1
|
Gao J, Shen Z, Tian W, Xia J, Cao W, Chen Z, Wang Z, Shen Y. METTL3‑mediated m6A methylation and its impact on OTUD1 expression in chronic obstructive pulmonary disease. Mol Med Rep 2025; 32:206. [PMID: 40417884 PMCID: PMC12117359 DOI: 10.3892/mmr.2025.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/26/2025] [Indexed: 05/27/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation and chronic inflammation, often exacerbated by cigarette smoke exposure. Ovarian tumor protease domain‑containing protein 1 (OTUD1), a deubiquitinase, has previously been identified as a negative regulator of inflammation through its suppression of NF‑κB signaling. The present study explored the role of OTUD1 in COPD and the regulatory effects of N6‑methyladenosine (m6A) methylation on OTUD1 expression. The expression of OTUD1 in COPD was analyzed using public datasets (GSE38974 and GSE69818). In addition, BEAS‑2B cells were exposed to cigarette smoke extract (CSE) to investigate OTUD1 expression changes. OTUD1 overexpression and knockdown models were also constructed, and the levels of inflammation‑related genes and proteins, inflammatory cytokines and cell pyroptosis were measured using reverse transcription‑quantitative PCR, western blotting, ELISA and flow cytometry. The role of methyltransferase‑like 3 (METTL3)‑mediated m6A methylation in regulating OTUD1 was also examined. Notably, OTUD1 expression was significantly reduced in advanced COPD compared with that in the earlier stage. Furthermore, CSE exposure suppressed OTUD1 expression, which was associated with increased cell pyroptosis and elevated levels of the inflammatory cytokines IL‑1β and IL‑18. OTUD1 overexpression mitigated these effects, indicating its protective role against CSE‑induced cellular damage. Furthermore, METTL3‑mediated m6A methylation inhibited OTUD1 expression, with YTH m6A RNA binding protein 2 (YTHDF2) acting as the reader of this modification. Knockdown of METTL3 or YTHDF2 reduced m6A methylation and restored OTUD1 expression, highlighting a potential mechanism by which cigarette smoke suppresses OTUD1 through enhanced m6A methylation. In conclusion, OTUD1 may serve a protective role in COPD by inhibiting inflammation and reducing cell damage caused by cigarette smoke exposure. The suppression of OTUD1 through METTL3‑mediated m6A methylation and YTHDF2 interaction represents a novel mechanism contributing to COPD pathogenesis, suggesting potential therapeutic targets for mitigating disease progression.
Collapse
Affiliation(s)
- Jiameng Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Zheyi Shen
- Department of Ultrasound Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Weibin Tian
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Junyi Xia
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Weixin Cao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhuoru Chen
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhihua Wang
- Department of Geriatric Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| |
Collapse
|
2
|
Zhang Z, Wang Y, Li T, Wang H. NETosis in myocardial ischemia-reperfusion injury: From mechanisms to therapies (Review). Biomed Rep 2025; 23:113. [PMID: 40420974 PMCID: PMC12105085 DOI: 10.3892/br.2025.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
The present review describes the mechanisms of NETosis and its role in myocardial ischemia-reperfusion injury (MIRI), focusing on the release of neutrophil extracellular traps (NETs) by activated neutrophils. NETs, composed of depolymerized chromatin and granule proteins, are crucial for pathogen entrapment, infection control and immune regulation. However, NET formation, linked to neutrophil death (NETosis), exacerbates MIRI by promoting inflammation and tissue damage. To address therapeutic strategies for NETosis in MIRI, several potential clinically significant approaches were explored, including peptidylarginine deaminase 4 inhibition, DNase therapy, antioxidants, inflammation modulation, and antithrombotic treatments, which not only provide novel diagnostic biomarkers and therapeutic targets in MIRI, but are also expected to improve patient prognosis and advance the development of personalised medicine.
Collapse
Affiliation(s)
- Ziyang Zhang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yanxin Wang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Tie Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Hongfeng Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
3
|
Xia Y, Lan J, Yang J, Yuan S, Xie X, Du Q, Du H, Nie W, Jiang B, Zhao L, Cai Z, Zhang X, Xiong Y, Li Y, He R, Tao J. Saturated fatty acid-induced neutrophil extracellular traps contribute to exacerbation and biologic therapy resistance in obesity-related psoriasis. Cell Mol Immunol 2025; 22:597-611. [PMID: 40169704 DOI: 10.1038/s41423-025-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Psoriasis patients who are obese tend to have serious clinical manifestations and poor responses to various biological agents in most cases. However, the mechanisms by which obesity exacerbates psoriasis remain enigmatic. In this study, we found that the abundance of systemic and localized cutaneous neutrophil extracellular traps (NETs) associated with the obesity-induced aggravation of psoriasis was positively correlated with disease severity and that the inhibition of NETs alleviated psoriatic dermatitis in obese mice. Mechanistically, we found that changes in fatty acid composition in obese subjects resulted in the deposition of saturated fatty acids (SFAs), which promoted the release of NETs via the TLR4-MD2/ROS signaling pathway. We further revealed that NETs potentiate IL-17 inflammation, especially γδT17-mediated immune responses, in obesity-exacerbated psoriasis patients. Moreover, SFAs induced a decreased response to anti-IL17A treatment in psoriasis-like mice, whereas the inhibition of NETs improved the beneficial effects of anti-IL17A in psoriasis-like mice with lipid metabolism disorders. Our findings collectively suggest that SFA-induced NETs play a critical role in the exacerbation of obesity-related psoriasis and provide potential new strategies for the clinical treatment of refractory psoriasis patients with lipid metabolism disorders.
