribute to precision treatment strategies for LUAD.
Collapse
Affiliation(s)
- Zhongyan Li
- Department of Geriatric Medicine, The Affiliated Huai'an Hospital of Yangzhou University
| | - Shengbin Pei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Afliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyang Dong
- Department of Thoracic Surgery, Fuyang Tumor Hospital, Fuyang, China
| |
Collapse
|
32
|
Li A, Wang H, Zhang L, Zhao Q, Yang Y, Zhang Y, Yang L. A single-cell RNA-seq dataset describing macrophages in NSCLC tumor and peritumor tissues. Sci Data 2024; 11:1064. [PMID: 39353975 PMCID: PMC11445445 DOI: 10.1038/s41597-024-03885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Examining tumor-associated macrophages in the immune microenvironment of non-small cell lung cancer (NSCLC) is essential for gaining an understanding of the genesis and development of NSCLC as well as for identifying key clinical therapeutic targets. Although previous studies have reported the diverse phenotypes and functions of macrophages in tumor tissues, thereby highlighting their significant role in the tumor microenvironment, the characteristic differences and correlations between tumor and peritumor tissue-derived macrophages that are necessary for an understanding of NSCLC progression remain unclear. Based on single-cell RNA sequencing, we generated a comprehensive dataset of transcriptomes from NSCLC tumor and peritumor tissues, thereby facilitating comprehensive analysis and providing significant insights. In summary, our dataset will serve as a valuable transcriptomic resource for further studies investigating NSCLC development.
Collapse
Affiliation(s)
- Aitian Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huishang Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
34
|
Lu Z, Bi Y, Jiang J, Yao X, Hou G. Exploring the prognostic and therapeutic value of HIF1A in lung adenocarcinoma. Heliyon 2024; 10:e37739. [PMID: 39318795 PMCID: PMC11420488 DOI: 10.1016/j.heliyon.2024.e37739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Lung adenocarcinoma (LUAD) remains a challenge within the realm of non-small cell lung cancer (NSCLC), demanding innovative diagnostic and therapeutic solutions. In this study, we systematically detected the correlation between the expression of hypoxia-induced factor 1A (HIF1A) and the clinical characteristics of LUAD, alongside lung squamous cell carcinoma (LUSC). Our bioinformatic analysis reveals that HIF1A mRNA expression is significantly upregulated in both LUAD and LUSC samples compared to non-tumorous lung tissues. The overexpression is positively correlated with increased copy number variation and negatively associated with promoter methylation. However, meta-analysis and survival analyses revealed a pronounced association between elevated HIF1A expression and poor clinical outcome specifically within the LUAD subset, with no such correlation evident in LUSC. Additionally, we explored the interplay between HIF1A expression, leukocyte infiltration, and the presence of immunosuppressive markers, revealing HIF1A's suppressive role in cytotoxicity against cancer cells. Furthermore, we performed in silico prediction to explore the correlations between HIF1A and its interacting proteins, associated pathways, glycolysis, and m6A modification, and the feasibility of targeting HIF1A with specific drugs. In summary, our study revealed the prognostic significance and therapeutic potential of HIF1A in LUAD.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Outpatient, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yanyu Bi
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jialu Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xuming Yao
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| |
Collapse
|
35
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
36
|
Chen H, Liu L, Zhang M, Wu S, Wu J. Correlation of LOXL2 expression in non-small cell lung cancer with immunotherapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:268-286. [PMID: 39399656 PMCID: PMC11470429 DOI: 10.62347/zieg9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
Lung cancer is the most prevalent and lethal disease globally, with approximately 80% of cases being non-small cell lung cancer (NSCLC). NSCLC is primarily composed of lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). Despite chemotherapy currently being the primary treatment for NSCLC, chemotherapy resistance remains a significant challenge for patients. Recent studies have proposed immunotherapy as a promising new avenue for treating NSCLC. The association between the lysyl oxidase-like 2 (LOXL2) gene and NSCLC was explored using multiple online tools and bioinformatics analysis software based on the available datasets from TCGA. The immune microenvironment of the tumor was explored by calculating ImmuneScore, StromalScore, and TumorPurity of LUAD and LUSC and analyzing the infiltration of 22 immune cells in lung cancer tissues. LOXL2-related loads were obtained from the Xena database for LUSC and LUAD patients, and relevant prognostic genes were identified by analyzing survival curves. Functional and pathway enrichment analyses of prognostic, predictive genes were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of LOXL2 in NSCLC was detected by RT-qPCR. LOXL2 may be involved in the progression of LUAD and LUSC and is closely related to the T-lymphocyte subpopulation, T-reg cells. SEMA7A and VEGFC are identified as the genes that interact with LOXL2 and could be used as prognostic signature genes in NSCLC patients. LOXL2 may become a prognostic marker and a new target for immunotherapy.
