1
|
Gleich SJ, Mesrop LY, Cram JA, Weissman JL, Hu SK, Yeh YC, Fuhrman JA, Caron DA. With a little help from my friends: importance of protist-protist interactions in structuring marine protistan communities in the San Pedro Channel. mSystems 2025; 10:e0104524. [PMID: 39878540 PMCID: PMC11834403 DOI: 10.1128/msystems.01045-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Marine protists form complex communities that are shaped by environmental and biological ecosystem properties, as well as ecological interactions between organisms. While all of these factors play a role in shaping protistan communities, the specific ways in which these properties and interactions influence protistan communities remain poorly understood. Fourteen years and 9 months of eukaryotic amplicon (18S-V4 rRNA gene) data collected monthly at the San Pedro Ocean Time-series (SPOT) station were used to evaluate the impacts that environmental and biological factors, and protist-protist interactions had on protistan community composition. Statistical analysis of the amplicon data revealed that seasonal patterns in protistan community composition were apparent, but that the environmental data collected through routine time-series sampling efforts could not explain most of the variability that was evident in the communities. To identify some of the protist-protist interactions that may have played a role in shaping protistan communities, ecological networks were constructed using the amplicon data and the network predictions were compared against a database of confirmed protist-protist interactions. The database comparisons revealed hundreds of established parasitic, predator-prey, photosymbiotic, and mutualistic relationships in the networks. Although many interactions were confirmed using the database, these confirmed interactions constituted only 2% of the interactions identified at the SPOT station, highlighting the need to better characterize protist-protist interactions in marine environments. Finally, the network-predicted interactions that were not found in the database were used to identify putative, novel protist-protist interactions that may have played a role in structuring the protistan communities at the SPOT station. IMPORTANCE Network analyses are commonly used to identify some of the ecological interactions that may be occurring between protists in the ocean; however, evaluating predictions obtained from these analyses remains difficult due to the large number of interactions that may be recovered and the limited amount of information available on protist-protist interactions in nature. In this study, ecological network analyses were conducted using data collected at the San Pedro Ocean Time-series (SPOT) station and the network predictions were compared against a database of established protist-protist interactions. These database comparisons revealed hundreds of confirmed protist-protist interactions, and thousands of putative, novel interactions that may be occurring at the SPOT station. The database comparisons carried out in this study provide a new way of evaluating network predictions and highlight the complex, yet critical role that ecological interactions play in shaping protistan community composition in marine ecosystems.
Collapse
Affiliation(s)
- Samantha J. Gleich
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Lisa Y. Mesrop
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Jacob A. Cram
- Department of Marine Estuarine Environmental Science, Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - J. L. Weissman
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| | - Sarah K. Hu
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford University, Stanford, California, USA
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - David A. Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Zhang Y, Song D, Yao P, Zhang XH, Liu J. Time-decay patterns and irregular disturbance: contrasting roles of abundant and rare microbial communities in dynamic coastal seawater. Appl Environ Microbiol 2025; 91:e0175124. [PMID: 39651864 PMCID: PMC11784082 DOI: 10.1128/aem.01751-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/08/2024] [Indexed: 02/01/2025] Open
Abstract
Microbial communities in coastal seas experience strong environmental disturbances, yet their response patterns, especially regarding differently abundant subcommunities, remain poorly understood. Here, through 16S rRNA gene amplicon sequencing, we investigated the diversity, time-decay pattern, and assembly process of abundant, conditionally rare taxa (CRT) and rare microbial subcommunities in temperate coastal waters over 60 consecutive weeks. The abundant (50.9%) and CRT (46.1%) communities each comprised approximately half of the planktonic community, while the CRT and rare communities contributed to the extremely high species diversity. Distinct temporal heterogeneity was observed among the three fractions and was associated with taxonomic level. The abundant subcommunity exhibited time-decay patterns at all taxonomic levels, while for CRT, the pattern was found only at finer levels. In contrast, variations of the rare community loosely followed a temporal rhythm and were largely confined within a specific taxonomic range, likely raised from turnovers among closely related taxa. Determinism dominated the community assembly of the abundant fraction, while the rare one was more controlled by stochasticity that may be related to pulse terrigenous inputs and anthropogenic disturbances. The rare subcommunity with narrow niche widths likely represented a stable repository to offer episodic specialists, while the abundant taxa that exhibited broader niche widths were considered the generalists in fluctuating environments. Our study revealed the distinct strategies that abundant and rare communities adopt to maintain community stability in temporal dynamics of prokaryotic plankton in the coastal seawater. IMPORTANCE The relative importance of rare and abundant taxa in microbial temporal patterns remains debated. Here, we identified taxonomically associated distinct diversity modes of abundant and rare subcommunities from a year-round time-series study in dynamic coastal seawater. We highlighted the significance of the rare subcommunity in maintaining community stability by serving as a repository to offer specialists driven by stochastic processes over time. The abundant subcommunity, by contrast, contributed mainly to temporal rhythmic variations. This study expands the current understanding of the temporal dynamics and stability of coastal microbial communities by revealing distinct variation patterns of subcommunities with different abundances.
Collapse
Affiliation(s)
- Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Hwang J, Hayward A, Sofen LE, Pitz KJ, Chavez FP, Edwards BR. Daily microbial rhythms of the surface ocean interrupted by the new moon-a lipidomic study. ISME COMMUNICATIONS 2025; 5:ycaf044. [PMID: 40177466 PMCID: PMC11962720 DOI: 10.1093/ismeco/ycaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
Lipids are essential biomolecules for cell physiology and are commonly used as biomarkers to elucidate biogeochemical processes over a large range of environments and timescales. Here, we use high-temporal-resolution lipidomic analysis to characterize the surface ocean community in the productive upwelling region overlying the Monterey Bay Canyon. We observed a strong diel signal with a drawdown of lipids at night and an increase during the day that seemed to correspond to wholesale removal of lipids from the surface ocean as opposed to internal metabolism. Individual lipid species were organized into coregulated groups that were interpreted as representing different phytoplankton guilds. Concentrations of long-chained triacylglycerols (TAGs) showed unique patterns over the course of five days. TAGs were used to estimate the amount of energy cycled through the surface ocean. These calculations revealed diurnal carbon cycling that was on scales comparable to net primary production. The diel pattern dissipated from most lipid modules on Day 3 as tidal forcing increased at our site with the advent of the new moon. Pigment analysis indicated that the community shifted from a diatom-dominated community to a more diverse assemblage, including more haptophytes, chlorophytes, and Synechococcus during the new moon. The shift in community appears to promote higher nutritional quality of biomass, with more essential fatty acids in the surface ocean during the spring tide. This analysis showcases the utility of lipidomics in characterizing community dynamics and underscores the importance of considering both diel and tidal timescales when sampling in productive coastal regions.
Collapse
Affiliation(s)
- Jiwoon Hwang
- Department of Earth and Planetary Science, University of California - Berkeley, Berkeley, CA 94720, United States
| | - Alexander Hayward
- National Centre for Climate Research (NCKF), Danish Meteorological Institute, Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Laura E Sofen
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, United States
| | - Kathleen J Pitz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
| | - Bethanie R Edwards
- Department of Earth and Planetary Science, University of California - Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
4
|
Xu W, Xu Y, Sun R, Rey Redondo E, Leung KK, Wan SH, Li J, Yung CCM. Revealing the intricate temporal dynamics and adaptive responses of prokaryotic and eukaryotic microbes in the coastal South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176019. [PMID: 39236827 DOI: 10.1016/j.scitotenv.2024.176019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This comprehensive two-year investigation in the coastal South China Sea has advanced our understanding of marine microbes at both community and genomic levels. By combining metagenomics and metatranscriptomics, we have revealed the intricate temporal dynamics and remarkable adaptability of microbial communities and phytoplankton metagenome-assembled genomes (MAGs) in response to environmental fluctuations. We observed distinct seasonal shifts in microbial community composition and function: cyanobacteria were predominant during warmer months, whereas photosynthetic protists were more abundant during colder seasons. Notably, metabolic marker KOs of photosynthesis were consistently active throughout the year, underscoring the persistent role of these processes irrespective of seasonal changes. Our analysis reveals that environmental parameters such as temperature, salinity, and nitrate concentrations profoundly influence microbial community composition, while temperature and silicate have emerged as crucial factors shaping their functional traits. Through the recovery and analysis of 37 phytoplankton MAGs, encompassing nine prokaryotic cyanobacteria and 28 eukaryotic protists from diverse phyla, we have gained insights into their genetic diversity and metabolic capabilities. Distinct profiles of photosynthesis-related pathways including carbon fixation, carotenoid biosynthesis, photosynthesis-antenna proteins, and photosynthesis among the MAGs indicated their genetic adaptations to changing environmental conditions. This study not only enhances our understanding of microbial dynamics in coastal marine ecosystems but also sheds light on the ecological roles and adaptive responses of different microbial groups to environmental changes.