Collapse
Affiliation(s)
- Yuting Xia
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Lan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Jing Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Shijie Yuan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Xie
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyang Du
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyao Du
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Wenjia Nie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Biling Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Liang Zhao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Zhen Cai
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Xin Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Yan Xiong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Wang Y, Yin J, Yu C, Wu D, Chen Y, Han Q, Li S, Zhang R, Wang W, Xu J. Neutrophil extracellular traps activate STING signaling to promote dendritic cell-driven rejection after liver transplantation. Int Immunopharmacol 2025; 160:114763. [PMID: 40449271 DOI: 10.1016/j.intimp.2025.114763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 06/03/2025]
Abstract
PURPOSE Post-transplant immune rejection affects graft function. Interaction between neutrophil extracellular traps (NETs) with specific immune cells and the specific mechanism in liver transplantation were still unclear. METHOD Clinical patients RNA-Seq results were used for GSEA and KEGG analysis. C57BL/6 and C3H mouse models and clinical samples were use to describe the disease phenotype characteristics through multiple immunofluorescence, flow cytometry and etc. Cell co-culture experiments were performed to clarify the mechanism pathway process. RESULTS RNA-Seq results analysis indicated that the NETs formation pathway was upregulated. Animal models confirmed that in liver transplant immune rejection status the formation of NETs in situ and peripheral cells increased and the level of cell-free DNA (cf-DNA) in peripheral cells increased. Reactive oxygen species (ROS) as a predisposing factor for NETs accumulated more in immune rejection status and NETs are rich in mitochondrial DNA (mtDNA). NETs promote dendritic cell maturation through STING-related pathways. NETs formation increases in patients with liver transplant immune rejection and is positively correlated with disease severity. CONCLUSION We found that NETs can regulate dendritic cell maturation through STING-related pathways after liver transplantation, which may ultimately promote the occurrence of liver transplant rejection, providing a new perspective for clinical diagnosis, treatment and prevention of liver transplant rejection.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jie Yin
- Basic Medicine School, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chenjiang Yu
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dongdong Wu
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yizhang Chen
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qi Han
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shipeng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Rui Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantation Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
5
|
Gao F, Peng H, Gou R, Zhou Y, Ren S, Li F. Exploring neutrophil extracellular traps: mechanisms of immune regulation and future therapeutic potential. Exp Hematol Oncol 2025; 14:80. [PMID: 40442839 PMCID: PMC12123823 DOI: 10.1186/s40164-025-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are complex, web-like structures consisting of DNA intertwined with antimicrobial proteins, which neutrophils release upon immune activation. These structures play a crucial role in pathogen elimination, particularly in infectious diseases. However, their involvement in various pathological conditions is multifaceted and context-dependent, while NETs contribute to host defense against infections, they can also exacerbate sterile inflammation, autoimmune disorders, and tumor progression. This review provides a comprehensive analysis of the molecular mechanisms governing NET formation and examines their interactions with immune cells, emphasizing how these interactions shape immune responses and drive disease dynamics. Furthermore, it explores ongoing clinical trials and emerging therapeutic strategies targeting NETs, offering critical insights into their potential translational applications in clinical practice.