Collapse
Affiliation(s)
- Haoyan Chen
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lele Liu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Mingjiong Zhang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jianqing Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
37
|
Ma Y, Li J, Xiong C, Sun X, Shen T. Development of a prognostic model for NSCLC based on differential genes in tumour stem cells. Sci Rep 2024; 14:20938. [PMID: 39251710 PMCID: PMC11383933 DOI: 10.1038/s41598-024-71317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes a significant portion of lung cancers and cytotoxic drugs (e.g. cisplatin) are currently the first-line treatment. However, NSCLC has developed resistance to this drug, which limits the therapeutic effect and thus affects prognosis. NSCLC sc-RNA-seq data were downloaded from the GEO database and Ku Leuven Laboratory for Functional Epigenetics, and bulk RNA-seq data were obtained from the TCGA database. The "Seurat" package was employed for scRNA-seq data processing, and the uniform manifold approximation and projection (UMAP) were applied for downscaling and cluster identification. Use the FindAllMarkers function to find differential genes (DEGs) for tumor stem cells. Then, we performed univariate regression analyses on the DEGs to identify potential prognostic genes. We created a machine learning framework based on potential prognostic genes, which combines 10 machine learning methods and their 101 combinations to get the optimal prognostic risk model. The model was evaluated in the training set and validation set. A nomogram was developed to provide physicians with a quantitative tool for prognosis prediction. Finally, we evaluated the expression and functionality of SLC2A1. We discovered 22 cell clusters containing 218379 cells by examining single-cell RNA sequencing datasets (GSE148071, KU_lom, GSE131907, GSE136246, GSE127465). Tumour cells were isolated for subpopulation analysis and 162 differential genes from SOX2_cancer were obtained. After univariate Cox analysis, we found 23 genes with prognostic potential prognostic value and utilized them to develop 101‑combination machine learning computational framework. We eventually picked the best performing 'StepCox[both] + RSF', which includes 8 genes. The model has a relatively high prediction accuracy in both TCGA and GEO datasets. In in vitro investigations, targeted suppression of the SLC2A1 gene resulted in significant reductions in proliferation, invasion and migration in A549 cells. In addition, a significant reduction in cisplatin resistance was seen in A549/DDP cells. The outcomes demonstrated the precision and credibility of the prognostic model for NSCLC, highlighting its potential significance in the treatment and prognosis of individuals affected by this disease. SLC2A1 may become a promising prognostic marker and a potential therapeutic target, offering valuable insights to inform clinical treatment decisions.
