1
|
Wu Y, Xu B, Peng Y, Lin S, Du W, Liu R, Zhang S, Wu J, Zou K, Zhao X. H3K18 lactylation-mediated Ythdf2 activation restrains mouse female germline stem cell proliferation via promoting Ets1 mRNA degradation. Clin Epigenetics 2025; 17:84. [PMID: 40426273 PMCID: PMC12107931 DOI: 10.1186/s13148-025-01890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Germline stem cells are critical for sustaining fertility by balancing self-renewal and differentiation, and are regulated by genetic and epigenetic programs. Although extensively investigated, the rare female germline stem cells (FGSCs) in mammalian ovaries hinder their application in regenerative medicine. The N6-methyladenosine (m6A) reader YTHDF2 is required for female germ cell competence. However, the mechanistic underpinnings of how YTHDF2 regulates FGSC proliferation remain elusive. RESULTS Here, we show that knockout of Ythdf2 enhances FGSC proliferation in vitro. YTHDF2 binds m6A-modified Ets1 mRNA and facilitates its degradation in an m6A-dependent manner. ETS1 functions as a key downstream effector of YTHDF2, as suppression of ETS1 expression partially reverses the Ythdf2-KO-induced phenotype. Additionally, we demonstrate that YTHDF2/ETS1 axis participates in regulating FGSC proliferation by modulation of proliferation-related gene expression. Moreover, histone lactylation modification H3K18la activates the expression of YTHDF2 in FGSCs. CONCLUSIONS Overall, our study reveals that YTHDF2 intrinsically restrains mouse FGSC proliferation and provides a potential strategy to increase FGSC abundance for its potential clinical application.
Collapse
Affiliation(s)
- Yunqiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sang Lin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfei Du
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiqi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China.
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Yang K, Cai L, Zhao Y, Cheng H, Zhou R. Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish. N Biotechnol 2025; 86:47-54. [PMID: 39848539 DOI: 10.1016/j.nbt.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish. We adopted an extended, GC-rich, and chemically modified sgRNA along with microinjection of the CRISPR ribonucleoprotein (RNP) complex into the yolk sac at the 1-cell stage. We found that genome editing of Sox9a generated a high proportion of heterozygotes with edited alleles in the F1 generation, indicating biallelic editing. Deep sequencing and mapping the edited cells from early embryos to future tissues revealed that the edited founder has a dominantly edited allele, sox9a M1, accounting for over 99 % of alleles in the testis. Specifically, all offspring of the founder inherited the edited allele, suggesting nearly complete editing of the alleles in early germline cells. Overall, the optimization delineates biallelic editing of sox9a in early embryos and transmission of edited alleles to offspring, thus presenting a method to create a desired genetic mutation line of Sox9a avoiding lengthy traditional crossbreeding.
Collapse
Affiliation(s)
- Kangning Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Le Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Nguyen YTM, Fujisawa M, Ishikawa S, Sakata-Yanagimoto M. Clonal Hematopoiesis and Solid Cancers. Cancer Sci 2025. [PMID: 40384356 DOI: 10.1111/cas.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
Clonal hematopoiesis refers to the expansion of hematopoietic stem cells harboring somatic mutations, a phenomenon increasingly recognized in aging populations. This review highlights the emerging relationship between clonal hematopoiesis and solid cancers, focusing on the prevalence and impact of clonal hematopoiesis-associated mutations such as DNMT3A, TET2, ASXL1, and TP53 in tumorigenesis. Key risk factors for the co-occurrence of clonal hematopoiesis and solid cancers, including germline genetic factors, aging, and environmental factors, are also discussed. We explore how clonal hematopoiesis mutations shape the tumor microenvironments in solid cancers by modulating immunoregulation, inflammation, and angiogenesis, thereby contributing to tumor progression. These findings underscore the dual role of clonal hematopoiesis as both a marker of cancer risk and a potential driver of solid cancer progression. The clinical implications of clonal hematopoiesis are also considered, including the prognostic value, impact on treatment response, and potential as a therapeutic target. Future directions are outlined to advance our understanding of clonal hematopoiesis and to exploit its clinical potential for cancer management.
Collapse
Affiliation(s)
- Yen T M Nguyen
- Department of Hematology, University of Tsukuba Hospital, University of Tsukuba, Tsukuba, Japan
| | - Manabu Fujisawa
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Centre for Lymphoid Cancer Department, BC Cancer, Vancouver, British Columbia, Canada
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa/Chiba, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, University of Tsukuba Hospital, University of Tsukuba, Tsukuba, Japan
- Department of Hematology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Advanced Hemato-Oncology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Zhou J, Dong Q. Testicular aging: mechanism, management and future therapy. Exp Cell Res 2025; 449:114603. [PMID: 40373850 DOI: 10.1016/j.yexcr.2025.114603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/03/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Testicular aging results in degeneration in testicular function, including decreased testosterone production and quality of sperm. Decreased testosterone level is associated with a range of systemic diseases and comorbidities, including cardiovascular disease, cognitive decline, depression, osteoporosis, frailty, increased body fat, and metabolic syndrome. In addition, with the rapid development of industrialization and increasing environmental pollution, the quality of male semen continues to decline globally. Currently, the average age of first marriage and childbirth for men is delayed, and the birth rate has been declining year by year. At present, the therapies for testosterone level decline in clinical practice are relatively limited. Therefore, studying the triggering and delaying mechanisms of testicular aging is significant for improving male health and protecting male fertility. This review summarizes the mechanisms and treatment strategies for male reproductive aging.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China.