Collapse
Affiliation(s)
- Wenqian Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruixian Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Elvira Rey Redondo
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Kiu Leung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Siu Hei Wan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Wei J, Zhang Q, Yin Y, Peng K, Wang L, Cai Y, Gong Z. Limited Impacts of Water Diversion on Micro-eukaryotic Community along the Eastern Route of China's South-to-North Water Diversion Project. WATER RESEARCH 2024; 262:122109. [PMID: 39096537 DOI: 10.1016/j.watres.2024.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
The Eastern Route of the South-to-North Water Diversion Project (ER-SNWDP) represents a crucial initiative aimed at alleviating water scarcity in China's northern region. Understanding the dynamics governing the composition and assembly processes of micro-eukaryotic communities within the canal during different water diversion periods holds paramount significance for the effective management of the ER-SNWDP. Our study systematically tracks the dynamics of the micro-eukaryotic community and its assembly processes along the 1045.4 km of canals and four impounded lakes, totaling 3455 km2, constituting the ER-SNWDP during a complete water diversion cycle, utilizing high-throughput sequencing, bioinformatics tools, and null modeling algorithms. The primary objectives of this study are to elucidate the spatial-temporal succession of micro-eukaryotic communities as the water diversion progresses, to delineate the relative importance of deterministic and stochastic processes in community assembly, and to identify the pivotal factors driving changes in micro-eukaryotic communities. Our findings indicate notable variations in the composition and diversity of micro-eukaryotic communities within the ER-SNWDP across different water diversion periods and geographic locations (P < 0.05). This variation is influenced by a confluence of temporal and environmental factors, with limited impacts from water diversion. In essence, the assembly of micro-eukaryotic communities within the ER-SNWDP primarily stemmed from heterogeneous selection driven by deterministic processes. Water diversion exhibited a tendency to decrease community beta diversity while augmenting the influence of stochastic processes in community assembly, albeit this effect attenuated over time. Furthermore, our analysis identified several pivotal environmental parameters, notably including nitrite-nitrogen, nitrate-nitrogen, orthophosphate, and water temperature, as exerting significant effects on micro-eukaryotic communities across different water diversion periods. Collectively, our study furnishes the inaugural comprehensive exploration of the dynamics, assembly processes, and influencing factors governing micro-eukaryotic communities within the ER-SNWDP, thus furnishing indispensable insights to inform the water quality management of this important project.
Collapse
Affiliation(s)
- Jiahao Wei
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingji Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Yin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Peng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lachun Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Peng Y, Wu C, Ma G, Chen H, Wu QL, He D, Jeppesen E, Ren L. Insight into diversity change, variability and co-occurrence patterns of phytoplankton assemblage in headwater streams: a study of the Xijiang River basin, South China. Front Microbiol 2024; 15:1417651. [PMID: 39224213 PMCID: PMC11367421 DOI: 10.3389/fmicb.2024.1417651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Phytoplankton has been used as a paradigm for studies of coexistence of species since the publication of the "paradox of the plankton." Although there are a wealth of studies about phytoplankton assemblages of lakes, reservoirs and rivers, our knowledge about phytoplankton biodiversity and its underlying mechanisms in mountain headwater stream ecosystems is limited, especially across regional scales with broad environmental gradients. In this study, we collected 144 phytoplankton samples from the Xijiang headwater streams of the Pearl River across low altitude (< 1,000 m) located in Guangxi province, intermediate altitude (1,000 m < altitude <2,000 m) in Guizhou province and high altitude (> 2,000 m) in Yunnan province of China. Our study revealed high phytoplankton diversity in these streams. Freshwater phytoplankton, including cyanobacteria, Bacillariophyta, Chlorophyta, Rhodophyta, Chrysophyta, Euglenophyta, Glaucophyta, Phaeophyta and Cryptophyta, were all detected. However, phytoplankton alpha diversity exhibited a monotonic decreasing relationship with increasing altitude. High altitudes amplified the "isolated island" effect of headwater streams on phytoplankton assemblages, which were characterized by lower homogeneous selection and higher dispersal limitation. Variability and network vulnerability of phytoplankton assemblages increased with increasing altitudes. Our findings demonstrated diversity, variability and co-occurrence patterns of phytoplankton assemblages linked to environmental factors co-varying with altitude across regional scales.
Collapse
Affiliation(s)
- Yuyang Peng
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Chuangfeng Wu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Guibin Ma
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Haiming Chen
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory, Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Dan He
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory, Guangzhou, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Türkiye
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Laperriere SM, Minch B, Weissman JL, Hou S, Yeh YC, Ignacio-Espinoza JC, Ahlgren NA, Moniruzzaman M, Fuhrman JA. Phylogenetic proximity drives temporal succession of marine giant viruses in a five-year metagenomic time-series. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607631. [PMID: 39185240 PMCID: PMC11343133 DOI: 10.1101/2024.08.12.607631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleocytoplasmic Large DNA Viruses (NCLDVs, also called giant viruses) are widespread in marine systems and infect a broad range of microbial eukaryotes (protists). Recent biogeographic work has provided global snapshots of NCLDV diversity and community composition across the world's oceans, yet little information exists about the guiding 'rules' underpinning their community dynamics over time. We leveraged a five-year monthly metagenomic time-series to quantify the community composition of NCLDVs off the coast of Southern California and characterize these populations' temporal dynamics. NCLDVs were dominated by Algavirales (Phycodnaviruses, 59%) and Imitervirales (Mimiviruses, 36%). We identified clusters of NCLDVs with distinct classes of seasonal and non-seasonal temporal dynamics. Overall, NCLDV population abundances were often highly dynamic with a strong seasonal signal. The Imitervirales group had highest relative abundance in the more oligotrophic late summer and fall, while Algavirales did so in winter. Generally, closely related strains had similar temporal dynamics, suggesting that evolutionary history is a key driver of the temporal niche of marine NCLDVs. However, a few closely-related strains had drastically different seasonal dynamics, suggesting that while phylogenetic proximity often indicates ecological similarity, occasionally phenology can shift rapidly, possibly due to host-switching. Finally, we identified distinct functional content and possible host interactions of two major NCLDV orders-including connections of Imitervirales with primary producers like the diatom Chaetoceros and widespread marine grazers like Paraphysomonas and Spirotrichea ciliates. Together, our results reveal key insights on season-specific effect of phylogenetically distinct giant virus communities on marine protist metabolism, biogeochemical fluxes and carbon cycling.
Collapse
Affiliation(s)
- Sarah M. Laperriere
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - JL Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
West NJ, Landa M, Obernosterer I. Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean. Microbiologyopen 2024; 13:e1428. [PMID: 39119822 PMCID: PMC11310772 DOI: 10.1002/mbo3.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Nyree J. West
- CNRS FR3724, Observatoire Océanologique de Banyuls (OOB)Sorbonne UniversitéBanyuls sur merFrance
| | - Marine Landa
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| |
Collapse
|
9
|
Hou S, Tang T, Cheng S, Liu Y, Xia T, Chen T, Fuhrman J, Sun F. DeepMicroClass sorts metagenomic contigs into prokaryotes, eukaryotes and viruses. NAR Genom Bioinform 2024; 6:lqae044. [PMID: 38711860 PMCID: PMC11071121 DOI: 10.1093/nargab/lqae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Sequence classification facilitates a fundamental understanding of the structure of microbial communities. Binary metagenomic sequence classifiers are insufficient because environmental metagenomes are typically derived from multiple sequence sources. Here we introduce a deep-learning based sequence classifier, DeepMicroClass, that classifies metagenomic contigs into five sequence classes, i.e. viruses infecting prokaryotic or eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. DeepMicroClass achieved high performance for all sequence classes at various tested sequence lengths ranging from 500 bp to 100 kbps. By benchmarking on a synthetic dataset with variable sequence class composition, we showed that DeepMicroClass obtained better performance for eukaryotic, plasmid and viral contig classification than other state-of-the-art predictors. DeepMicroClass achieved comparable performance on viral sequence classification with geNomad and VirSorter2 when benchmarked on the CAMI II marine dataset. Using a coastal daily time-series metagenomic dataset as a case study, we showed that microbial eukaryotes and prokaryotic viruses are integral to microbial communities. By analyzing monthly metagenomes collected at HOT and BATS, we found relatively higher viral read proportions in the subsurface layer in late summer, consistent with the seasonal viral infection patterns prevalent in these areas. We expect DeepMicroClass will promote metagenomic studies of under-appreciated sequence types.
Collapse
Affiliation(s)
- Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianqi Tang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Siliangyu Cheng
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuanhao Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian Xia
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ting Chen
- Department of Computer Science and Technology, Institute of Artificial Intelligence & BNRist, Tsinghua University, Beijing 100084, China
| | - Jed A Fuhrman
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Han D, Park KT, Kim H, Kim TH, Jeong MK, Nam SI. Interaction between phytoplankton and heterotrophic bacteria in Arctic fjords during the glacial melting season as revealed by eDNA metabarcoding. FEMS Microbiol Ecol 2024; 100:fiae059. [PMID: 38621717 PMCID: PMC11067963 DOI: 10.1093/femsec/fiae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024] Open
Abstract
The hydrographic variability in the fjords of Svalbard significantly influences water mass properties, causing distinct patterns of microbial diversity and community composition between surface and subsurface layers. However, surveys on the phytoplankton-associated bacterial communities, pivotal to ecosystem functioning in Arctic fjords, are limited. This study investigated the interactions between phytoplankton and heterotrophic bacterial communities in Svalbard fjord waters through comprehensive eDNA metabarcoding with 16S and 18S rRNA genes. The 16S rRNA sequencing results revealed a homogenous community composition including a few dominant heterotrophic bacteria across fjord waters, whereas 18S rRNA results suggested a spatially diverse eukaryotic plankton distribution. The relative abundances of heterotrophic bacteria showed a depth-wise distribution. By contrast, the dominant phytoplankton populations exhibited variable distributions in surface waters. In the network model, the linkage of phytoplankton (Prasinophytae and Dinophyceae) to heterotrophic bacteria, particularly Actinobacteria, suggested the direct or indirect influence of bacterial contributions on the fate of phytoplankton-derived organic matter. Our prediction of the metabolic pathways for bacterial activity related to phytoplankton-derived organic matter suggested competitive advantages and symbiotic relationships between phytoplankton and heterotrophic bacteria. Our findings provide valuable insights into the response of phytoplankton-bacterial interactions to environmental changes in Arctic fjords.