Collapse
Affiliation(s)
- Yuqi Ma
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoluo Sun
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
38
|
Liu KJ, Li HR, Tan QQ, Jiang T, Peng KC, Chen HJ, Zhou Q, Zhang XC, Zheng Z, Chen SY, Zheng X, Zheng HB, Mao BB, Gong LL, Chen XW, Wu W, Wu YL, Jia J, Yang JJ. Tumor immune microenvironment of NSCLC with EGFR exon 20 insertions may predict efficacy of first-line ICI-combined regimen. Lung Cancer 2024; 195:107933. [PMID: 39191079 DOI: 10.1016/j.lungcan.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Non-small cell lung cancer (NSCLC) patients with exon 20 insertion mutations (ex20ins) of the epidermal growth factor receptor (EGFR) were resistant to monotherapy of immune checkpoint inhibitor (ICI). However, recent reports have shown that the combination of ICI and chemotherapy (ICI-combined regimen) exhibited certain efficacy for NSCLC with EGFR ex20ins. The mechanisms behind this phenomenon have not been thoroughly clarified. Hence, we conducted this study tofind correlations between the tumor immune microenvironment of EGFR ex20ins and the efficacy of ICI-combined regimen. METHODS We performed single-cell transcriptome sequencing and multiplex immunofluorescence staining (mIF) to investigate the immune microenvironment of NSCLC patients with EGFR ex20ins, L858R, and EGFR wild-type. We analyzed 15 treatment-naïve NSCLC samples utilizing single-cell RNA sequencing (scRNA-seq). Another 30 cases of EGFR L858R and 4 cases of wild-type were recruited to compare the immune microenvironment with that of EGFR ex20ins (28 cases) by mIF. RESULTS We observed that cell components, function and interactions varied between EGFR ex20ins, L858R, and wild-type NSCLC.We discovered similar T cell and CD8+ T cell distributions among groups but found noninferior or even better T cell activation in ex20ins patients. Infiltrating CD8+ FOXP3- T cells were significantly lower in the tumor region of EGFR ex20ins compared to wild-type. T cells from the ex20ins group had a greater tendency to promote cancer cell inflammation and epithelial-mesenchymal transition (EMT) compared to wild-type group. For macrophages, there were more M2-like macrophages in ex20ins patients. M1-like macrophages in ex20ins group produced fewer antitumor cytokines than in other groups. CONCLUSIONS The immune microenvironment of EGFR ex20ins is more suppressive than that of L858R and wild-type, suggesting that ICI monotherapy may not be sufficient for these patients. ICI-combined regimen might be a treatment option for EGFR ex20ins due to tumor-promoting inflammation and noninferior T cell functions in the immune microenvironment.
Collapse
Affiliation(s)
- Ke-Jun Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong-Rui Li
- Berry Oncology Corporation, Fuzhou, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Quan-Quan Tan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Tao Jiang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China; Divamics Inc., Suzhou, China
| | - Kai-Cheng Peng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zheng Zheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China; Divamics Inc., Suzhou, China
| | - Shi-Yuan Chen
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Xue Zheng
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | | | - Bei-Bei Mao
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | | | | | - Wendy Wu
- Berry Oncology Corporation, Fuzhou, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Jun Jia
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China.