Collapse
Affiliation(s)
- Fan Gao
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruixue Gou
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Lee HJ, Lee NK, Kim J, Kim J, Seo D, Shin HE, Kim J, Ahn JH, Kim SN, Kim HS, Park J, Park W, Hong KS, Park CG, Lee W. Sequential nanoparticle therapy targeting neutrophil hyperactivation to prevent neutrophil-induced pulmonary fibrosis. J Nanobiotechnology 2025; 23:381. [PMID: 40420186 PMCID: PMC12105360 DOI: 10.1186/s12951-025-03421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis, a major complication of severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection (PASC), is driven by excessive neutrophil activation and the formation of neutrophil extracellular trap (NET). RESULTS This study presents a sequential nanoparticle-based therapy combining DNase-I-loaded polydopamine nanoparticles (DNase-I@PDA NPs) with Sivelestat-encapsulated PLGA nanoparticles (Siv@PLGA NPs) to target both NETs and neutrophil elastase (NE) activity. DNase-I@PDA NPs were aerosolized to the lungs, facilitating NET clearance and reducing the fibrotic microenvironment, followed by intravenous administration of Siv@PLGA NPs to inhibit NE activity and prevent neutrophil hyperactivation. In a murine model of lipopolysaccharide (LPS)-induced pulmonary fibrosis, this dual approach significantly decreased fibrotic lesions, collagen deposition, and myofibroblast activation. Notably, treatment with the nanoparticles led to substantial improvements in pulmonary function. In neutrophils isolated from COVID-19 patients, the combined nanoparticle therapy reduced circulating cell-free DNA, NET, NE, and myeloperoxidase (MPO) levels, while enhancing neutrophil viability and reducing inflammatory responses. CONCLUSIONS These findings highlight the efficacy of DNase-I@PDA NPs and Siv@PLGA NPs in addressing both acute inflammation and chronic fibrosis by simultaneously targeting NET formation and neutrophil hyperactivation. This dual nanoparticle therapy represents a promising clinical strategy for treating COVID-19-associated pulmonary complications, including PASC, by preventing long-term fibrotic progression and promoting lung recovery.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, Institute for Cross-Disciplinary Studies (ICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, ICS, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jisun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jungbum Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghyuk Seo
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ha Eun Shin
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, 96813, USA
| | - Jongsu Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - June Hong Ahn
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungcheongbuk, 28644, Republic of Korea
| | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, 96813, USA.
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of MetaBioHealth, Institute for ICS, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kyung Soo Hong
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea.
| | - Chun Gwon Park
- Department of Biomedical Engineering, Institute for Cross-Disciplinary Studies (ICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, ICS, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of MetaBioHealth, Institute for ICS, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Pham VD, Lee JH, Shin D, Vu HM, Jung J, Kashyap MK, Lee SH, Kim MS. On the Ocean of Biomarkers for the Precise Diagnosis and Prognosis of Lung Diseases. Proteomics Clin Appl 2025; 19:e70003. [PMID: 40098318 DOI: 10.1002/prca.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Bronchoalveolar lavage fluid (BALF) has long been used for diagnosing various lung diseases through its cellular components. However, the clinical utility of biomolecules in the BALF remains largely unexplored. Recently, mass spectrometry-based proteomics has been applied to profile the BALF proteomes to identify novel biomarkers for lung diseases. This review discusses the current progress in the field of BALF proteomics and highlights its potential as a valuable source of biomarkers for different lung diseases. Additionally, we explored the latest advancements and findings from BALF studies. Finally, we address the current limitations and propose future directions and research opportunities to advance the study of BALF.
Collapse
Affiliation(s)
- Van Duc Pham
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jung-Hyung Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Doyun Shin
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Hung M Vu
- Bertis R&D Division, Bertis Inc., Gwacheon-si, Gyeonggi-do, Republic of Korea
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Junyang Jung
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Manoj K Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India
| | - Seung Hyeun Lee
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- New Biology Research Center, DGIST, Daegu, Republic of Korea
| |
Collapse
|
8
|
Ye Y, Wang Y, Xu Q, Liu J, Yang Z, Wuren T, Ge RL. In vitro study: HIF-1α-dependent glycolysis enhances NETosis in hypoxic conditions. Front Immunol 2025; 16:1583587. [PMID: 40356921 PMCID: PMC12066692 DOI: 10.3389/fimmu.2025.1583587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Background Hypoxia plays a pivotal role in modulating immune responses, especially in neutrophils, which are essential components of the innate immune system. Hypoxia-inducible factor (HIF)-1α, a key transcription factor in hypoxic adaptation, regulates cellular metabolism and inflammatory responses. However, the impact of HIF-1α-dependent glycolysis on the formation of neutrophil extracellular traps (known as NETosis) under hypoxic conditions remains unclear. Methods We employed two established neutrophil models, neutrophils isolated from human whole blood and DMSO-induced dHL-60 cells, to explore the role of HIF-1α in regulating glycolysis and its influence on NETosis under hypoxic conditions. We utilized western blotting, immunofluorescence staining, ELISA, and flow cytometry to evaluate the expression of key glycolytic enzymes and NETosis markers under hypoxia. Additionally, the effects of inhibiting HIF-1α with LW6 and blocking the glycolytic pathway with Bay-876 were investigated. Results HIF-1α-dependent glycolysis, through the upregulation of key glycolytic enzymes, significantly enhances NETosis under hypoxic conditions. Pharmacological inhibition of HIF-1α with LW6 and glycolytic blockade with Bay-876 markedly reduced NETosis, underscoring the crucial role of metabolic reprogramming in neutrophil function during hypoxia. Conclusion This study provides novel insights into the interplay between metabolic reprogramming and NETosis in response to hypoxic stress. We identify HIF-1α-dependent glycolysis as a key driver of NETs formation, advancing our understanding of the mechanisms underlying hypoxia-related inflammatory diseases. These findings also suggest that targeting metabolic pathways may offer potential therapeutic strategies for modulating immune responses in hypoxia-associated disorders.