Collapse
Affiliation(s)
- Dukki Han
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Ki-Tae Park
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Haryun Kim
- East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin 36315, Republic of Korea
| | - Tae-Hoon Kim
- Department of Oceanography, Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Man-Ki Jeong
- Department of Smart Fisheries Resources Management, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
11
|
Celussi M, Manna V, Banchi E, Fonti V, Bazzaro M, Flander-Putrle V, Klun K, Kralj M, Orel N, Tinta T. Annual recurrence of prokaryotic climax communities in shallow waters of the North Mediterranean. Environ Microbiol 2024; 26:e16595. [PMID: 38418391 DOI: 10.1111/1462-2920.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
In temperate coastal environments, wide fluctuations of biotic and abiotic factors drive microbiome dynamics. To link recurrent ecological patterns with planktonic microbial communities, we analysed a monthly-sampled 3-year time series of 16S rRNA amplicon sequencing data, alongside environmental variables, collected at two stations in the northern Adriatic Sea. Time series multivariate analyses allowed us to identify three stable, mature communities (climaxes), whose recurrence was mainly driven by changes in photoperiod and temperature. Mixotrophs (e.g., Ca. Nitrosopumilus, SUP05 clade, and Marine Group II) thrived under oligotrophic, low-light conditions, whereas copiotrophs (e.g., NS4 and NS5 clades) bloomed at higher temperatures and substrate availability. The early spring climax was characterised by a more diverse set of amplicon sequence variants, including copiotrophs associated with phytoplankton-derived organic matter degradation, and photo-auto/heterotrophic organisms (e.g., Synechococcus sp., Roseobacter clade), whose rhythmicity was linked to photoperiod lengthening. Through the identification of recurrent climax assemblages, we begin to delineate a typology of ecosystem based on microbiome composition and functionality, allowing for the intercomparison of microbial assemblages among different biomes, a still underachieved goal in the omics era.
Collapse
Affiliation(s)
- Mauro Celussi
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Vincenzo Manna
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Elisa Banchi
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Viviana Fonti
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | - Matteo Bazzaro
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Martina Kralj
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | - Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
12
|
Kantor EJH, Robicheau BM, Tolman J, Archibald JM, LaRoche J. Metagenomics reveals the genetic diversity between sublineages of UCYN-A and their algal host plastids. ISME COMMUNICATIONS 2024; 4:ycae150. [PMID: 39670058 PMCID: PMC11637426 DOI: 10.1093/ismeco/ycae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
UCYN-A (or Cand. Atelocyanobacterium thalassa) has been recognized as a globally distributed, early stage, nitrogen-fixing organelle (the "nitroplast") of cyanobacterial origin present in the haptophyte alga Braarudosphaera bigelowii. Although the nitroplast was recognized as UCYN-A2, not all sublineages of UCYN-A have been confirmed as nitroplasts, and full genomes are still lacking for several known sublineages. We investigated the differences between UCYN-A sublineages by sequencing and assembly of metagenomic sequences acquired from cultured biomass from NW Atlantic seawater, which yielded near-complete Metagenome Assembled Genomes (MAGs) corresponding to UCYN-A1, -A4, and the plastid of the UCYN-A4-associated B. bigelowii. Weekly time-series data paired with the recurrence of specific microbes in cultures used for metagenomics gave further insight into the microbial community associated with the algal/UCYN-A complex. The UCYN-A1 MAG was found to have 99% average nucleotide identity (ANI) to the Pacific-derived reference genome despite its Atlantic Ocean origin. Comparison of the UCYN-A4 MAG (the initial genome sequenced from this sublineage) to other genomes showed that UCYN-A4 is sufficiently genetically distinct from both UCYN-A1 and UCYN-A2 (ANI of ~83% and ~85%, respectively) to be considered its own sublineage, but more similar to UCYN-A2 than -A1, supporting its possible classification as a nitroplast. The B. bigelowii plastid sequence was compared with published plastid sequences (sharing 78% ANI with Chrysochromulina parva) adding to our understanding of genomic variation across Haptophyta organelles and emphasizing the need for further full genomic sequencing of B. bigelowii genotypes and their organelles.
Collapse
Affiliation(s)
- Ella Joy H Kantor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | | | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - John M Archibald
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Zhang Y, Liu J, Song D, Yao P, Zhu S, Zhou Y, Jin J, Zhang XH. Stochasticity-driven weekly fluctuations distinguished the temporal pattern of particle-associated microorganisms from its free-living counterparts in temperate coastal seawater. WATER RESEARCH 2024; 248:120849. [PMID: 37979570 DOI: 10.1016/j.watres.2023.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Microbial community dynamics directly determine their ecosystem functioning. Despite the well-known annual recurrence pattern, little is known how different lifestyles affect the temporal variation and how community assembly mechanisms change over different temporal scales. Here, through a high-resolution observation of size fractionated samples over 60 consecutive weeks, we investigate the distinction in weekly distribution pattern and assembly mechanism between free-living (FL) and particle-associated (PA) communities in highly dynamic coastal environments. A clear pattern of annual recurrence was observed, which was more pronounced in FL compared to PA, resulting in higher temporal specificity in the former samples. Both the two size fractions displayed significant temporal distance-decay patterns, yet the PA community showed a higher magnitude of community variation between adjacent weeks, likely caused by sudden, drastic and long-lived blooms of heterotrophic bacteria. Generally, determinism (environmental selection) had a greater effect on the community assembly than stochasticity (random birth, death, and dispersal events), with significant contributions from temperature and inorganic nutrients. However, a clear shift in the temporal assembly pattern was observed, transitioning from a prevalence of stochastic processes driving short-term (within a month) fluctuations to a dominance of deterministic processes over longer time intervals. Between adjacent weeks, stochasticity was more important in the community assembly of PA than FL. This study revealed that stochastic processes can lead to rapid, dramatic and irregular PA community fluctuations, indicating weak resistance and resilience to disturbances, which considering the role of PA microbes in carbon processing would significantly affect the coastal carbon cycle. Our results provided a new insight into the microbial community assembly mechanisms in the temporal dimension.
Collapse
Affiliation(s)
- Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yi Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jian Jin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Deulofeu-Capo O, Sebastián M, Auladell A, Cardelús C, Ferrera I, Sánchez O, Gasol JM. Growth rates of marine prokaryotes are extremely diverse, even among closely related taxa. ISME COMMUNICATIONS 2024; 4:ycae066. [PMID: 38800126 PMCID: PMC11126302 DOI: 10.1093/ismeco/ycae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Marine prokaryotes play crucial roles in ocean biogeochemical cycles, being their contribution strongly influenced by their growth rates. Hence, elucidating the variability and phylogenetic imprint of marine prokaryotes' growth rates are crucial for better determining the role of individual taxa in biogeochemical cycles. Here, we estimated prokaryotic growth rates at high phylogenetic resolution in manipulation experiments using water from the northwestern Mediterranean Sea. Experiments were run in the four seasons with different treatments that reduced growth limiting factors: predators, nutrient availability, viruses, and light. Single-amplicon sequence variants (ASVs)-based growth rates were calculated from changes in estimated absolute abundances using total prokaryotic abundance and the proportion of each individual ASV. The trends obtained for growth rates in the different experiments were consistent with other estimates based on total cell-counts, catalyzed reporter deposition fluorescence in situ hybridization subcommunity cell-counts or metagenomic-operational taxonomic units (OTUs). Our calculations unveil a broad range of growth rates (0.3-10 d-1) with significant variability even within closely related ASVs. Likewise, the impact of growth limiting factors changed over the year for individual ASVs. High numbers of responsive ASVs were shared between winter and spring seasons, as well as throughout the year in the treatments with reduced nutrient limitation and viral pressure. The most responsive ASVs were rare in the in situ communities, comprising a large pool of taxa with the potential to rapidly respond to environmental changes. Essentially, our results highlight the lack of phylogenetic coherence in the range of growth rates observed, and differential responses to the various limiting factors, even for closely related taxa.