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Xu X, Zhang J, Yao T, Zhao X, Wu Q, Lu C, Guo X, Xie S, Qiu L, Bi R, Xue H. Differential prognostic impact and potential molecular mechanisms of PCDHGA12 expression in lung adenocarcinoma and squamous cell carcinoma. Int Immunopharmacol 2024; 139:112727. [PMID: 39067405 DOI: 10.1016/j.intimp.2024.112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), subtypes of non-small cell lung cancer (NSCLC), exhibit distinct characteristics. The expression and prognostic significance of Protocadherin Gamma Subfamily A, 12 (PCDHGA12) in NSCLC remain unexplored. This study analyzed transcriptomic and genomic datasets from TCGA to investigate PCDHGA12 expression and its prognostic relevance in LUAD and LUSC. We found PCDHGA12 mRNA and protein levels were downregulated in both LUAD and LUSC tissues compared to adjacent non-cancerous tissues, with high PCDHGA12 expression correlating with lower overall survival in LUSC but not in LUAD. GSEA revealed a unique enrichment pattern associated with PCDHGA12 low expression in LUSC, especially in the DNA repair pathway. Co-expression analysis showed associations of PCDHGA12 with focal adhesion and the PI3K-AKT pathway in LUAD, and additionally with ECM-receptor interaction in LUSC. Hub gene prognosis analysis identified genes correlated with prognosis only in LUSC, reflecting PCDHGA12's influence. Mutation analysis linked with PCDHGA12 identified differential mutations in SPTA1, KEAP1, and TNR in LUAD, and a notable NAV3 mutation in LUSC. Additionally, immuno-infiltration analysis reveals a positive correlation between PCDHGA12 expression and immune cell infiltration. Specifically, lower PCDHGA12 expression in LUSC is associated with higher levels of CD8 T cells and DCs, lower levels of Tregs and M0 macrophages, and increased expression of HMGB1 and TNFRSF18. These genetic and immunological differences may account for the significant prognostic disparity of PCDHGA12 levels between LUAD and LUSC. Further experimental studies are essential to validate these associations and investigate potential targeted and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xiangqian Xu
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jun Zhang
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Tangie Yao
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaokai Zhao
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing 314006, China
| | - Qingyuan Wu
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chenghua Lu
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaoyan Guo
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shiyun Xie
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lei Qiu
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Rongrong Bi
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Honghao Xue
- Department of Pulmonology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
40
|
Siddique F, Shehata M, Ghazal M, Contractor S, El-Baz A. Lung Cancer Subtyping: A Short Review. Cancers (Basel) 2024; 16:2643. [PMID: 39123371 PMCID: PMC11312171 DOI: 10.3390/cancers16152643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
As of 2022, lung cancer is the most commonly diagnosed cancer worldwide, with the highest mortality rate. There are three main histological types of lung cancer, and it is more important than ever to accurately identify the subtypes since the development of personalized, type-specific targeted therapies that have improved mortality rates. Traditionally, the gold standard for the confirmation of histological subtyping is tissue biopsy and histopathology. This, however, comes with its own challenges, which call for newer sampling techniques and adjunctive tools to assist in and improve upon the existing diagnostic workflow. This review aims to list and describe studies from the last decade (n = 47) that investigate three such potential omics techniques-namely (1) transcriptomics, (2) proteomics, and (3) metabolomics, as well as immunohistochemistry, a tool that has already been adopted as a diagnostic adjunct. The novelty of this review compared to similar comprehensive studies lies with its detailed description of each adjunctive technique exclusively in the context of lung cancer subtyping. Similarities between studies evaluating individual techniques and markers are drawn, and any discrepancies are addressed. The findings of this study indicate that there is promising evidence that supports the successful use of omics methods as adjuncts to the subtyping of lung cancer, thereby directing clinician practice in an economical and less invasive manner.
Collapse
Affiliation(s)
- Farzana Siddique
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| |
Collapse
|
41
|
Jiang L, Zhao X, Li Y, Hu Y, Sun Y, Liu S, Zhang Z, Li Y, Feng X, Yuan J, Li J, Zhang X, Chen Y, Shen L. The tumor immune microenvironment remodeling and response to HER2-targeted therapy in HER2-positive advanced gastric cancer. IUBMB Life 2024; 76:420-436. [PMID: 38126920 DOI: 10.1002/iub.