| |
Collapse
|
5
|
Wu W, Bai M, Hong W, Ling S, Li Y, Dai Y, Weng R, Wu H, Ren C, Zhang L, Zhou Z, Zhong Z, Fu X, Zheng Y. Proanthocyanidins delaying the premature ovarian insufficiency through regulatory sirt1-p53-p21 signaling pathway in female germline stem cells. J Ovarian Res 2025; 18:97. [PMID: 40349064 PMCID: PMC12065257 DOI: 10.1186/s13048-025-01661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND As women age, their ovarian follicle pool naturally declines. However, female germline stem cells (FGSCs) possess a unique ability to differentiate into oocytes and continuously self-renew, providing an effective means of delaying ovarian aging by replenishing the primordial follicle pool. Therefore, activating FGSCs is critical in reshaping and safeguarding ovarian function. METHODS In this study, we investigated the biological activity of proanthocyanidins (PACs), natural antioxidants that exhibit anti-aging and anti-inflammatory properties beneficial for both male and female reproduction. Our in vivo and in vitro experiments demonstrate that PACs promote FGSCs proliferation while delaying ovarian aging. RESULTS PACs increase the number of primordial follicles, primary follicles, corpus luteum while reducing cystic follicles, and elevate estradiol (E2) levels along with anti-mullerian hormone (AMH) concentration levels in mice. Additionally, PACs significantly boost FGSCs proliferation time- and dose-dependently by upregulating mRNA & protein expressions for FGSCs-specific markers such as MVH and OCT4 while downregulating p53/p21 via activation of silent information regulator 1(Sirt1) signaling pathway. The effects of PACs on FGCSs were found to be impeded by the Sirt1 inhibitor EX527. CONCLUSION PACS delay premature ovarian insufficiency (POI) through regulating the Sirt1-p53-p21 signaling pathway involving FGSCs.
Collapse
Affiliation(s)
- Wenbo Wu
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Mengying Bai
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Wenli Hong
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
| | - Shuyi Ling
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Yuan Li
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Yuqing Dai
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Ruoxin Weng
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Haifeng Wu
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Chongyang Ren
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Liujuan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Ziqiong Zhou
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- Guangzhou University of Chinese Medicine, 232 East Outer Ring Road, University Town, Guangzhou, 510006, Guangdong Province, China
| | - Zhisheng Zhong
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
| | - Xinxin Fu
- Department of National Demonstration Center for Clinical Teaching &Training, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361102, China.
| | - Yuehui Zheng
- The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
6
|
Yuan G, Wang J, Qiu S, Zhu Y, Cheng Q, Li L, Sha J, Yang X, Yuan Y. Improving in vitro induction efficiency of human primordial germ cell-like cells using N2B27 or NAC-based medium. J Biomed Res 2025; 39:1-14. [PMID: 40204653 DOI: 10.7555/jbr.38.20240433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Primordial germ cells (PGCs), the precursors of oocytes or spermatozoa, are highly pluripotent. In recent years, the in vitro induction of human primordial germ cell-like cells (hPGCLCs) has advanced significantly. However, the stability and efficacy of obtaining hPGCLCs in vitro still require further improvement. In the current study, we identified a novel induction system by using Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) as the basal medium supplemented with B27 and N2 (referred to as N2B27) in combination with four cytokines: bone morphogenetic protein 4 (BMP4), stem cell factor (SCF), epidermal growth factor (EGF), and leukemia inhibitory factor (LIF). The hPGCLCs induced under these conditions closely resemble PGCs from 4 to 5-week-old embryos at the transcriptome level. Compared with traditional GK15 (GMEM supplemented with 15% Knockout™ SR)-based induction conditions, the N2B27 system significantly increased the speed and efficacy of hPGCLC induction. RNA sequencing analysis revealed that this improvement resulted from an increased cell capacity to cope with hypoxic stress and avoid apoptosis. The N2B27 medium promoted an increase in mitochondrial activity, enabling cells to better cope with hypoxic stress while also reducing the production of reactive oxygen species. Moreover, by gradient concentration experiments, we demonstrated that addition of the common antioxidant N-acetyl-L-cysteine at an optimized concentration further enhanced the efficiency of PGCLC induction under GK15 conditions. Thus, our study established an optimized induction system that enhances the efficiency of hPGCLC differentiation by improving cellular resilience to hypoxic stress and apoptosis.