Collapse
Affiliation(s)
- Ona Deulofeu-Capo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Adrià Auladell
- Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Catalunya, Spain
| | - Clara Cardelús
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Puerto Pesquero s/n, Fuengirola 29640, Málaga, Spain
| | - Olga Sánchez
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya 08193, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| |
Collapse
|
15
|
Robicheau BM, Tolman J, Desai D, LaRoche J. Microevolutionary patterns in ecotypes of the symbiotic cyanobacterium UCYN-A revealed from a Northwest Atlantic coastal time series. SCIENCE ADVANCES 2023; 9:eadh9768. [PMID: 37774025 PMCID: PMC10541017 DOI: 10.1126/sciadv.adh9768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
UCYN-A is a globally important nitrogen-fixing symbiotic microbe often found in colder regions and coastal areas where nitrogen fixation has been overlooked. We present a 3-year coastal Northwest Atlantic time series of UCYN-A by integrating oceanographic data with weekly nifH and16S rRNA gene sequencing and quantitative PCR assays for UCYN-A ecotypes. High UCYN-A relative abundances dominated by A1 to A4 ecotypes reoccurred annually in the coastal Northwest Atlantic. Although UCYN-A was detected every summer/fall, the ability to observe separate ecotypes may be highly dependent on sampling time given intense interannual and weekly variability of ecotype-specific occurrences. Additionally, much of UCYN-A's rarer diversity was populated by short-lived neutral mutational variants, therefore providing insight into UCYN-A's microevolutionary patterns. For instance, rare ASVs exhibited community composition restructuring annually, while also sharing a common connection to a dominant ASV within each ecotype. Our study provides additional perspectives for interpreting UCYN-A intraspecific diversity and underscores the need for high-resolution datasets when deciphering spatiotemporal ecologies within UCYN-A.
Collapse
Affiliation(s)
- Brent M. Robicheau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Integrated Microbiome Resource, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Fletcher-Hoppe C, Yeh YC, Raut Y, Weissman JL, Fuhrman JA. Symbiotic UCYN-A strains co-occurred with El Niño, relaxed upwelling, and varied eukaryotes over 10 years off Southern California. ISME COMMUNICATIONS 2023; 3:63. [PMID: 37355737 PMCID: PMC10290647 DOI: 10.1038/s43705-023-00268-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Biological nitrogen fixation, the conversion of N2 gas into a bioavailable form, is vital to sustaining marine primary production. Studies have shifted beyond traditionally studied tropical diazotrophs. Candidatus Atelocyanobacterium thalassa (or UCYN-A) has emerged as a focal point due to its streamlined metabolism, intimate partnership with a haptophyte host, and broad distribution. Here, we explore the environmental parameters that govern UCYN-A's presence at the San Pedro Ocean Time-series (SPOT), its host specificity, and statistically significant interactions with non-host eukaryotes from 2008-2018. 16S and 18S rRNA gene sequences were amplified by "universal primers" from monthly samples and resolved into Amplicon Sequence Variants, allowing us to observe multiple UCYN-A symbioses. UCYN-A1 relative abundances increased following the 2015-2016 El Niño event. This "open ocean ecotype" was present when coastal upwelling declined, and Ekman transport brought tropical waters into the region. Network analyses reveal all strains of UCYN-A co-occur with dinoflagellates including Lepidodinium, a potential predator, and parasitic Syndiniales. UCYN-A2 appeared to pair with multiple hosts and was not tightly coupled to its predominant host, while UCYN-A1 maintained a strong host-symbiont relationship. These biological relationships are particularly important to study in the context of climate change, which will alter UCYN-A distribution at regional and global scales.
Collapse
Affiliation(s)
- Colette Fletcher-Hoppe
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California (USC), Los Angeles, CA, USA
| | - Yi-Chun Yeh
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California (USC), Los Angeles, CA, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford University, Stanford, CA, USA
| | - Yubin Raut
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California (USC), Los Angeles, CA, USA
| | - J L Weissman
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California (USC), Los Angeles, CA, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Jed A Fuhrman
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California (USC), Los Angeles, CA, USA.
| |
Collapse
|
17
|
Yan ZG, Zhu XM, Zhang SW, Jiang H, Wang SP, Wei C, Wang J, Shao Y, Liu C, Wang H. Environmental DNA sequencing reveals the regional difference in diversity and community assembly mechanisms of eukaryotic plankton in coastal waters. Front Microbiol 2023; 14:1132925. [PMID: 36846757 PMCID: PMC9956185 DOI: 10.3389/fmicb.2023.1132925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
The diversity and community assembly mechanisms of eukaryotic plankton in coastal waters is so far not clear. In this study, we selected the coastal waters of Guangdong-Hong Kong-Macao Greater Bay Area, which is a highly developed region in China, as the research area. By use of high-throughput sequencing technologies, the diversity and community assembly mechanisms of eukaryotic marine plankton were studied in which a total of 7,295 OTUs were obtained, and 2,307 species were annotated by doing environmental DNA survey of 17 sites consist of surface and bottom layer. Ultimately, the analysis reveals that the species abundance of bottom layer is, by and large, higher than that in the surface layer. In the bottom, Arthropoda is the first largest group, accounting for more than 20% while Arthropoda and Bacillariophyta are dominant groups in surface waters accounting for more than 40%. It is significant of the variance in alpha-diversity between sampling sites, and the difference of alpha-diversity between bottom sites is greater than that of surface sites. The result suggests that the environmental factors that have significant influence on alpha-diversity are total alkalinity and offshore distance for surface sites, and water depth and turbidity for bottom sites. Likewise, the plankton communities obey the typical distance-decay pattern. Analysis about community assembly mechanisms reveals that, overall, dispersal limitation is the major pattern of community formation, which accounts for more than 83% of the community formation processes, suggesting that stochastic processes are the crucial assembly mechanism of the eukaryotic plankton community in the study area.
Collapse
Affiliation(s)
- Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,*Correspondence: Zhen-Guang Yan, ✉
| | - Xue-Ming Zhu
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shou-Wen Zhang
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hua Jiang
- Marine Climate Prediction and Assessment Center, National Marine Environmental Forecasting Center, Beijing, China
| | - Shu-Ping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yun Shao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hui Wang
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,Marine Climate Prediction and Assessment Center, National Marine Environmental Forecasting Center, Beijing, China
| |
Collapse
|
18
|
Doane MP, Ostrowski M, Brown M, Bramucci A, Bodrossy L, van de Kamp J, Bissett A, Steinberg P, Doblin MA, Seymour J. Defining marine bacterioplankton community assembly rules by contrasting the importance of environmental determinants and biotic interactions. Environ Microbiol 2023. [PMID: 36700447 DOI: 10.1111/1462-2920.16341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Bacterioplankton communities govern marine productivity and biogeochemical cycling, yet drivers of bacterioplankton assembly remain unclear. Here, we contrast the relative contribution of deterministic processes (environmental factors and biotic interactions) in driving temporal dynamics of bacterioplankton diversity at three different oceanographic time series locations, spanning 15° of latitude, which are each characterized by different environmental conditions and varying degrees of seasonality. Monthly surface samples (5.5 years) were analysed using 16S rRNA amplicon sequencing. The high- and mid-latitude sites of Maria Island and Port Hacking were characterized by high and intermediate levels of environmental heterogeneity, respectively, with both alpha diversity (72%; 24% of total variation) and beta diversity (32%; 30%) patterns within bacterioplankton assemblages explained by day length, ammonium, and mixed layer depth. In contrast, North Stradbroke Island, a sub-tropical location where environmental conditions are less variable, interspecific interactions were of increased importance in structuring bacterioplankton diversity (alpha: 33%; beta: 26%) with environment only contributing 11% and 13% to predicting diversity, respectively. Our results demonstrate that bacterioplankton diversity is the result of both deterministic environmental and biotic processes and that the importance of these different deterministic processes varies, potential in response to environmental heterogeneity.
Collapse
Affiliation(s)
- Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Martin Ostrowski
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Mark Brown
- School of Environmental and Life Sciences, University of Newcastle Australia, Callaghan, New South Wales, Australia
| | - Anna Bramucci
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | | | | | | | - Peter Steinberg
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia.,Centre for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - Martina A Doblin
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Justin Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
19
|
Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure. Nat Commun 2022; 13:7905. [PMID: 36550140 PMCID: PMC9780322 DOI: 10.1038/s41467-022-35551-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Free-living and particle-associated marine prokaryotes have physiological, genomic, and phylogenetic differences, yet factors influencing their temporal dynamics remain poorly constrained. In this study, we quantify the entire microbial community composition monthly over several years, including viruses, prokaryotes, phytoplankton, and total protists, from the San-Pedro Ocean Time-series using ribosomal RNA sequencing and viral metagenomics. Canonical analyses show that in addition to physicochemical factors, the double-stranded DNA viral community is the strongest factor predicting free-living prokaryotes, explaining 28% of variability, whereas the phytoplankton (via chloroplast 16S rRNA) community is strongest with particle-associated prokaryotes, explaining 31% of variability. Unexpectedly, protist community explains little variability. Our findings suggest that biotic interactions are significant determinants of the temporal dynamics of prokaryotes, and the relative importance of specific interactions varies depending on lifestyles. Also, warming influenced the prokaryotic community, which largely remained oligotrophic summer-like throughout 2014-15, with cyanobacterial populations shifting from cold-water ecotypes to warm-water ecotypes.