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Combination therapy with anti-HER2 agents and immunotherapy has demonstrated significant clinical benefits in gastric cancer (GC), but the underlying mechanism remains unclear. In this study, we used multiplex immunohistochemistry to assess the changes of the tumor microenvironment in 47 advanced GC patients receiving anti-HER2 therapy. Additionally, we performed single-cell transcriptional sequencing to investigate potential cell-to-cell communication and molecular mechanisms in four HER2-positive GC baseline samples. We observed that post-treated the infiltration of NK cells, CD8+ T cells, and B lymphocytes were significantly higher in patients who benefited from anti-HER2 treatment than baseline. Further spatial distribution analysis demonstrated that the interaction scores between NK cells and CD8+ T cells, B lymphocytes and M2 macrophages, B lymphocytes and Tregs were also significantly higher in benefited patients. Cell-cell communication analysis from scRNA sequencing showed that NK cells utilized CCL3/CCL4-CCR5 to recruit CD8+ T cell infiltration. B lymphocytes employed CD74-APP/COPA/MIF to interact with M2 macrophages, and utilized TNF-FAS/ICOS/TNFRSR1B to interact with Tregs. These cell-cell interactions contribute to inhibit the immune resistance of M2 macrophages and Tregs. Our research provides potential guidance for the use of anti-HER2 therapy in combination with immune therapy.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xingwang Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yilin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yajie Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yu Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shengde Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zizhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanyan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xujiao Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiajia Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
42
|
Zhang P, Feng J, Rui M, Xie J, Zhang L, Zhang Z. Integrating machine learning and single-cell analysis to uncover lung adenocarcinoma progression and prognostic biomarkers. J Cell Mol Med 2024; 28:e18516. [PMID: 38958577 PMCID: PMC11221317 DOI: 10.1111/jcmm.18516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
The progression of lung adenocarcinoma (LUAD) from atypical adenomatous hyperplasia (AAH) to invasive adenocarcinoma (IAC) involves a complex evolution of tumour cell clusters, the mechanisms of which remain largely unknown. By integrating single-cell datasets and using inferCNV, we identified and analysed tumour cell clusters to explore their heterogeneity and changes in abundance throughout LUAD progression. We applied gene set variation analysis (GSVA), pseudotime analysis, scMetabolism, and Cytotrace scores to study biological functions, metabolic profiles and stemness traits. A predictive model for prognosis, based on key cluster marker genes, was developed using CoxBoost and plsRcox (CPM), and validated across multiple cohorts for its prognostic prediction capabilities, tumour microenvironment characterization, mutation landscape and immunotherapy response. We identified nine distinct tumour cell clusters, with Cluster 6 indicating an early developmental stage, high stemness and proliferative potential. The abundance of Clusters 0 and 6 increased from AAH to IAC, correlating with prognosis. The CPM model effectively distinguished prognosis in immunotherapy cohorts and predicted genomic alterations, chemotherapy drug sensitivity, and immunotherapy responsiveness. Key gene S100A16 in the CPM model was validated as an oncogene, enhancing LUAD cell proliferation, invasion and migration. The CPM model emerges as a novel biomarker for predicting prognosis and immunotherapy response in LUAD patients, with S100A16 identified as a potential therapeutic target.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Jiaqi Feng
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Min Rui
- Department of PathologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jiping Xie
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| |
Collapse
|
43
|
WANG Y, LUO B, WANG Z, QUE Z, JIANG L, TIAN J. [Advancements in Single-cell RNA Sequencing Technology
in the Study of the Tumor Microenvironment in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:441-450. [PMID: 39026495 PMCID: PMC11258646 DOI: 10.3779/j.issn.1009-3419.2024.101.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 07/20/2024]
Abstract
The immune microenvironment plays a key role in the development and progression of tumors. In recent years, with the rapid advancement of high-throughput sequencing technologies, researchers have gained a deeper understanding of the composition and function of immune cells in the tumor microenvironment. However, traditional bulk sequencing technologies are limited in resolving heterogeneity at the single-cell level, constraining a comprehensive understanding of the complexity of the tumor microenvironment. The advent of single-cell RNA sequencing technology has brought new opportunities to uncover the heterogeneity of the immune microenvironment in lung cancer. Currently, T-cell-centered immunotherapy in clinical settings is prone to side effects affecting prognosis, such as immunogenic drug resistance or immune-related pneumonia, with the key factor being changes in the interactions between immune cells and tumor cells in the tumor microenvironment. Single-cell RNA sequencing technology can reveal the origins and functions of different subgroups within the tumor microenvironment from perspectives such as intercellular interactions and pseudotime analysis, thereby discovering new cell subgroups or novel biomarkers, providing new avenues for uncovering resistance to immunotherapy and monitoring therapeutic efficacy. This review comprehensively discusses the newest research techniques and advancements in single-cell RNA sequencing technology for unveiling the heterogeneity of the tumor microenvironment after lung cancer immunotherapy, offering insights for enhancing the precision and personalization of immunotherapy.