Collapse
Affiliation(s)
- Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiachen Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuangshuang Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yunfei Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing Cheng
- Women's Hospital of Nanjing Medical University, Women and Children's Healthcare Hospital, Nanjing, Jiangsu 211100, China
| | - Laihua Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
7
|
Wang B, Yu R, Zhang Z, Peng Y, Li L. Exosomes secreted from adipose-derived stem cells inhibit M1 macrophage polarization ameliorate chronic endometritis by regulating SIRT2/NLRP3. Mol Cell Biochem 2025:10.1007/s11010-025-05283-2. [PMID: 40257720 DOI: 10.1007/s11010-025-05283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Chronic endometritis (CE) is a key factor in adverse pregnancy outcomes such as miscarriage and infertility. Macrophages are an important immune cell type that secrete pro-inflammatory and anti-inflammatory cytokines that are essential for maintaining endometrial function. This study aimed to investigate the key mechanisms by which exosomes derived from adipose-derived mesenchymal stem cells (ADSCs) regulate macrophage polarization through the sirtuin 2 (SIRT2)/NOD-like receptor pyrin containing 3 (NLRP3) axis and exert a protective effect on CE. Exosomes were obtained from ADSCs (ADSCs-exo) using the classical ultracentrifugation method and characterized using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. ADSCs-exo protective effects on CE mice and RAW 264.7 cells and its related molecular mechanisms were investigated using real-time quantitative polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, flow cytometry, immunofluorescence, immunoprecipitation, hematoxylin and eosin staining, and immunohistochemistry. ADSCs-exo significantly inhibited M1 macrophage polarization, as evidenced by a 54% reduction in tumor necrosis factor alfa (TNF-α), a 46% reduction in interleukin 1β (IL-1β), and a 36% reduction in interleukin 6 (IL-6) levels in LPS-induced RAW264.7 cells. In vivo, ADSCs-exo treatment reduced the expression of TNF-α by 50%, IL-1β by 58%, and IL-6 by 49% in the uterine tissues of CE mice. Moreover, ADSCs-exo upregulated the expression of SIRT2, promoted the deacetylation modification of NLRP3 to inhibit NLRP3 inflammasome activation, and further suppressed M1 macrophage polarization. However, these trends were reversed after SIRT2 silencing. Our experimental results demonstrate that ADSCs-exo alleviate CE by regulating the SIRT2/NLRP3 axis to inhibit M1 macrophage polarization. This provides a potential theoretical basis for the therapeutic role of stem cells in CE.
Collapse
Affiliation(s)
- Bin Wang
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Ruizhu Yu
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Zhao Zhang
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Yuhong Peng
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China.
| | - Li Li
- Department of Rheumatology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China.
| |
Collapse
|
8
|
Qiu Y, Li J, Zhang Y, Sun W, Wan X, Ouyang B, Liu X, Li X, Zhang Q, Yu X, Pei X. Cistanche deserticola polysaccharides enhance female germline stem cell differentiation through BMP/SMAD signaling to mitigate premature ovarian failure. Int J Biol Macromol 2025; 304:140848. [PMID: 39938839 DOI: 10.1016/j.ijbiomac.2025.140848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Female germline stem cells (FGSCs) can self-renew and differentiate into oocytes, replenishing the depleted primordial follicle pool. The traditional Chinese herb, Cistanche deserticola Y.C.Ma, has been used to treat infertility for centuries. Cistanche deserticola polysaccharides (CDPs) are its main active ingredients. In the present study, an animal model of premature ovarian failure (POF) was established to investigate the protective effects of CDPs on the ovary. Ovarian tissue structure and function were assessed after treatment with CDPs, with emphasis on FGSC activation in the ovarian cortex. FGSCs were isolated from newborn mice and treated with CDPs. The morphology, proliferation, expression of stemness, and differentiation markers were evaluated to determine the role of CDPs in promoting FGSC differentiation in vitro. Furthermore, bioinformatics screening identified small mothers against decapentaplegic homologue 9 (Smad9) as a key factor in the signaling pathway. We established a Smad9 differentially expressed cell model using gene modification. We then evaluated changes in the expression of cell stemness maintenance and differentiation ability octamer-binding transcription factor 4 (Oct4), mouse vasa homologue (Mvh), stimulated by retinoic acid gene 8 protein (Stra8), and synaptonemal complex protein 3 (Sycp3) and Smad family markers (SMAD1, SMAD5, SMAD9, SMAD1/5/9, and p-SMAD1/5/9). This approach aimed to verify the molecular mechanism by which CDPs regulate FGSC differentiation through the BMP-SMAD family signaling pathway, ultimately supporting its potential role in improving ovarian function.