Collapse
|
20
|
Patin NV, Goodwin KD. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes. mSystems 2022; 7:e0059522. [PMID: 36448813 PMCID: PMC9765425 DOI: 10.1128/msystems.00595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Long-read sequencing offers the potential to improve metagenome assemblies and provide more robust assessments of microbial community composition and function than short-read sequencing. We applied Pacific Biosciences (PacBio) CCS (circular consensus sequencing) HiFi shotgun sequencing to 14 marine water column samples and compared the results with those for short-read metagenomes from the corresponding environmental DNA samples. We found that long-read metagenomes varied widely in quality and biological information. The community compositions of the corresponding long- and short-read metagenomes were frequently dissimilar, suggesting higher stochasticity and/or bias associated with PacBio sequencing. Long reads provided few improvements to the assembly qualities, gene annotations, and prokaryotic metagenome-assembled genome (MAG) binning results. However, only long reads produced high-quality eukaryotic MAGs and contigs containing complete zooplankton marker gene sequences. These results suggest that high-quality long-read metagenomes can improve marine community composition analyses and provide important insight into eukaryotic phyto- and zooplankton genetics, but the benefits may be outweighed by the inconsistent data quality. IMPORTANCE Ocean microbes provide critical ecosystem services, but most remain uncultivated. Their communities can be studied through shotgun metagenomic sequencing and bioinformatic analyses, including binning draft microbial genomes. However, most sequencing to date has been done using short-read technology, which rarely yields genome sequences of key microbes like SAR11. Long-read sequencing can improve metagenome assemblies but is hampered by technological shortcomings and high costs. In this study, we compared long- and short-read sequencing of marine metagenomes. We found a wide range of long-read metagenome qualities and minimal improvements to microbiome analyses. However, long reads generated draft genomes of eukaryotic algal species and provided full-length marker gene sequences of zooplankton species, including krill and copepods. These results suggest that long-read sequencing can provide greater genetic insight into the wide diversity of eukaryotic phyto- and zooplankton that interact as part of and with the marine microbiome.
Collapse
Affiliation(s)
- N. V. Patin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - K. D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
21
|
Ollison GA, Hu SK, Hopper JV, Stewart BP, Smith J, Beatty JL, Rink LK, Caron DA. Daily dynamics of contrasting spring algal blooms in Santa Monica Bay (central Southern California Bight). Environ Microbiol 2022; 24:6033-6051. [PMID: 35880671 PMCID: PMC10087728 DOI: 10.1111/1462-2920.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/12/2023]
Abstract
Protistan algae (phytoplankton) dominate coastal upwelling ecosystems where they form massive blooms that support the world's most important fisheries and constitute an important sink for atmospheric CO2 . Bloom initiation is well understood, but the biotic and abiotic forces that shape short-term dynamics in community composition are still poorly characterized. Here, high-frequency (daily) changes in relative abundance dynamics of the metabolically active protistan community were followed via expressed 18S V4 rRNA genes (RNA) throughout two algal blooms during the spring of 2018 and 2019 in Santa Monica Bay (central Southern California Bight). A diatom bloom formed after wind-driven, nutrient upwelling events in both years, but different taxa dominated each year. Whereas diatoms bloomed following elevated nutrients and declined after depletion each year, a massive dinoflagellate bloom manifested under relatively low inorganic nitrogen conditions following diatom bloom senescence in 2019 but not 2018. Network analysis revealed associations between diatoms and cercozoan putative parasitic taxa and syndinean parasites during 2019 that may have influenced the demise of the diatoms, and the transition to a dinoflagellate-dominated bloom.
Collapse
Affiliation(s)
- Gerid A Ollison
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Sarah K Hu
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, Massachusetts, USA
| | - Julie V Hopper
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Brittany P Stewart
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Jennifer L Beatty
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Laura K Rink
- Heal the Bay Aquarium, Santa Monica, California, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Bolaños LM, Tait K, Somerfield PJ, Parsons RJ, Giovannoni SJ, Smyth T, Temperton B. Influence of short and long term processes on SAR11 communities in open ocean and coastal systems. ISME COMMUNICATIONS 2022; 2:116. [PMID: 37938786 PMCID: PMC9723719 DOI: 10.1038/s43705-022-00198-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 07/18/2023]
Abstract
SAR11 bacteria dominate the surface ocean and are major players in converting fixed carbon back to atmospheric carbon dioxide. The SAR11 clade is comprised of niche-specialized ecotypes that display distinctive spatiotemporal transitions. We analyzed SAR11 ecotype seasonality in two long-term 16S rRNA amplicon time series representing different North Atlantic regimes: the Sargasso Sea (subtropical ocean-gyre; BATS) and the temperate coastal Western English Channel (WEC). Using phylogenetically resolved amplicon sequence variants (ASVs), we evaluated seasonal environmental constraints on SAR11 ecotype periodicity. Despite large differences in temperature and nutrient availability between the two sites, at both SAR11 succession was defined by summer and winter clusters of ASVs. The summer cluster was dominated by ecotype Ia.3 in both sites. Winter clusters were dominated by ecotypes Ib and IIa.A at BATS and Ia.1 and IIa.B at WEC. A 2-year weekly analysis within the WEC time series showed that the response of SAR11 communities to short-term environmental fluctuations was variable. In 2016, community shifts were abrupt and synchronized to environmental shifts. However, in 2015, changes were gradual and decoupled from environmental fluctuations, likely due to increased mixing from strong winds. We demonstrate that interannual weather variability disturb the pace of SAR11 seasonal progression.
Collapse
Affiliation(s)
- Luis M Bolaños
- School of Biosciences, University of Exeter, Exeter, UK.
| | - Karen Tait
- Plymouth Marine Laboratory, Plymouth, UK
| | | | | | | | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
23
|
Pujari L, Kan J, Xin Y, Zhang G, Noman MA, Nilajkar S, Sun J. Deciphering the diversity and distribution of chromophytic phytoplankton in the Bohai Sea and the Yellow Sea via RuBisCO genes (rbcL). MARINE POLLUTION BULLETIN 2022; 184:114193. [PMID: 36209535 DOI: 10.1016/j.marpolbul.2022.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Present study investigated composition and distribution of chromophytic phytoplankton in the Bohai Sea (BS) and the Yellow Sea (YS) by using rbcL genes. Bacillariophyceae, Haptophyceae and Pelagophyceae were the most abundant phytoplankton groups. Distinct phytoplankton communities were observed in the BS and the YS: offshore stations were dominated by bloom forming genera Thalassiosira and Skeletonema, while brown tide-forming species including Chrysochromulina spp. and Aureococcus anophagefferens were commonly found in the nearshore areas. Redundancy analysis showed that phosphate, temperature and silicic acid play key roles in structuring chromophytic phytoplankton, such as phytoplankton at nearshore stations were affected by nutrient runoff from adjacent rivers (Yellow River). Anthropogenic activities in the Bohai Sea and seasonal circulation of ocean currents may also contribute to shaping chromophytic phytoplankton communities. This study provides data support and foundational observations of chromophytic phytoplankton in the BS and the YS, and their responses to environmental gradients and human activities.
Collapse
Affiliation(s)
- Laxman Pujari
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Business Development Group, National Institute of Oceanography, Goa, India; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, USA
| | - Yehong Xin
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Md Abu Noman
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Sujata Nilajkar
- Biological Oceanography Division, National Institute of Oceanography, Goa, India
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
| |
Collapse
|
24
|
Trade-offs of lipid remodeling in a marine predator-prey interaction in response to phosphorus limitation. Proc Natl Acad Sci U S A 2022; 119:e2203057119. [PMID: 36037375 PMCID: PMC9457565 DOI: 10.1073/pnas.2203057119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial growth is often limited by key nutrients like phosphorus (P) across the global ocean. A major response to P limitation is the replacement of membrane phospholipids with non-P lipids to reduce their cellular P quota. However, the biological “costs” of lipid remodeling are largely unknown. Here, we uncover a predator–prey interaction trade-off whereby a lipid-remodeled bacterial prey cell becomes more susceptible to digestion by a protozoan predator facilitating its rapid growth. Thus, we highlight a complex interplay between adaptation to the abiotic environment and consequences for biotic interactions (grazing), which may have important implications for the stability and structuring of microbial communities and the performance of the marine food web. Phosphorus (P) is a key nutrient limiting bacterial growth and primary production in the oceans. Unsurprisingly, marine microbes have evolved sophisticated strategies to adapt to P limitation, one of which involves the remodeling of membrane lipids by replacing phospholipids with non-P-containing surrogate lipids. This strategy is adopted by both cosmopolitan marine phytoplankton and heterotrophic bacteria and serves to reduce the cellular P quota. However, little, if anything, is known of the biological consequences of lipid remodeling. Here, using the marine bacterium Phaeobacter sp. MED193 and the ciliate Uronema marinum as a model, we sought to assess the effect of remodeling on bacteria–protist interactions. We discovered an important trade-off between either escape from ingestion or resistance to digestion. Thus, Phaeobacter grown under P-replete conditions was readily ingested by Uronema, but not easily digested, supporting only limited predator growth. In contrast, following membrane lipid remodeling in response to P depletion, Phaeobacter was less likely to be captured by Uronema, thanks to the reduced expression of mannosylated glycoconjugates. However, once ingested, membrane-remodeled cells were unable to prevent phagosome acidification, became more susceptible to digestion, and, as such, allowed rapid growth of the ciliate predator. This trade-off between adapting to a P-limited environment and susceptibility to protist grazing suggests the more efficient removal of low-P prey that potentially has important implications for the functioning of the marine microbial food web in terms of trophic energy transfer and nutrient export efficiency.