.
Collapse
|
44
|
Jing ZQ, Luo ZQ, Chen SR, Sun ZJ. Heterogeneity of myeloid cells in common cancers: Single cell insights and targeting strategies. Int Immunopharmacol 2024; 134:112253. [PMID: 38735257 DOI: 10.1016/j.intimp.2024.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Tumor microenvironment (TME), is characterized by a complex and heterogenous composition involving a substantial population of immune cells. Myeloid cells comprising over half of the solid tumor mass, are undoubtedly one of the most prominent cell populations associated with tumors. Studies have unambiguously established that myeloid cells play a key role in tumor development, including immune suppression, pro-inflammation, promote tumor metastasis and angiogenesis, for example, tumor-associated macrophages promote tumor progression in a variety of common tumors, including lung cancer, through direct or indirect interactions with the TME. However, due to previous technological constraints, research on myeloid cells often tended to be conducted as studies with low throughput and limited resolution. For example, the conventional categorization of macrophages into M1-like and M2-like subsets based solely on their anti-tumor and pro-tumor roles has disregarded their continuum of states, resulting in an inadequate analysis of the high heterogeneity characterizing myeloid cells. The widespread adoption of single-cell RNA sequencing (scRNA-seq) in tumor immunology has propelled researchers into a new realm of understanding, leading to the establishment of novel subsets and targets. In this review, the origin of myeloid cells in high-incidence cancers, the functions of myeloid cell subsets examined through traditional and single-cell perspectives, as well as specific targeting strategies, are comprehensively outlined. As a result of this endeavor, we will gain a better understanding of myeloid cell heterogeneity, as well as contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhi-Qian Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Qi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Si-Rui Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
45
|
Wang L, Chen W, Jin H, Tan Y, Guo C, Fu W, Wu Z, Cui K, Wang Y, Qiu Z, Zhang G, Liu W, Zhou Z. CXCL1/IGHG1 signaling enhances crosstalk between tumor cells and tumor-associated macrophages to promote MC-LR-induced colorectal cancer progression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124081. [PMID: 38697251 DOI: 10.1016/j.envpol.2024.124081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chengwei Guo
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
46
|
Tan B, Lan X, Zhang Y, Liu P, Jin Q, Wang Z, Liang Z, Song W, Xuan Y, Sun Y, Li Y. Effect of 23‑hydroxybetulinic acid on lung adenocarcinoma and its mechanism of action. Exp Ther Med 2024; 27:239. [PMID: 38633355 PMCID: PMC11019653 DOI: 10.3892/etm.2024.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
The present study aimed to investigate the effect and mechanism of Pulsatilla compounds on lung adenocarcinoma. The representative drug chosen was the compound 23-HBA. GeneCards, Swiss target prediction, DisGeNET and TCMSP were used to screen out related genes, and MTT and flow cytometry assays were used to verify the inhibitory effect of Pulsatilla compounds on the proliferation of lung adenocarcinoma cells. Subsequently, the optimal target, peroxisome proliferator-activated receptor (PPAR)-γ, was selected using bioinformatics analysis, and its properties of low expression in lung adenocarcinoma cells and its role as a tumor suppressor gene were verified by western blot assay. The pathways related to immunity and inflammation, vascular function, cell proliferation, differentiation, development and apoptosis with the highest degree of enrichment and the mechanisms were explored through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Finally, the clinical prognosis in terms of the survival rate of patients in whom the drug is acting on the target was analyzed using the GEPIA database. The results indicated that Pulsatilla compounds can inhibit the proliferation of lung adenocarcinoma cells by blocking the cell cycle at the G1 phase. Subsequently, the related PPAR-γ gene was verified as a tumor suppressor gene. Further analysis demonstrated that this finding was related to the PPAR signaling pathway and mitochondrial reactive oxygen species (ROS) production. Finally, the clinical prognosis was found to be improved, as the survival rate of patients was increased. In conclusion, Pulsatilla compounds were indicated to inhibit the viability and proliferation of lung adenocarcinoma H1299 cells, and the mechanism of action was related to PPAR-γ, the PPAR signaling pathway and mitochondrial ROS. The present study provides novel insight to further explore the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Boyu Tan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaoxu Lan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yifan Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pai Liu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qiyao Jin