Collapse
Affiliation(s)
- Yikai Qiu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinhua Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanping Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Weiwei Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiuli Wan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bangyu Ouyang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xinrui Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xue Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qing Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Yu H, Wang Z, Ma J, Wang R, Yao S, Gu Z, Lin K, Li J, Young RS, Yu Y, Yu Y, Jin M, Chen D. The establishment and regulation of human germ cell lineage. Stem Cell Res Ther 2025; 16:139. [PMID: 40102947 PMCID: PMC11921702 DOI: 10.1186/s13287-025-04171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025] Open
Abstract
The specification of primordial germ cells (PGCs) during early embryogenesis initiates the development of the germ cell lineage that ensures the perpetuation of genetic and epigenetic information from parents to offspring. Defects in germ cell development may lead to infertility or birth defects. Historically, our understanding of human PGCs (hPGCs) regulation has primarily been derived from studies in mice, given the ethical restrictions and practical limitations of human embryos at the stage of PGC specification. However, recent studies have increasingly highlighted significant mechanistic differences for PGC development in humans and mice. The past decade has witnessed the establishment of human pluripotent stem cell (hPSC)-derived hPGC-like cells (hPGCLCs) as new models for studying hPGC fate specification and differentiation. In this review, we systematically summarize the current hPSC-derived models for hPGCLC induction, and how these studies uncover the regulatory machinery for human germ cell fate specification and differentiation, forming the basis for reconstituting gametogenesis in vitro from hPSCs for clinical applications and disease modeling.
Collapse
Affiliation(s)
- Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ruoming Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Kexin Lin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jinlan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, 5-7 Little France Road, Edinburgh, EH16 4UX, UK
- Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ya Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - You Yu
- Center for Infection Immunity, Cancer of Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Min Jin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Noh S, Na S, Song X, Hyun S. Germline expression of Imp-L2 in Drosophila females enhances reproductive activity and longevity. Anim Cells Syst (Seoul) 2025; 29:31-40. [PMID: 40103616 PMCID: PMC11915738 DOI: 10.1080/19768354.2025.2480150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The Imaginal morphogenesis protein-Late 2 (Imp-L2) in Drosophila is recognized as a functional homolog of the insulin-like growth factor (IGF) binding protein family. In this study, we report that Imp-L2 expression in germline cells during oogenesis simultaneously enhances both fecundity and lifespan in female Drosophila. Loss of Imp-L2, either through knockout or germline-specific knockdown, resulted in decreased reproductive activity, as evidenced by reduced ovary size and fecundity, along with a higher proportion of infertile flies. Conversely, overexpression of Imp-L2 specifically in germline cells enhanced reproductive activity. Imp-L2 appears to regulate germline stem cell proliferation and differentiation independently of IGF signaling. Interestingly, germline-specific knockdown of Imp-L2 shortened the lifespan of female flies, whereas its overexpression extended it. Thus, Imp-L2 expression in the germline promotes both reproductive activity and longevity, presenting an exception to the typical trade-off between reproduction and lifespan.
Collapse
Affiliation(s)
- Sujin Noh
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sungjoon Na
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Xinge Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Bai M, Lei J, Li F, Wang X, Fu H, Yan Z, Zhu Y. Short-Chain Chlorinated Paraffins May Induce Ovarian Damage in Mice via AIM2- and NLRP12-PANoptosome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:163-176. [PMID: 39754571 DOI: 10.1021/acs.est.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Humans may intake 0.02 mg/kg/day of short-chain chlorinated paraffins (SCCPs), and no study is available on mammalian ovarian damage caused by low-level SCCPs. In this study, four groups of 5-week-old female Institute of Cancer Research (ICR) mice were orally administered 0, 0.01, 0.1, and 1.0 mg/kg/day SCCPs for 21 consecutive days, and serum and ovaries were collected 20 h after the last SCCPs-administration. SCCPs at ≥0.1 mg/kg/day were found to reduce follicle counts at each stage, induce dose-dependent oxidative stress in mice, and lower serum E2 and ovarian anti-Müllerian hormone levels. The data indicated that cellular PANoptosis increased in the ovaries of all SCCP-treated mice. Furthermore, AIM2- and NLRP12-PANoptosome gene and protein levels were considerably elevated. Female germline stem cells (FGSCs) in the cortical portion of the ovary exhibited substantial damage in all SCCP groups, additionally, the expression of FGSC marker genes and major marker proteins was diminished in the ovaries. Oral administration of SCCPs with 0.01, 0.1, and 1.0 mg/kg/day to mice resulted in PANoptosis of the ovaries. Therefore, it was suggested that the oral administration of ≥0.1 mg/kg/day of SCCPs suppressed ovarian function, which may be attributed to the fact that SCCPs induced the generation of AIM2- and NLRP12-PANoptosome in ovary cells.