Collapse
|
25
|
Li Y, Khan FH, Wu J, Zhang Y, Jiang Y, Chen X, Yao Y, Pan Y, Han X. Drivers of Spatiotemporal Eukaryote Plankton Distribution in a Trans-Basin Water Transfer Canal in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.899993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Planktonic eukaryotes are important components of aquatic ecosystems, and analyses of the whole eukaryotic planktonic community composition and function have far-reaching significance for water resource management. We aimed to understand the spatiotemporal variation and drivers of eukaryotic plankton distribution in the Middle Route Project of the South-to-North Water Diversion in Henan Province, China. Specifically, we examined planktonic assemblages and water quality at five stations along the canal and another one located before the dam in March, June, September, and December 2019. High-throughput sequencing revealed that the eukaryotic plankton community was primarily composed of 53 phyla, 200 genera, and 277 species, with Cryptophyta, Ciliophora, and norank_k_Cryptophyta being the dominant phyla. Redundancy analysis of the eukaryotic community and environmental factors showed that five vital factors affecting eukaryotic plankton distribution were oxidation-reduction potential, nitrate nitrogen, pH, total phosphorus, and water flow velocity. Furthermore, the geographical distribution of eukaryotic communities was consistent with the distance decay model. Importantly, environmental selection dominantly shaped the geographical distribution of the eukaryotic community. In summary, our study elucidates the ecological response of planktonic eukaryotes by identifying the diversity and ecological distribution of planktonic eukaryotes in trans-basin diversion channels.
Collapse
|
26
|
Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME COMMUNICATIONS 2022; 2:36. [PMID: 37938286 PMCID: PMC9723720 DOI: 10.1038/s43705-022-00121-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/18/2023]
Abstract
Community dynamics are central in microbial ecology, yet we lack studies comparing diversity patterns among marine protists and prokaryotes over depth and multiple years. Here, we characterized microbes at the San-Pedro Ocean Time series (2005-2018), using SSU rRNA gene sequencing from two size fractions (0.2-1 and 1-80 μm), with a universal primer set that amplifies from both prokaryotes and eukaryotes, allowing direct comparisons of diversity patterns in a single set of analyses. The 16S + 18S rRNA gene composition in the small size fraction was mostly prokaryotic (>92%) as expected, but the large size fraction unexpectedly contained 46-93% prokaryotic 16S rRNA genes. Prokaryotes and protists showed opposite vertical diversity patterns; prokaryotic diversity peaked at mid-depth, protistan diversity at the surface. Temporal beta-diversity patterns indicated prokaryote communities were much more stable than protists. Although the prokaryotic communities changed monthly, the average community stayed remarkably steady over 14 years, showing high resilience. Additionally, particle-associated prokaryotes were more diverse than smaller free-living ones, especially at deeper depths, contributed unexpectedly by abundant and diverse SAR11 clade II. Eukaryotic diversity was strongly correlated with the diversity of particle-associated prokaryotes but not free-living ones, reflecting that physical associations result in the strongest interactions, including symbioses, parasitism, and decomposer relationships.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA.
| |
Collapse
|
27
|
Pierella Karlusich JJ, Pelletier E, Zinger L, Lombard F, Zingone A, Colin S, Gasol JM, Dorrell RG, Henry N, Scalco E, Acinas SG, Wincker P, de Vargas C, Bowler C. A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol Ecol Resour 2022; 23:16-40. [PMID: 35108459 PMCID: PMC10078663 DOI: 10.1111/1755-0998.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR-amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR-free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size-fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular-based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular-based evaluations of entire phytoplankton communities.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Eric Pelletier
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Fabien Lombard
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Universités, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), 06230, Villefranche-sur-Mer, France.,Institut Universitaire de France (IUF), Paris, France
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Sébastien Colin
- European Molecular Biology Laboratory, Heidelberg, Germany.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France
| | - Nicolas Henry
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Patrick Wincker
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Colomban de Vargas
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| |
Collapse
|
28
|
Chen S, Tao J, Chen Y, Wang W, Fan L, Zhang C. Interactions Between Marine Group II Archaea and Phytoplankton Revealed by Population Correlations in the Northern Coast of South China Sea. Front Microbiol 2022; 12:785532. [PMID: 35145493 PMCID: PMC8821943 DOI: 10.3389/fmicb.2021.785532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Marine Group II (MGII) archaea (Poseidoniales) are the most abundant surface marine planktonic archaea and are widely distributed in both coastal and pelagic waters. The factors affecting their distribution and activity are poorly understood. MGII archaea have the metabolic potential to utilize algae-derived organic matter and are frequently observed in high abundance during or following phytoplankton blooms, suggesting that they are key players of the marine food web. In this study, we studied interactions between MGII archaea and the diverse taxa of phytoplankton in the northern coast of South China Sea. Non-metric multidimensional scaling and cluster analyses demonstrated distinct MGII community patterns in the Pearl River plume (PRP) and the open regions of the northern South China Sea (ONSCS), with MGIIb dominating the former and MGIIa and MGIIb showing remarkable variations in the latter for the same sampling season. Nevertheless, positive correlations (Pearson correlation: R > 0.8 and P < 0.01) in absolute abundances of ribosomal RNA (rRNA)-derived complementary DNA and rRNA genes from network analyses were found between MGII archaea and phytoplankton (cyanobacteria, haptophytes, and stramenopiles in both PRP and ONSCS) among different particle size fractions, indicating their intrinsic relationships under changing environmental conditions. The results of this study may shed light on the multiple interactions between co-existing species in the micro-niches of different oceanic regions.
Collapse
Affiliation(s)
- Songze Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jianchang Tao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yufei Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
29
|
Deng Y, Vallet M, Pohnert G. Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:239-260. [PMID: 34437810 DOI: 10.1146/annurev-marine-042021-012353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The annual patterns of plankton succession in the ocean determine ecological and biogeochemical cycles. The temporally fluctuating interplay between photosynthetic eukaryotes and the associated microbiota balances the composition of aquatic planktonic ecosystems. In addition to nutrients and abiotic factors, chemical signaling determines the outcome of interactions between phytoplankton and their associated microbiomes. Chemical mediators control essential processes, such as the development of key morphological, physiological, behavioral, and life-history traits during algal growth. These molecules thus impact species succession and community composition across time and space in processes that are highlighted in this review. We focus on spatial, seasonal, and physiological dynamics that occur during the early association of algae with bacteria, the exponential growth of a bloom, and its decline and recycling. We also discuss how patterns from field data and global surveys might be linked to the actions of metabolic markers in natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Marine Vallet
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
30
|
Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. THE ISME JOURNAL 2022; 16:178-189. [PMID: 34285363 PMCID: PMC8692485 DOI: 10.1038/s41396-021-01053-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulating their seasonal abundance patterns. We further explored how conserved the niche is at higher taxonomic levels. The community presented recurrent patterns of seasonality for 297 out of 6825 amplicon sequence variants (ASVs), which constituted almost half of the total relative abundance (47%). For certain genera, niche similarity decreased as nucleotide divergence in the 16S rRNA gene increased, a pattern compatible with the selection of similar taxa through environmental filtering. Additionally, we observed evidence of seasonal differentiation within various genera as seen by the distinct seasonal patterns of closely related taxa. At broader taxonomic levels, coherent seasonal trends did not exist at the class level, while the order and family ranks depended on the patterns that existed at the genus level. This study identifies the coexistence of closely related taxa for some bacterial groups and seasonal differentiation for others in a coastal marine environment subjected to a strong seasonality.
Collapse
Affiliation(s)
- Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ramiro Logares
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Center for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Fuengirola, Málaga, Spain.
| |
Collapse
|
31
|
Li F, Leu A, Poff K, Carlson LT, Ingalls AE, DeLong EF. Planktonic Archaeal Ether Lipid Origins in Surface Waters of the North Pacific Subtropical Gyre. Front Microbiol 2021; 12:610675. [PMID: 34589060 PMCID: PMC8473941 DOI: 10.3389/fmicb.2021.610675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Thaumarchaeota and Thermoplasmatota are the most abundant planktonic archaea in the sea. Thaumarchaeota contain tetraether lipids as their major membrane lipids, but the lipid composition of uncultured planktonic Thermoplasmatota representatives remains unknown. To address this knowledge gap, we quantified archaeal cells and ether lipids in open ocean depth profiles (0–200 m) of the North Pacific Subtropical Gyre. Planktonic archaeal community structure and ether lipid composition in the water column partitioned into two separate clusters: one above the deep chlorophyll maximum, the other within and below it. In surface waters, Thermoplasmatota densities ranged from 2.11 × 106 to 6.02 × 106 cells/L, while Thaumarchaeota were undetectable. As previously reported for Thaumarchaeota, potential homologs of archaeal tetraether ring synthases were present in planktonic Thermoplasmatota metagenomes. Despite the absence of Thaumarchaeota in surface waters, measurable amounts of intact polar ether lipids were found there. Based on cell abundance estimates, these surface water archaeal ether lipids contributed only 1.21 × 10–9 ng lipid/Thermoplasmatota cell, about three orders of magnitude less than that reported for Thaumarchaeota cells. While these data indicate that even if some tetraether and diether lipids may be derived from Thermoplasmatota, they would only comprise a small fraction of Thermoplasmatota total biomass. Therefore, while both MGI Thaumarchaeota and MGII/III Thermoplasmatota are potential biological sources of archaeal GDGTs, the Thaumarchaeota appear to be the major contributors of archaeal tetraether lipids in planktonic marine habitats. These results extend and confirm previous reports of planktonic archaeal lipid sources, and further emphasize the need for Thermoplasmatota cultivation, to better characterize the membrane lipid constituents of marine planktonic Thermoplasmatota, and more precisely define the sources and patterns of archaeal tetraether lipid distributions in marine plankton.