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhiqiang Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhidong Liang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ye Xuan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
47
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
48
|
Song T, Yang Y, Wang Y, Ni Y, Yang Y, Zhang L. Bulk and single-cell RNA sequencing reveal the contribution of laminin γ2 -CD44 to the immune resistance in lymphocyte-infiltrated squamous lung cancer subtype. Heliyon 2024; 10:e31299. [PMID: 38803944 PMCID: PMC11129014 DOI: 10.1016/j.heliyon.2024.e31299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The high heterogeneity of lung squamous cell carcinomas (LUSC) and the complex tumor microenvironment lead to non-response to immunotherapy in many patients. Therefore, characterizing the heterogeneity of the tumor microenvironment in patients with LUSC and further exploring the immune features and molecular mechanisms that lead to immune resistance will help improve the efficacy of immunotherapy in such patients. Herein, we retrospectively analyzed the RNA sequencing (RNA-seq) data of 513 LUSC samples with other multiomics and single-cell RNA-seq data and validated key features using multiplex immunohistochemistry. We divided these samples into six subtypes (CS1-CS6) based on the RNA-seq data and found that CS3 activates the immune response with a high level of lymphocyte infiltration and gathers a large number of patients with advanced-stage disease but increases the expression of exhausted markers cytotoxic T-lymphocyte associated protein 4, lymphocyte-activation gene 3, and programmed death-1. The prediction of the response to immunotherapy showed that CS3 is potentially resistant to immune checkpoint blockade therapy, and multi-omic data analysis revealed that CS3 specifically expresses immunosuppression-related proteins B cell lymphoma 2, GRB2-associated binding protein, and dual-specificity phosphatase 4 and has a high mutation ratio of the driver gene ATP binding cassette subfamily A member 13. Furthermore, single-cell RNA-seq verified lymphocyte infiltration in the CS3 subtype and revealed a positive relationship between the expression of LAMC2-CD44 and immune resistance. LAMC2 and CD44 are epithelial-mesenchymal transition-associated genes that modulate tumor proliferation, and multicolor immunofluorescence validated the negative relationship between the expression of LAMC2-CD44 and immune infiltration. Thus, we identified a lymphocyte-infiltrated subtype (CS3) in patients with LUSC that exhibited resistance to immune checkpoint blockade therapy, and the co-hyperexpression of LAMC2-CD44 contributed to immune resistance, which could potentially improve immunological efficacy by targeting this molecule pair in combination with immunotherapy.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yilong Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinyun Ni
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Liu Y, He M, Tang H, Xie T, Lin Y, Liu S, Liang J, Li F, Luo K, Yang M, Teng H, Luo X, He J, Liao S, Huang Q, Feng W, Zhan X, Wei Q. Single-cell and spatial transcriptomics reveal metastasis mechanism and microenvironment remodeling of lymph node in osteosarcoma. BMC Med 2024; 22:200. [PMID: 38755647 PMCID: PMC11100118 DOI: 10.1186/s12916-024-03319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor and is highly prone to metastasis. OS can metastasize to the lymph node (LN) through the lymphatics, and the metastasis of tumor cells reestablishes the immune landscape of the LN, which is conducive to the growth of tumor cells. However, the mechanism of LN metastasis of osteosarcoma and remodeling of the metastatic lymph node (MLN) microenvironment is not clear. METHODS Single-cell RNA sequencing of 18 samples from paracancerous, primary tumor, and lymph nodes was performed. Then, new signaling axes closely related to metastasis were identified using bioinformatics, in vitro experiments, and immunohistochemistry. The mechanism of remodeling