Collapse
Affiliation(s)
- Mingxin Bai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Jiawei Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Fan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xuning Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
12
|
Önen S, Gizer M, Çolak İÖ, Korkusuz P. Bioengineering Approaches for Male Infertility: From Microenvironmental Regeneration to in vitro Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:59-72. [PMID: 39881052 DOI: 10.1007/5584_2024_844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Male factor accounts for 30-50% of infertility cases and may occur due to congenital anomalies or acquired disorders. In such infertility cases where a limited number of mature sperm is produced, a solution is offered to patients with ART applications; however, these methods are inadequate in patients with germ cell aplasia due to damaged microenvironment. Since monolayer cell culture and static culture conditions do not provide the physical conditions of the 3D microenvironment, they have a limited effect on ensuring the execution of in vitro spermatogenesis properly. For this reason, current treatment approaches turn to biomaterial-implemented, microfluidic, and bioreactor systems where 3D physical conditions are provided. This book chapter focuses on static and dynamic culture conditions, as well as the use of biomaterials to increase the success of ex vivo spermatogenesis and microfluidic device-assisted sperm selection in ART.
Collapse
Affiliation(s)
| | | | - İmran Özge Çolak
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, Turkey.
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Ogielska M, Chmielewska M, Rozenblut-Kościsty B. Pregametogenesis: The Earliest Stages of Gonad and Germline Differentiation in Anuran Amphibians. BIOLOGY 2024; 13:1017. [PMID: 39765684 PMCID: PMC11673927 DOI: 10.3390/biology13121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
The gonads of amphibians, like other vertebrates, consist of somatic tissues, which create a specific environment essential for the differentiation of germline cells. The earliest stages of gametogenesis still remain underexplored in anuran amphibians. We propose to introduce the term "pregametogenesis" for a specific period of gonocyte proliferation and differentiation that occurs exclusively during the early stages of gonadal development. This review shows the key steps of early gonad differentiation in anuran amphibians and further compares chromatin reorganization in gonocytes of mammals and hybridogenetic water frogs. In mammals, this phase involves resetting genomic imprinting, which is crucial for determining gene expression in offspring. In hybridogenetic Pelophylax water frogs, we highlight the unique phenomenon of genome elimination, where one parental subgenome is eliminated while the other is replicated. This process, occurring at the same developmental phase as imprinting in mammals, underscores the evolutionary importance of pregametogenesis. The study of amphibian gonocytes provides valuable insights into chromatin reorganization and genome plasticity, offering new perspectives on reproductive biology.
Collapse
Affiliation(s)
| | | | - Beata Rozenblut-Kościsty
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.O.); (M.C.)
| |
Collapse
|
14
|
Jiang Z, Chen L, Wang T, Zhao J, Liu S, He Y, Wang L, Wu H. Autophagy accompanying the developmental process of male germline stem cells. Cell Tissue Res 2024; 398:1-14. [PMID: 39141056 DOI: 10.1007/s00441-024-03910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Germline stem cells are a crucial type of stem cell that can stably pass on genetic information to the next generation, providing the necessary foundation for the reproduction and survival of organisms. Male mammalian germline stem cells are unique cell types that include primordial germ cells and spermatogonial stem cells. They can differentiate into germ cells, such as sperm and eggs, thereby facilitating offspring reproduction. In addition, they continuously generate stem cells through self-renewal mechanisms to support the normal function of the reproductive system. Autophagy involves the use of lysosomes to degrade proteins and organelles that are regulated by relevant genes. This process plays an important role in maintaining the homeostasis of germline stem cells and the synthesis, degradation, and recycling of germline stem cell products. Recently, the developmental regulatory mechanism of germline stem cells has been further elucidated, and autophagy has been shown to be involved in the regulation of self-renewal and differentiation of germline stem cells. In this review, we introduce autophagy accompanying the development of germline stem cells, focusing on the autophagy process accompanying the development of male spermatogonial stem cells and the roles of related genes and proteins. We also briefly outline the effects of autophagy dysfunction on germline stem cells and reproduction.
Collapse
Affiliation(s)
- Zhuofei Jiang
- Department of Gynecology, Foshan Woman and Children Hospital, Foshan, China
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Reproductive Medicine, Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Tao Wang
- Department of Surgery, Longjiang Hospital of Shunde District, Foshan, China
| | - Jie Zhao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Shuxian Liu
- Department of Science and Education, Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Yating He
- Department of Obstetrics, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Liyun Wang
- Department of Reproductive Medicine, Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China.
| | - Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
15
|
Liu Y, Zhang S, Zou G, An J, Li Y, Lin D, Wang D, Li Y, Chen J, Feng T, Li H, Chen Y, Zhang M, Kumar M, Wang L, Hou R, Liu J. Generation and characterization of giant panda induced pluripotent stem cells. SCIENCE ADVANCES 2024; 10:eadn7724. [PMID: 39303041 DOI: 10.1126/sciadv.adn7724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In this study, primary fibroblast cells were isolated from the giant panda, and giant panda iPSCs (GPiPSCs) were generated using a non-integrating episomal vector reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
Collapse
Affiliation(s)
- Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Shihao Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoyang Zou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yuan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Danni Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Tongying Feng
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Hongyan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yijiao Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Mingyue Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Manish Kumar
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Luqin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R.China
| |
Collapse
|
16
|
Yuan Y, Mao Y, Yang L, Wang Y, Zhang X. Analysis of macrophage polarization and regulation characteristics in ovarian tissues of polycystic ovary syndrome. Front Med (Lausanne) 2024; 11:1417983. [PMID: 39323470 PMCID: PMC11422077 DOI: 10.3389/fmed.2024.1417983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/09/2024] [Indexed: 09/27/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) can lead to infertility and increase the risk of endometrial cancer. Analyzing the macrophage polarization characteristics in ovarian tissues of PCOS is crucial for clinical treatment. Methods We obtained 13 PCOS and nine control ovarian samples from the CEO database and analyzed differentially expressed genes (DEGs). Macrophage polarization-related genes (MPRGs) were sourced from the GeneCards and MSigDB databases. Intersection of DEGs with MPRGs identified DEGs associated with macrophage polarization (MPRDEGs). Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-protein interaction (PPI) Network analysis were conducted on MPRDEGs. Moreover, the top 10 genes from three algorithms were identified as the hub genes of MPRGs. In addition, miRNAs, transcription factors (TFs), and drugs were retrieved from relevant databases for regulatory network analysis of mRNA-miRNA, mRNA-TF, and mRNA-Drug interactions. Immune cell composition analysis between the PCOS and control groups was performed using the CIBERSORT algorithm to calculate correlations across 22 immune cell types. Results A total of 13 PCOS samples and nine control ovarian samples were obtained in this study. We identified 714 DEGs between the two groups, with 394 up-regulated and 320 down-regulated. Additionally, we identified 774 MPRGs, from which we derived 30 MPRDEGs by intersecting with DEGs, among which 21 exhibited interaction relationships. GO and KEGG analyses revealed the enrichment of MPRDEGs in five biological processes, five cell components, five molecular functions, and three biological pathways. Immune infiltration analysis indicated a strong positive correlation between activated nature killer (NK) cells and memory B cells, while neutrophils and monocytes showed the strongest negative correlation. Further investigation of MPRDEGs identified nine hub genes associated with 41 TFs, 82 miRNAs, and 44 drugs or molecular compounds. Additionally, qRT-PCR results demonstrated overexpression of the CD163, TREM1, and TREM2 genes in ovarian tissues from the PCOS group. Conclusion This study elucidated the polarization status and regulatory characteristics of macrophages in ovarian tissues of the PCOS subjects, confirming significant overexpression of CD163, TREM1, and TREM2. These findings contribute to a deeper understanding of the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yue Yuan
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Yan Mao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Provincial Hosipital, Lanzhou, China
| | - Liu Yang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Yilin Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xuehong Zhang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| |
Collapse
|
17
|
Xu L, Shi J, Wu S. Positron emission tomography probes for stem cell monitoring: a review. Am J Transl Res 2024; 16:3534-3544. [PMID: 39262689 PMCID: PMC11384350 DOI: 10.62347/ciut6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Stem cells possess unique self-renewal and differentiation capacities, that are central to cell replacement and tissue regeneration. The therapeutic potential of stem cell applications has garnered increasing attention in recent years for a spectrum of human diseases, from ischemic disorders to oncological challenges. Despite their potential, a comprehensive understanding of the biological behavior, efficacy, and safety of these cells remains elusive, hindering their clinical adoption. This review focuses on the use of positron emission tomography (PET) imaging as a cutting-edge tool for bridging this knowledge gap. PET imaging, a noninvasive diagnostic method, has been highlighted for its ability to monitor cellular dynamics after stem cell transplantation. A variety of molecular probes within the PET framework enable the longitudinal and quantitative evaluation of post-transplant cellular behavior. This discourse systematically delineates various PET probes specifically designed for the in vivo tracking of the stem cell life cycle. These probes offer a pathway to a deeper understanding and more precise evaluation of stem cell behavior post-transplantation. Implementing PET imaging probes can revolutionize the clinical understanding of stem cell behavior, advancing and widening clinical therapeutic applications.
Collapse
Affiliation(s)
- Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Jingjing Shi
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine) Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Amran A, Pigatto L, Farley J, Godini R, Pocock R, Gopal S. The matrisome landscape controlling in vivo germ cell fates. Nat Commun 2024; 15:4200. [PMID: 38760342 PMCID: PMC11101451 DOI: 10.1038/s41467-024-48283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.
Collapse
Affiliation(s)
- Aqilah Amran
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund Cancer Center, Lund University, Lund, Sweden
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Lara Pigatto
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund Cancer Center, Lund University, Lund, Sweden
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Johanna Farley
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund Cancer Center, Lund University, Lund, Sweden
| | - Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
| | - Sandeep Gopal
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
- Lund Cancer Center, Lund University, Lund, Sweden.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Gao J, Xu Z, Song W, Huang J, Liu W, He Z, He L. USP11 regulates proliferation and apoptosis of human spermatogonial stem cells via HOXC5-mediated canonical WNT/β-catenin signaling pathway. Cell Mol Life Sci 2024; 81:211. [PMID: 38722330 PMCID: PMC11082041 DOI: 10.1007/s00018-024-05248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/β-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/β-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.