Collapse
Affiliation(s)
- Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
| | - Yanjun Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Department of Geriatrics, Qinghai University Affiliated Hospital, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Department of Gynecology, Qinghai University Affiliated Hospital, Xining, China
| | - Juanli Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Department of Critical Care Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Ziqi Yang
- Medical College of Qinghai University, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
| |
Collapse
|
9
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 2: implementation strategies. FRONTIERS IN TRANSPLANTATION 2025; 4:1575703. [PMID: 40343200 PMCID: PMC12060191 DOI: 10.3389/frtra.2025.1575703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 2 of a bipartite review commences with the delineation of a conceptual model outlining the fundamental role of injury-induced regulated cell death (RCD) in the release of DAMPs that drive innate immune responses involved in early inflammation-related allograft dysfunction and alloimmune-mediated allograft rejection. In relation to this topic, the focus is on the divergent role of donor and recipient dendritic cells (DCs), which become immunogenic in the presence of DAMPs to regulate alloimmunity, but in the absence of DAMPs acquire tolerogenic properties to promote allotolerance. With respect to this scenario, proposals are then made for leveraging RCD and DAMPs as biomarkers during normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) of transplant organs from DCD donors, a strategy poised to significantly enhance current policies for assessing donor organ quality. The focus is then on the ambitious goal to target RCD and DAMPs therapeutically during NRP and NMP, aiming to profoundly suppress subsequently early allograft inflammation and alloimmunity in the recipient. This strategic approach seeks to prevent the activation of intragraft innate immune cells including DCs during donor organ reperfusion in the recipient, which is driven by ischemia/reperfusion injury-induced DAMPs. In this context, available inhibitors of various types of RCD, as well as scavengers and inhibitors of DAMPs are highlighted for their promising therapeutic potential in NRP and NMP settings, building on their proven efficacy in other experimental disease models. If successful, this kind of therapeutic intervention should also be considered for application to organs from DBD donors. Finally, drawing on current global insights into the critical role of RCD and DAMPs in driving innate inflammatory and (allo)immune responses, targeting their inhibition and/or prevention during normothermic perfusion of transplant organs from DCD donors - and potentially DBD donors - holds the transformative potential to not only alleviate transplant dysfunction and suppress allograft rejection but also foster allograft tolerance.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 1: their emergence from injuries to the donor organ. FRONTIERS IN TRANSPLANTATION 2025; 4:1571516. [PMID: 40343197 PMCID: PMC12060192 DOI: 10.3389/frtra.2025.1571516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 1 of a bipartite review commences with a succinct exposition of innate alloimmunity in light of the danger/injury hypothesis in Immunology. The model posits that an alloimmune response, along with the presentation of alloantigens, is driven by DAMPs released from various forms of regulated cell death (RCD) induced by any severe injury to the donor or the donor organ, respectively. To provide a strong foundation for this review, which examines RCD and DAMPs as biomarkers and therapeutic targets in normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) to improve outcomes in organ transplantation, key insights are presented on the nature, classification, and functions of DAMPs, as well as the signaling mechanisms of RCD pathways, including ferroptosis, necroptosis, pyroptosis, and NETosis. Subsequently, a comprehensive discussion is provided on major periods of injuries to the donor or donor organs that are associated with the induction of RCD and DAMPs and precede the onset of the innate alloimmune response in recipients. These periods of injury to donor organs include conditions associated with donation after brain death (DBD) and donation after circulatory death (DCD). Particular emphasis in this discussion is placed on the different origins of RCD-associated DAMPs in DBD and DCD and the different routes they use within the circulatory system to reach potential allografts. The review ends by addressing another particularly critical period of injury to donor organs: their postischemic reperfusion following implantation into the recipient-a decisive factor in determining transplantation outcome. Here, the discussion focuses on mechanisms of ischemia-induced oxidative injury that causes RCD and generates DAMPs, which initiate a robust innate alloimmune response.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
11
|
Zhang J, Miao C, Zhang H. Targeting neutrophil extracellular traps in cancer progression and metastasis. Theranostics 2025; 15:5846-5869. [PMID: 40365275 PMCID: PMC12068306 DOI: 10.7150/thno.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Neutrophils serve as pivotal effectors and regulators of the intricate immune system. Their contributions are indispensable, encompassing the obliteration of pathogens and a significant role in both cancer initiation and progression. Conversely, malignancies profoundly affect neutrophil activity, maturation, and lifespans. Cancer cells manipulate their biology to enhance or suppress the key functions of neutrophils. This manipulation is one of the most remarkable defensive mechanisms used by neutrophils, including the formation of neutrophil extracellular traps (NETs). NETs are filamentous structures comprising DNA, histones, and proteins derived from cytotoxic granules. In this review, we discuss the bidirectional interplay in which cancer elicits NET formation, and NETs concurrently facilitate cancer progression. Here, we discuss how vascular dysfunction and thrombosis induced by neutrophils and NETs contribute to an elevated risk of mortality from cardiovascular complications in patients with cancer. Ultimately, we propose a series of therapeutic strategies that hold promise for effectively targeting NETs in clinical settings.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, China