of the LN microenvironment in tumor cells was investigated by integrating single-cell and spatial transcriptomics. RESULTS From 18 single-cell sequencing samples, we obtained 117,964 cells. The pseudotime analysis revealed that osteoblast(OB) cells may follow a differentiation path from paracancerous tissue (PC) → primary tumor (PT) → MLN or from PC → PT, during the process of LN metastasis. Next, in combination of bioinformatics, in vitro and in vivo experiments, and immunohistochemistry, we determined that ETS2/IBSP, a new signal axis, might promote LN metastasis. Finally, single-cell and spatial dissection uncovered that OS cells could reshape the microenvironment of LN by interacting with various cell components, such as myeloid, cancer-associated fibroblasts (CAFs), and NK/T cells. CONCLUSIONS Collectively, our research revealed a new molecular mechanism of LN metastasis and clarified how OS cells influenced the LN microenvironment, which might provide new insight for blocking LN metastasis.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Mingwei He
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haijun Tang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tianyu Xie
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yunhua Lin
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shangyu Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiming Liang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Feicui Li
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kai Luo
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Mingxiu Yang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hongcai Teng
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoting Luo
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Juliang He
- Department of Bone and Soft Tissue Tumor, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Shijie Liao
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qian Huang
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Wenyu Feng
- Department of Bone and Joint Surgery and Sports Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Qingjun Wei
- Department of Traumatic Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
50
|
Zhong D, Shi Y, Ma W, Liang Y, Liu H, Qin Y, Zhang L, Yang Q, Huang X, Lu Y, Shang J. Single-cell profiling reveals the metastasis-associated immune signature of hepatocellular carcinoma. Immun Inflamm Dis 2024; 12:e1264. [PMID: 38780041 PMCID: PMC11112628 DOI: 10.1002/iid3.1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
AIM Metastasis is the leading cause of mortality in hepatocellular carcinoma (HCC). The metastasis-associated immune signature in HCC is worth exploring. METHODS Bioinformatic analysis was conducted based on the single-cell transcriptome data derived from HCC patients in different stages. Cellular composition, pseudotime state transition, and cell-cell interaction were further analyzed and verified. RESULTS Generally, HCC with metastasis exhibited suppressive immune microenvironment, while HCC without metastasis exhibited active immune microenvironment. Concretely, effector regulatory T cells (eTregs) were found to be enriched in HCC with metastasis. PHLDA1 was identified as one of exhaustion-specific genes and verified to be associated with worse prognosis in HCC patients. Moreover, A novel cluster of CCR7+ dendritic cells (DCs) was identified with high expression of maturation and migration marker genes. Pseudotime analysis showed that inhibition of differentiation occurred in CCR7+ DCs rather than cDC1 in HCC with metastasis. Furthermore, interaction analysis showed that the reduction of CCR7+ DCs lead to impaired CCR7/CCL19 interaction in HCC with metastasis. CONCLUSIONS HCC with metastasis exhibited upregulation of exhaustion-specific genes of eTregs and inhibition of CCL signal of a novel DC cluster, which added new dimensions to the immune landscape and provided new immune therapeutic targets in advanced HCC.
Collapse
Affiliation(s)
- Deyuan Zhong
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Ying Shi
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacau SARChina
| | - Yuxin Liang
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Hanjie Liu
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Yingying Qin
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Lu Zhang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Qinyan Yang
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Xiaolun Huang
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yuanjun Lu
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|