Collapse
Affiliation(s)
- Jun Gao
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhipeng Xu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Song
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiwei Huang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China.
| | - Leye He
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Hu C, Qiao X, Xu Z, Zhang Z, Zhang X. Machine learning-based CT texture analysis in the differentiation of testicular masses. Front Oncol 2024; 13:1284040. [PMID: 38293700 PMCID: PMC10826395 DOI: 10.3389/fonc.2023.1284040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Purpose To evaluate the ability of texture features for distinguishing between benign and malignant testicular masses, and furthermore, for identifying primary testicular lymphoma in malignant tumors and identifying seminoma in testicular germ cell tumors, respectively. Methods We retrospectively collected 77 patients with an abdominal and pelvic enhanced computed tomography (CT) examination and a histopathologically confirmed testicular mass from a single center. The ROI of each mass was split into two parts by the largest cross-sectional slice and deemed to be two samples. After all processing steps, three-dimensional texture features were extracted from unenhanced and contrast-enhanced CT images. Excellent reproducibility of texture features was defined as intra-class correlation coefficient ≥0.8 (ICC ≥0.8). All the groups were balanced via the synthetic minority over-sampling technique (SMOTE) method. Dimension reduction was based on pearson correlation coefficient (PCC). Before model building, minimum-redundancy maximum-relevance (mRMR) selection and recursive feature elimination (RFE) were used for further feature selection. At last, three ML classifiers with the highest cross validation with 5-fold were selected: autoencoder (AE), support vector machine(SVM), linear discriminant analysis (LAD). Logistics regression (LR) and LR-LASSO were also constructed to compare with the ML classifiers. Results 985 texture features with ICC ≥0.8 were extracted for further feature selection process. With the highest AUC of 0.946 (P <0.01), logistics regression was proved to be the best model for the identification of benign or malignant testicular masses. Besides, LR also had the best performance in identifying primary testicular lymphoma in malignant testicular tumors and in identifying seminoma in testicular germ cell tumors, with the AUC of 0.982 (P <0.01) and 0.928 (P <0.01), respectively. Conclusion Until now, this is the first study that applied CT texture analysis (CTTA) to assess the heterogeneity of testicular tumors. LR model based on CTTA might be a promising non-invasive tool for the diagnosis and differentiation of testicular masses. The accurate diagnosis of testicular masses would assist urologists in correct preoperative and perioperative decision making.
Collapse
Affiliation(s)
- Can Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, Suzhou Xiangcheng People’s Hospital, Suzhou, China
| | - Xiaomeng Qiao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenyu Xu
- Department of Urology, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine: Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Zhiyu Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuefeng Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
21
|
Cabezas MR. [Some present and future ethical dilemmas surrounding advancements in in vitro fertilization.]. Salud Colect 2023; 19:e4462. [PMID: 38000000 PMCID: PMC11930338 DOI: 10.18294/sc.2023.4462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The growing field of assisted human reproduction has achieved unimaginable milestones. Its continuous development and the innovations it generates at times pose both ethical and legal dilemmas. This essay aims to elucidate the progressive changes occurring in the realm of the origin of life due to the development of new options and strategies in assisted human reproduction. First, it constructs an interdisciplinary reflection on human nature and the changes society faces from the perspectives of science, ethics, and law, particularly from the perspective of Spain. Second, it provides a brief overview of current or future biomedical techniques in the field of human reproduction. It concludes with a discussion of the need to reflect on the rapid advancement of science in assisted human reproduction.
Collapse
Affiliation(s)
- Marta Reguera Cabezas
- Bióloga, Magíster en Genética y Reproducción Humana Asistida, Unidad de Reproducción Asistida, miembro del Comité de Ética Asistencial, Hospital Universitario Marqués de Valdecilla, Cantabria, España. Hospital Universitario Marqués de ValdecillaUnidad de Reproducción AsistidaComité de Ética AsistencialHospital Universitario Marqués de ValdecillaCantabriaEspaña
| |
Collapse
|
22
|
Jorge AS, Recchia K, Glória MH, de Souza AF, Pessôa LVDF, Fantinato Neto P, Martins DDS, de Andrade AFC, Martins SMMK, Bressan FF, Pieri NCG. Porcine Germ Cells Phenotype during Embryonic and Adult Development. Animals (Basel) 2023; 13:2520. [PMID: 37570330 PMCID: PMC10417053 DOI: 10.3390/ani13152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Primordial germ cells (PGCs) are the precursors of gametes. Due to their importance for the formation and reproduction of an organism, understanding the mechanisms and pathways of PGCs and the differences between males and females is essential. However, there is little research in domestic animals, e.g., swine, regarding the epigenetic and pluripotency profiles of PGCs during development. This study analyzed the expression of epigenetic and various pluripotent and germline markers associated with the development and differentiation of PGCs in porcine (pPGCs), aiming to understand the different gene expression profiles between the genders. The analysis of gonads at different gestational periods (from 24 to 35 days post fertilization (dpf) and in adults) was evaluated by immunofluorescence and RT-qPCR and showed phenotypic differences between the gonads of male and female embryos. In addition, the pPGCs were positive for OCT4 and VASA; some cells were H3k27me3 positive in male embryos and adult testes. In adults, the cells of the testes were positive for germline markers, as confirmed by gene expression analysis. The results may contribute to understanding the pPGC pathways during reproductive development, while also contributing to the knowledge needed to generate mature gametes in vitro.