Collapse
Affiliation(s)
- Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Andy Leu
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Kirsten Poff
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Laura T Carlson
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
32
|
Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, Ardyna M, Zayed AA, Junger PC, Galand PE, Lovejoy C, Murray AE, Sarmento H, Acinas SG, Babin M, Iudicone D, Jaillon O, Karsenti E, Wincker P, Karp-Boss L, Sullivan MB, Bowler C, de Vargas C, Eveillard D. Environmental vulnerability of the global ocean epipelagic plankton community interactome. SCIENCE ADVANCES 2021; 7:eabg1921. [PMID: 34452910 PMCID: PMC8397264 DOI: 10.1126/sciadv.abg1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.
Collapse
Affiliation(s)
- Samuel Chaffron
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Erwan Delage
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Marko Budinich
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Vintache
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Charlotte Nef
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Ardyna
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Pedro C Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Pierre E Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500 Paris, France
| | - Connie Lovejoy
- Département de biologie, Faculté des sciences et Institut de biologie intégrative et des systèmes (IBIS) 1030, ave de la Médecine, Université Laval, Québec, QC, Canada
| | - Alison E Murray
- Division of Earth and Ecosystem Science, Desert Research Institute, Reno, NV 89512, USA
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona 08003, Spain
| | - Marcel Babin
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
- Takuvik International Research Laboratory, Université Laval and CNRS, Québec, QC, Canada
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Olivier Jaillon
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Eric Karsenti
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Eveillard
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
33
|
Wilson JM, Chamberlain EJ, Erazo N, Carter ML, Bowman JS. Recurrent microbial community types driven by nearshore and seasonal processes in coastal Southern California. Environ Microbiol 2021; 23:3225-3239. [PMID: 33928761 DOI: 10.1111/1462-2920.15548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
A multitude of concurrent biological and physical processes contribute to microbial community turnover, especially in highly dynamic coastal environments. Characterizing what factors contribute most to shifts in microbial community structure and the specific organisms that correlate with changes in the products of photosynthesis improves our understanding of nearshore microbial ecosystem functions. We conducted high frequency sampling in nearshore Southern California in order to capture sub-weekly microbial community dynamics. Microbial communities were characterized by flow cytometry and 16S rRNA gene sequencing, and placed in the context of physicochemical parameters. Within our time-series, season and nutrient availability corresponded to changes in dominant microbial community members. Concurrent aseasonal drivers with overlapping scales of variability were also apparent when we used network analysis to assess the microbial community as subsets of the whole. Our analyses revealed the microbial community as a mosaic, with overlapping groups of taxa that varied on different timescales and correlated with unique abiotic and biotic factors. Specifically, a subnetwork associated with chlorophyll a exhibited rapid turnover, indicating that ecologically important subsets of the microbial community can change on timescales different than and in response to factors other than those that govern turnover of most members of the assemblage.
Collapse
Affiliation(s)
- Jesse M Wilson
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Natalia Erazo
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Jeff S Bowman
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA.,Center for Microbiome Innovation, UCSD, La Jolla, CA, USA.,Center for Marine Biodiversity and Conservation, UCSD, La Jolla, CA, USA
| |
Collapse
|
34
|
Yeh YC, McNichol J, Needham DM, Fichot EB, Berdjeb L, Fuhrman JA. Comprehensive single-PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ Microbiol 2021; 23:3240-3250. [PMID: 33938123 DOI: 10.1111/1462-2920.15553] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023]
Abstract
Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach. Using these mocks, we show that universal primers (515Y/926R) outperformed eukaryote-specific V4 primers in observed versus expected abundance correlations (slope = 0.88 vs. 0.67-0.79), and mock community members with single mismatches to the primer were strongly underestimated (threefold to eightfold). Using field samples, both primers yielded similar 18S beta-diversity patterns (Mantel test, p < 0.001) but differences in relative proportions of many rarer taxa. To test for length biases, we mixed mock communities (16S + 18S) before PCR and found a twofold underestimation of 18S sequences due to sequencing bias. Correcting for the twofold underestimation, we estimate that, in Southern California field samples (1.2-80 μm), there were averages of 35% 18S, 28% chloroplast 16S, and 37% prokaryote 16S rRNA genes. These data demonstrate the potential for universal primers to generate comprehensive microbiome profiles.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089-0371, USA
| | - Jesse McNichol
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089-0371, USA
| | - David M Needham
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089-0371, USA
| | - Erin B Fichot
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089-0371, USA
| | - Lyria Berdjeb
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089-0371, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089-0371, USA
| |
Collapse
|
35
|
Lambert S, Lozano JC, Bouget FY, Galand PE. Seasonal marine microorganisms change neighbours under contrasting environmental conditions. Environ Microbiol 2021; 23:2592-2604. [PMID: 33760330 DOI: 10.1111/1462-2920.15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
Marine picoplankton contribute to global carbon sequestration and nutrient recycling. These processes are directly related to the composition of communities, which in turn depends on microbial interactions and environmental forcing. Under regular seasonal cycles, marine communities show strong predictable patterns of annual re-occurrences, but little is known about the effect of environmental perturbation on their organization. The aim of our study was to investigate the co-occurrence patterns of planktonic picoeukaryote, bacteria and archaea under contrasting environmental conditions. The study was designed to have high sampling frequency that could match both the biological rhythm of marine microbes and the short time scale of extreme weather events. Our results show that microbial networks changed from year to year depending on conditions. In addition, individual taxa became less interconnected and changed neighbours, which revealed an unfaithful relationship between marine microorganisms. This unexpected pattern suggests possible switches between organisms that have similar specific functions, or hints at the presence of organisms that share similar environmental niches without interacting. Despite the observed annual changes, the time series showed re-occurring communities that appear to recover from perturbations. Changing co-occurrence patterns between marine microorganisms may allow the long-term stability of ecosystems exposed to contrasting meteorological events.
Collapse
Affiliation(s)
- Stefan Lambert
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Jean-Claude Lozano
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
36
|
Wang S, Tang W, Delage E, Gifford S, Whitby H, González AG, Eveillard D, Planquette H, Cassar N. Investigating the microbial ecology of coastal hotspots of marine nitrogen fixation in the western North Atlantic. Sci Rep 2021; 11:5508. [PMID: 33750865 PMCID: PMC7943828 DOI: 10.1038/s41598-021-84969-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
Variation in the microbial cycling of nutrients and carbon in the ocean is an emergent property of complex planktonic communities. While recent findings have considerably expanded our understanding of the diversity and distribution of nitrogen (N2) fixing marine diazotrophs, knowledge gaps remain regarding ecological interactions between diazotrophs and other community members. Using quantitative 16S and 18S V4 rDNA amplicon sequencing, we surveyed eukaryotic and prokaryotic microbial communities from samples collected in August 2016 and 2017 across the Western North Atlantic. Leveraging and significantly expanding an earlier published 2015 molecular dataset, we examined microbial community structure and ecological co-occurrence relationships associated with intense hotspots of N2 fixation previously reported at sites off the Southern New England Shelf and Mid-Atlantic Bight. Overall, we observed a negative relationship between eukaryotic diversity and both N2 fixation and net community production (NCP). Maximum N2 fixation rates occurred at sites with high abundances of mixotrophic stramenopiles, notably Chrysophyceae. Network analysis revealed such stramenopiles to be keystone taxa alongside the haptophyte diazotroph host Braarudosphaera bigelowii and chlorophytes. Our findings highlight an intriguing relationship between marine stramenopiles and high N2 fixation coastal sites.