| |
Collapse
|
12
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Ma N, Liang XN, Chen QF, Li MH, Pei GS, Yi XF, Guo LY, Chen FG, He ZY. Proteogenomic verifies targets underlying erythromycin alleviate neutrophil extracellular traps-induced inflammation. Respir Res 2025; 26:155. [PMID: 40253327 PMCID: PMC12009532 DOI: 10.1186/s12931-025-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Neutrophil Extracellular Traps (NETs) are closely related to the progression of inflammation in Chronic Obstructive Pulmonary Disease (COPD). Erythromycin (EM) has been shown to inhibit inflammation in COPD, but its molecular mechanisms is still unclear. The aim of our study is investigate the molecular mechanisms of EM's anti-inflammatory effects in NETs-induced inflammation. METHODS Transcriptomics and proteomics data were obtained from U937 cells treated with NETs and EM. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using R software. Pathway enrichment analyses, were employed to identify inflammation-related pathways. Cytoscape were utilized to construct network of hub targets regulated by EM which related with oxidative stress and inflammation. Additionally, Cytoscape and STRING were used to construct protein-protein interaction (PPI) network of key targets regulated by EM. The expression levels of key targets were further confirmed through WB and PCR experiments. RESULTS Both transcriptomics and proteomics indicate that EM decrease NETs -induced AKT1 expression. Enrichment analysis of DEGs and DEPs reveal multiple common pathways involved in EM's regulation inflammation, including the PI3K/AKT pathway, response to oxidative stress, IKK/NF-κB signaling and PTEN signaling pathway. Nine key targets in PI3K/AKT-related inflammatory pathways regulated by EM and ten targets of EM-regulated oxidative stress were identified. WB and PCR results confirmed that EM reversing the NETs-induced inflammation by modulating the activity of these targets. Furthermore, clinical samples and vitro experiments confirm that EM alleviates NETs-induced glucocorticoid resistance via inhibiting PI3K/AKT, thereby repressing inflammation. CONCLUSIONS Our study provides a comprehensive proteogenomic characterization of how EM alleviates NET-related inflammation, and identify PI3K/AKT play a critical role in the mechanism by which EM inhibits inflammation.
Collapse
Affiliation(s)
- Nan Ma
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Na Liang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Quan Fang Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mei Hua Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guang Sheng Pei
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Fei Yi
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Yan Guo
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fu Gang Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhi Yi He
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Li J, Wu X, Fu Y, Liu J, Liu Y, Li J, Qing B, Zhang Y, Gao J, He X, Wang J, Li G. Transcriptomic and metabolomic insights into neutrophil activity in COPD complicated by metabolic syndrome. Biomed Eng Online 2025; 24:43. [PMID: 40234868 PMCID: PMC11998468 DOI: 10.1186/s12938-025-01378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) frequently coexists with metabolic syndrome (MS), compounding its impact on patients' health and quality of life. This study aimed to elucidate the immune and metabolic response characteristics in COPD patients with and without MS. METHODS A total of 11,315 COPD patients admitted to the Department of Respiratory and Critical Care Medicine at the Third People's Hospital of Chengdu between January 1, 2013, and May 1, 2023, were selected. Multivariate logistic regression was conducted to identify the risk factors for acute exacerbation of chronic obstructive pulmonary disease. Moreover, from this cohort, 30 patients (18 with COPD and 12 with COPD-MS) were recruited for a further study to investigate the underlying mechanisms of COPD and COPD-MS. Blood samples were collected from these participants to perform transcriptomic and metabolomic analyses, aiming to explore the differences in immune responses and metabolic alterations between the two groups. RESULTS Our findings indicate a significant enhancement of neutrophil-mediated immune responses in COPD-MS patients. Transcriptomic analysis revealed 327 differentially expressed genes (DEGs) significantly involved in neutrophil-mediated immunity. Key metabolic pathways were disrupted, with 39 differential metabolites identified. Notably, metabolites, such as L-homoarginine and diethanolamine, which were elevated in COPD-MS patients, showed strong correlations with DEGs involved in neutrophil pathways and immune checkpoint regulation. The study also found decreased levels of IL4 and IL5RA in COPD-MS patients, suggesting a shift from Th2 to Th1 inflammatory responses, potentially contributing to glucocorticoid resistance. CONCLUSIONS COPD patients with metabolic syndrome exhibit a heightened neutrophil-mediated inflammatory response and significant metabolic disturbances, which underscores the need for precise therapeutic strategies targeting both metabolic and inflammatory pathways to improve patient outcomes and manage COPD-MS complexities effectively.