Collapse
Affiliation(s)
- Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laís Vicari de Figueirêdo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
23
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
24
|
Lai F, Wang H, Zhao X, Yang K, Cai L, Hu M, Lin L, Xia X, Li W, Cheng H, Zhou R. RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells. Cell Biosci 2023; 13:71. [PMID: 37024990 PMCID: PMC10080854 DOI: 10.1186/s13578-023-01018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Spermatogenesis depends on the supporting of the Sertoli cells and their communications with germ cells. However, the regulation of crosstalk between the Sertoli cells and germ cells remains unclear. RESULTS In this report, we used conditional knockout technology to generate the Sertoli cells-specific knockout of Rnf20 in mice. The Amh-Rnf20-/- male mice were infertile owing to spermatogenic failure that mimic the Sertoli cell-only syndrome (SCOS) in humans. Knockout of Rnf20 resulted in the H2BK120ub loss in the Sertoli cells and impaired the transcription elongation of the Cldn11, a gene encoding a component of tight junction. Notably, RNF20 deficiency disrupted the cell adhesion, caused disorganization of the seminiferous tubules, and led to the apoptotic cell death of both spermatogonia and spermatocytes in the seminiferous tubules. CONCLUSIONS This study describes a Rnf20 knockout mouse model that recapitulates the Sertoli cell-only syndrome in humans and demonstrates that RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells.
Collapse
Affiliation(s)
- Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Haoyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xinyue Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Kangning Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Le Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Lan Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xizhong Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
25
|
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Cheng H, Shang D, Zhou R. Correction To: Germline stem cells in human. Signal Transduct Target Ther 2022; 7:385. [PMID: 36460639 PMCID: PMC9718754 DOI: 10.1038/s41392-022-01258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Hanhua Cheng
- grid.412632.00000 0004 1758 2270Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072 Wuhan, China
| | - Dantong Shang
- grid.412632.00000 0004 1758 2270Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072 Wuhan, China
| | - Rongjia Zhou
- grid.412632.00000 0004 1758 2270Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
27
|
Shang D, Lan T, Wang Y, Li X, Liu Q, Dong H, Xu B, Cheng H, Zhou R. PGCLCs of human 45,XO reveal pathogenetic pathways of neurocognitive and psychosocial disorders. Cell Biosci 2022; 12:194. [DOI: 10.1186/s13578-022-00925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Neurocognitive disorders and psychosocial difficulties are common in patients with Turner syndrome and multiple neurodegenerative diseases, yet there is no effective cure. Human primordial germ cells (hPGCs) are pluripotent germline stem cells in early embryo, which pass genetic information from one generation to the next, whereas all somatic cells will die along with the end of life. However, it is not known whether patient hPGCs with Turner syndrome contain information of neurocognitive and psychosocial illness.
Results
In this report, we used a high-density of culture system of embryoids derived from iPSCs of a patient with Turner syndrome to ask how pathogenetic pathways are associated with onset of neurocognitive and psychosocial disorders. The hPGC-Like Cells (hPGCLCs) were in vitro specified from iPSCs of 45,XO, 46,XX and 46,XY by the high-density induction of embryoids. Amazingly, we found that the specification process of the hPGCLCs in 45,XO, compared to those in 46,XX and 46,XY, enriched several common pathogenetic pathways regulating neurocognitive and psychosocial disorders, that shared among multiple neurodegenerative diseases and Turner syndrome. The downregulated chemical synaptic transmission pathways, including glutamatergic, GABAergic, and nicotine cholinergic synapses, indicated synaptic dysfunctions, while upregulated pathways that were associated with imbalance of mitochondrial respiratory chain complexes and apoptosis, may contribute to neuronal dysfunctions. Notably, downregulation of three types of ubiquitin ligases E1-E2-E3 and lysosome-associated sulfatases and RAB9A, owing to haploinsufficiency and parental preference of the X chromosome expression, indicated that two pathways of cellular degradation, lysosome and ubiquitin–proteasome, were impaired in the specification process of 45,XO hPGCLCs. This would lead to accumulation of undesired proteins and aggregates, which is a typically pathological hallmark in neurodegenerative diseases.
Conclusions
Our data suggest that the specification process of the hPGCLCs in 45,XO, compared to those in 46,XX and 46,XY, enriched pathogenetic pathways that are associated with the onset of neurocognitive and psychosocial disorders.
Collapse
|