Collapse
Affiliation(s)
- Juan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xue Wu
- Clinical Medicine Department, North Sichuan Medical College, Nanchong, China
- Department of Respiratory and Critical Care Medicine, Hospital of Shimian County, Ya'an, China
| | - Yufen Fu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory and Critical Care Medicine, Longchang People's Hospital, Neijiang, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jiahuan Li
- Clinical Medicine Department, North Sichuan Medical College, Nanchong, China
| | - Bomiao Qing
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yi Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Jie Gao
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China.
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China.
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China.
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China.
- Clinical Medicine Department, North Sichuan Medical College, Nanchong, China.
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, China.
- Department of Respiratory Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China.
- Clinical Medicine Department, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
15
|
Xu C, Liu M, Xie X, Li Z, Zhu Y, Ye Y, Du M, Hu S, Liu T, Guo Y, Wen W, Liu H, Tu Z. Multifunctional Boron-based 2D Nanoplatforms Ameliorate Severe Respiratory Inflammation by Targeting Multiple Inflammatory Mediators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412626. [PMID: 39950864 PMCID: PMC11967860 DOI: 10.1002/advs.202412626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Indexed: 04/05/2025]
Abstract
Effective management of serious respiratory diseases, such as asthma and recalcitrant rhinitis, remains a global challenge. Here, it is shown that induced sputum supernatants (ISS) from patients with asthma contain higher levels of cell-free DNA (cfDNA) compared to that of healthy volunteers. Although cfDNA scavenging strategies have been developed for inflammation modulation in previous studies, this fall short in clinical settings due to the excessive neutrophil extracellular trap (NET) formation, reactive oxygen and nitrogen species (RONS) and bacterial infections in injured airway tissues. Based on this, a multifunctional boron-based 2D nanoplatform B-PM is designed by coating boron nanosheets (B-NS) with polyamidoamine generation 1 (PG1) dendrimer, which can simultaneously target cfDNA, NETs, RONS, and bacteria. The effects of B-PM in promoting mucosal repair, reducing airway inflammation, and mucus production have been demonstrated in model mice, and the therapeutic effect is superior to dexamethasone. Furthermore, flow cytometry with clustering analysis and transcriptome analysis with RNA-sequencing are adopted to comprehensively evaluate the in vivo anti-inflammation therapeutic effects. These findings emphasize the significance of a multi-targeting strategy to modulate dysregulated inflammation and highlight multifunctional boron-based 2D nanoplatforms for the amelioration of respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Changyi Xu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Ming Liu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Xinran Xie
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Zhixin Li
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yuefei Zhu
- Department of Biomedical EngineeringColumbia UniversityNew York10027USA
| | - Yang Ye
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Mengya Du
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Suhua Hu
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Tianrun Liu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yubiao Guo
- Department of Pulmonary and Critical Care MedicineThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510655China
| | - Weiping Wen
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Huanliang Liu
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Zhaoxu Tu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| |
Collapse
|
16
|
Wu S, Zhou M, Zhou H, Han L, Liu H. Astragaloside IV- loaded biomimetic nanoparticles target IκBα to regulate neutrophil extracellular trap formation for sepsis therapy. J Nanobiotechnology 2025; 23:155. [PMID: 40022068 PMCID: PMC11869569 DOI: 10.1186/s12951-025-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
This study explored the novel mechanism of Astragaloside IV (As) in treating sepsis and its application through a biomimetic nano-delivery system (As@ZM). Sepsis, a condition of organ dysfunction caused by an abnormal host response to infection, poses a significant threat to global health due to its high mortality rate. Our findings revealed a new mechanism for As in treating sepsis, which involved the reduction of neutrophil extracellular traps (NETs) release, potentially related to As binding with IκBα to inhibit the activation of the NF-κB pathway. As treated neutrophils also improved the immune microenvironment by crosstalk with endothelial cells and lung epithelial cells. However, the stability and bioavailability of As limited its clinical application. To address this issue, we had developed a ZIF-8-based nano-delivery system that achieved targeted delivery through neutrophil membrane coating, significantly enhancing the therapeutic efficacy of As. The innovative design of As@ZM offered a new strategy for sepsis treatment, with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Shujuan Wu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huimin Zhou
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huifan Liu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Cheng M, Yan X, Wu Y, Zeng Z, Zhang Y, Wen F, Chen J, Wang T. Qingke Pingchuan granules alleviate airway inflammation in COPD exacerbation by inhibiting neutrophil extracellular traps in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156283. [PMID: 39616733 DOI: 10.1016/j.phymed.2024.156283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) imposes a significant global health and socioeconomic burden. Exacerbations of COPD (ECOPD), characterized by heightened airway inflammation and mucus hypersecretion, adversely affect patient health and accelerate disease progression. Qingke Pingchuan (QKPC) granules, a formulation from Traditional Chinese Medicine initially prescribed for acute bronchitis, have shown unexplored potential in ECOPD management, with mechanisms of action yet to be clarified. PURPOSE This study investigates the therapeutic effects of QKPC in a mouse model of ECOPD, focusing on underlying molecular mechanisms. METHODS COPD was induced in mice through chronic cigarette smoke (CS) exposure, followed by intratracheal administration of Pseudomonas aeruginosa lipopolysaccharide (LPS) to trigger exacerbation, after which mice were treated with QKPC granules. Major compounds in QKPC were identified via UHPLC-QE-MS, and high-throughput RNA sequencing of lung tissue samples identified differentially expressed genes. Transcriptomic data were integrated with network pharmacology analysis to pinpoint potential pathways, bioactive compounds, and target genes through which QKPC might attenuate ECOPD. Molecular docking, protein-small molecule binding assays, and in vitro analyses further validated interactions between key compounds and target genes, shedding light on plausible signaling pathways. RESULTS QKPC treatment led to significant reductions in airway leukocyte infiltration and goblet cell metaplasia in CS- and LPS-exposed mice, accompanied by decreased levels of inflammatory cytokines (IL-6, IL-1β, CXCL1, and TNF-α) and mucin MUC5AC in bronchoalveolar lavage fluid. The integrative transcriptomic and network pharmacology analysis identified the neutrophil extracellular trap (NET) formation pathway as a key mechanism underlying QKPC's protective effect against ECOPD. In vitro assays demonstrated that epigallocatechin-3-gallate (EGCG) and quercetin, two important bioactive compounds in QKPC, significantly inhibited NETosis induced by cigarette smoke extract (CSE) plus LPS in human neutrophils. The two compounds were found to interact directly with the reactive oxidative species (ROS)-generating enzyme NOX2 and its regulatory subunit p47phox. Subsequent in vitro studies further confirmed EGCG and quercetin's capacity to reduce ROS production and downregulate NOX2 and p47phox protein levels in neutrophils stimulated with CSE and LPS. Additionally, in vivo studies confirmed QKPC's efficacy in reducing NET formation, oxidative stress, and NOX2/p47phox protein expression in the lung tissue of ECOPD mice. CONCLUSION These findings suggest that QKPC granules alleviate airway inflammation in ECOPD, potentially through inhibition of pulmonary NET formation via the NOX2/p47phox-ROS pathway, underscoring their potential therapeutic application for ECOPD management in clinical settings.
Collapse
Affiliation(s)
- Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xi Yan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yu Wu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yutian Zhang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Wang Y, Liang S, Hong Q, Mu J, Wu Y, Li K, Li Y, Wu Y, Lou X, Xu D, Cui W. Construction of a neutrophil extracellular trap formation-related gene model for predicting the survival of lung adenocarcinoma patients and their response to immunotherapy. Transl Lung Cancer Res 2024; 13:3407-3425. [PMID: 39830760 PMCID: PMC11736607 DOI: 10.21037/tlcr-24-463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025]
Abstract
Background Lung adenocarcinoma (LUAD) is associated with high morbidity and mortality rates. Increasing evidence indicates that neutrophil extracellular traps (NETs) play a critical role in tumor progression, metastasis and immunosuppression in the LUAD tumor microenvironment (TME). Nevertheless, the use of NET formation-related genes (NFRGs) to predict LUAD patient survival and response to immunotherapy has not been explored. Therefore, this study aimed to construct a NFRGs-based prognostic signature for stratifying LUAD patients and informing individualized management strategies. Methods The cell composition of the LUAD TME was investigated using the single-cell sequencing data in Single-Cell Lung Cancer Atlas (LuCA). NFRGs were identified to construct a prognostic signature based on The Cancer Genome Atlas (TCGA) cohort which was validated in the Gene Expression Omnibus (GEO) dataset. The univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox regression models, receiver operating characteristic (ROC) and Brier Score were applied to assess the prognostic model. A nomogram was established to facilitate the clinical application of the risk score. The Estimation of STromal and Immune cells in MAlignant Tumor tissues (ESTIMATE) and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were utilized to assess the TME and predict immunotherapy response. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to quantify the expression levels of four NFRGs in LUAD paired tissue samples. Results Single‑cell RNA sequence analysis showed the importance of neutrophils in LUAD TME. We developed and validated a 4-NFRG (CAT, CTSG, ENO1, TLR2) prognostic signature based on TCGA and GEO cohorts, which stratified patients into high-risk and low-risk groups. Univariate and multivariate analyses showed that our risk model could independently predict the survival of LUAD patients. Patients in the low-risk group exhibited a more active immune microenvironment, lower TIDE scores, lower half-maximal inhibitory concentration (IC50) values and higher immune checkpoint molecule expression. Our risk signature could serve as a biomarker for predicting immunotherapeutic benefits. Conclusions We developed a novel prognostic signature for LUAD patients based on NFRGs and emphasized the critical role of this signature in predicting LUAD patient survival and immunotherapy response.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Liang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Hong
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juwei Mu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Wu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiling Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Wu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoying Lou
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danfei Xu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Niu Y, Zhu S, Mei X, Yang J, Gao X, Xie J, Huang L, Liu W. Integrated respiratory toxicity of municipal wastewater to human bronchial epithelial cells and 3D bronchospheres. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124802. [PMID: 39182812 DOI: 10.1016/j.envpol.2024.124802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Respiratory symptoms have been reported in wastewater treatment workers and residents living close to sewage treatment plant. However, toxicological research about the respiratory hazards of municipal wastewater is scarce. The present study aims to gain insight into the comprehensive respiratory hazards induced by the contaminant mixtures in municipal wastewater. The integrated respiratory hazards of effluents from four secondary wastewater treatment plants (SWTPs), a tertiary wastewater treatment plant (TTP), and a constructed wetland (CW) were evaluated using normal human bronchial epithelial cells (NHBE) bioassay, and toxicity reduction efficiency of various treatment techniques was analyzed. Effluents caused cytotoxicity, oxidative damage, inflammation response with the increased levels of IL-6 and CXCL8, and impaired barrier integrity with decreased expressions of ZO-1 and occludin in NHBE. Further, the effluents inhibited the development of 3D bronchospheres, increased irregular surface and cell debris, and suppressed the formation of luminal structures. TTP E effluent significantly increased the expression of MUC5AC in bronchospheres. The integrated biomarker response (IBR) of the influent was removed by 40.2% at SWTPs, 18.2% at TTP, and 36.6% at CW, respectively. The IBR of the final effluents from SWTPs, TTP, and CW were 7.2, 7.7, and 7.7, respectively. Significant correlation with toxicity biomarkers was frequently observed for stearyl alcohol, o-cresol, phenanthrene, butylated hydroxytoluene, and dimethyl phthalate. The present study provided human relevant evidence concerning the adverse respiratory effects associated with discharge. The necessity for deep water treatment, performance optimization, and the potential means were suggested for improving water quality and protecting respiratory health.
Collapse
Affiliation(s)
- Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sirui Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xili Mei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiayu Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liyin Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
21
|
Tang C, Jin Y, Wu M, Jia F, Lu X, Li J, Wu J, Zhu S, Wang Z, An D, Xiong W, Zhang Y, Xu H, Chen X. A biomimic anti-neuroinflammatory nanoplatform for active neutrophil extracellular traps targeting and spinal cord injury therapy. Mater Today Bio 2024; 28:101218. [PMID: 39221206 PMCID: PMC11364920 DOI: 10.1016/j.mtbio.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic spinal cord injury (SCI) always leads to severe neurological deficits and permanent damage. Neuroinflammation is a vital process of SCI and have become a promising target for SCI treatment. However, the neuroinflammation-targeted therapy would hinder the functional recovery of spinal cord and lead to the treatment failure. Herein, a biomimic anti-neuroinflammatory nanoplatform (DHCNPs) was developed for active neutrophil extracellular traps (NETs) targeting and SCI treatment. The curcumin-loaded liposome with the anti-inflammatory property acted as the core of the DHCNPs. Platelet membrane and neutrophil membrane were fused to form the biomimic hybrid membrane of the DHCNPs for hijacking neutrophils and neutralizing the elevated neutrophil-related proinflammatory cytokines, respectively. DNAse I modification on the hybrid membrane could achieve NETs degradation, blood spinal cord barrier, and neuron repair. Further studies proved that the DHCNPs could reprogram the multifaceted neuroinflammation and reverse the SCI process via nuclear factor kappa-B (NF-κB) pathway. We believe that the current study provides a new perspective for neuroinflammation inhibition and may shed new light on the treatment of SCI.
Collapse
Affiliation(s)
- Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yaoyao Jin
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, 223022, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Jia
- Department of Neurosurgery, Yancheng NO.1 People's Hospital, The Affiliated Yancheng First Hospital of Nanjing University Medical School, Yancheng, 224008, China
| | - Xiaowei Lu
- Department of Geriatric Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Senlin Zhu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhiji Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Di An
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|