Collapse
Affiliation(s)
- Seaver Wang
- Division of Earth and Ocean Sciences, Duke University, Grainger Environment Hall, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Weiyi Tang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Erwan Delage
- LS2N, UMR 6004, CNRS, Université de Nantes, 44000, Nantes, France
| | - Scott Gifford
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah Whitby
- Department of Earth, Ocean, and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Aridane G González
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, ULPGC, Las Palmas, Spain.,Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, 13 Plouzané, 29280, Locmaria-Plouzané, France
| | - Damien Eveillard
- LS2N, UMR 6004, CNRS, Université de Nantes, 44000, Nantes, France
| | - Hélène Planquette
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, 13 Plouzané, 29280, Locmaria-Plouzané, France
| | - Nicolas Cassar
- Division of Earth and Ocean Sciences, Duke University, Grainger Environment Hall, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA. .,Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, 13 Plouzané, 29280, Locmaria-Plouzané, France.
| |
Collapse
|
37
|
Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME JOURNAL 2021; 15:2336-2350. [PMID: 33649555 PMCID: PMC8319329 DOI: 10.1038/s41396-021-00928-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/02/2023]
Abstract
Algal blooms produce large quantities of organic matter that is subsequently remineralised by bacterial heterotrophs. Polysaccharide is a primary component of algal biomass. It has been hypothesised that individual bacterial heterotrophic niches during algal blooms are in part determined by the available polysaccharide substrates present. Measurement of the expression of TonB-dependent transporters, often specific for polysaccharide uptake, might serve as a proxy for assessing bacterial polysaccharide consumption over time. To investigate this, we present here high-resolution metaproteomic and metagenomic datasets from bacterioplankton of the 2016 spring phytoplankton bloom at Helgoland island in the southern North Sea, and expression profiles of TonB-dependent transporters during the bloom, which demonstrate the importance of both the Gammaproteobacteria and the Bacteroidetes as degraders of algal polysaccharide. TonB-dependent transporters were the most highly expressed protein class, split approximately evenly between the Gammaproteobacteria and Bacteroidetes, and totalling on average 16.7% of all detected proteins during the bloom. About 93% of these were predicted to take up organic matter, and for about 12% of the TonB-dependent transporters, we predicted a specific target polysaccharide class. Most significantly, we observed a change in substrate specificities of the expressed transporters over time, which was not reflected in the corresponding metagenomic data. From this, we conclude that algal cell wall-related compounds containing fucose, mannose, and xylose were mostly utilised in later bloom stages, whereas glucose-based algal and bacterial storage molecules including laminarin, glycogen, and starch were used throughout. Quantification of transporters could therefore be key for understanding marine carbon cycling.
Collapse
|
38
|
Fukuba T, Fujii T. Lab-on-a-chip technology for in situ combined observations in oceanography. LAB ON A CHIP 2021; 21:55-74. [PMID: 33300537 DOI: 10.1039/d0lc00871k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The oceans sustain the global environment and diverse ecosystems through a variety of biogeochemical processes and their complex interactions. In order to understand the dynamism of the local or global marine environments, multimodal combined observations must be carried out in situ. On the other hand, instrumentation of in situ measurement techniques enabling biological and/or biochemical combined observations is challenging in aquatic environments, including the ocean, because biochemical flow analyses require a more complex configuration than physicochemical electrode sensors. Despite this technical hurdle, in situ analyzers have been developed to measure the concentrations of seawater contents such as nutrients, trace metals, and biological components. These technologies have been used for cutting-edge ocean observations to elucidate the biogeochemical properties of water mass with a high spatiotemporal resolution. In this context, the contribution of lab-on-a-chip (LoC) technology toward the miniaturization and functional integration of in situ analyzers has been gaining momentum. Due to their mountability, in situ LoC technologies provide ideal instrumentation for underwater analyzers, especially for miniaturized underwater observation platforms. Consequently, the appropriate combination of reliable LoC and underwater technologies is essential to realize practical in situ LoC analyzers suitable for underwater environments, including the deep sea. Moreover, the development of fundamental LoC technologies for underwater analyzers, which operate stably in extreme environments, should also contribute to in situ measurements for public or industrial purposes in harsh environments as well as the exploration of the extraterrestrial frontier.
Collapse
Affiliation(s)
- Tatsuhiro Fukuba
- Institute for Marine-Earth Exploration and Engineering, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho 2-15, Yokosuka, Kanagawa 237-0061, Japan.
| | | |
Collapse
|
39
|
Structural Characteristics and Driving Factors of the Planktonic Eukaryotic Community in the Danjiangkou Reservoir, China. WATER 2020. [DOI: 10.3390/w12123499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Planktonic eukaryotes are widespread in aquatic ecosystems, and the study of their community composition and driving factors is of great significance to protecting and maintaining the balance of these ecosystems. This study evaluates five typical ecological sites in the Danjiangkou Reservoir—the water source for the project. This was done to comprehensively understand the composition of Danjiangkou Reservoir planktonic eukaryotes, and ensure the ecological balance of the water source for the South-to-North Water Diversion Project. The diversity of the planktonic eukaryotes in surface water and the factors driving changes in their abundance are analyzed with an 18S ribosomal DNA sequencing approach. Monitoring shows that the Danjiangkou Reservoir has good water quality. The Danjiangkou Reservoir planktonic eukaryote community is mainly composed of 11 phyla, of which Cryptomonadales is dominant, accounting for an average percentage of 65.19% of the community (47.2–84.90%). LEFSe analysis shows significant differences among samples in the abundances of 13 phyla, 20 classes, 23 orders, 26 families, and 27 genera, and there are also significant differences in the diversity of planktonic eukaryotes at different temporal and spatial scales. Redundancy analysis (RDA) show that water temperature, DO, SD, TN, and Chla are significant factors that affect the composition of the planktonic eukaryote community. Spearman rank correlation analysis combined with taxonomic difference analysis shows that Kathablepharidae and Choanoflagellida are not sensitive to environmental or physicochemical factors and that the interannual variations in their abundance are not significant. Network analysis shows that Protalveolata, Basidiomycota, P1-31, Bicosoecida, and Ochrophyta represent important nodes in the single-factor network, while Chytridiomycota, P1-31, Cryptomycota, Ochrophyta, Ichthyosporea, Bicosoecida, Protalveolata, and physicochemical factors (ORP, TN, WT, DO, SD, NH3-N, and NO3-N) represent important nodes in the two-factor network.
Collapse
|
40
|
Cabello AM, Turk‐Kubo KA, Hayashi K, Jacobs L, Kudela RM, Zehr JP. Unexpected presence of the nitrogen-fixing symbiotic cyanobacterium UCYN-A in Monterey Bay, California. JOURNAL OF PHYCOLOGY 2020; 56:1521-1533. [PMID: 32609873 PMCID: PMC7754506 DOI: 10.1111/jpy.13045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
In the last decade, the known biogeography of nitrogen fixation in the ocean has been expanded to colder and nitrogen-rich coastal environments. The symbiotic nitrogen-fixing cyanobacteria group A (UCYN-A) has been revealed as one of the most abundant and widespread nitrogen-fixers, and includes several sublineages that live associated with genetically distinct but closely related prymnesiophyte hosts. The UCYN-A1 sublineage is associated with an open ocean picoplanktonic prymnesiophyte, whereas UCYN-A2 is associated with the coastal nanoplanktonic coccolithophore Braarudosphaera bigelowii, suggesting that different sublineages may be adapted to different environments. Here, we study the diversity of nifH genes present at the Santa Cruz Municipal Wharf in the Monterey Bay (MB), California, and report for the first time the presence of multiple UCYN-A sublineages, unexpectedly dominated by the UCYN-A2 sublineage. Sequence and quantitative PCR data over an 8-year time-series (2011-2018) showed a shift toward increasing UCYN-A2 abundances after 2013, and a marked seasonality for this sublineage which was present during summer-fall months, coinciding with the upwelling-relaxation period in the MB. Increased abundances corresponded to positive temperature anomalies in MB, and we discuss the possibility of a benthic life stage of the associated coccolithophore host to explain the seasonal pattern. The dominance of UCYN-A2 in coastal waters of the MB underscores the need to further explore the habitat preference of the different sublineages in order to provide additional support for the hypothesis that UCYN-A1 and UCYN-A2 sublineages are different ecotypes.
Collapse
Affiliation(s)
- Ana M. Cabello
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
- Centro Oceanográfico de MálagaInstituto Español de OceanografíaFuengirolaMálaga29001Spain
| | - Kendra A. Turk‐Kubo
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Kendra Hayashi
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Lucien Jacobs
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Raphael M. Kudela
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Jonathan P. Zehr
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| |
Collapse
|
41
|
Choi CJ, Jimenez V, Needham DM, Poirier C, Bachy C, Alexander H, Wilken S, Chavez FP, Sudek S, Giovannoni SJ, Worden AZ. Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans. Front Microbiol 2020; 11:542372. [PMID: 33101224 PMCID: PMC7554337 DOI: 10.3389/fmicb.2020.542372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Much is known about how broad eukaryotic phytoplankton groups vary according to nutrient availability in marine ecosystems. However, genus- and species-level dynamics are generally unknown, although important given that adaptation and acclimation processes differentiate at these levels. We examined phytoplankton communities across seasonal cycles in the North Atlantic (BATS) and under different trophic conditions in the eastern North Pacific (ENP), using phylogenetic classification of plastid-encoded 16S rRNA amplicon sequence variants (ASVs) and other methodologies, including flow cytometric cell sorting. Prasinophytes dominated eukaryotic phytoplankton amplicons during the nutrient-rich deep-mixing winter period at BATS. During stratification (‘summer’) uncultured dictyochophytes formed ∼35 ± 10% of all surface plastid amplicons and dominated those from stramenopile algae, whereas diatoms showed only minor, ephemeral contributions over the entire year. Uncultured dictyochophytes also comprised a major fraction of plastid amplicons in the oligotrophic ENP. Phylogenetic reconstructions of near-full length 16S rRNA sequences established 11 uncultured Dictyochophyte Environmental Clades (DEC). DEC-I and DEC-VI dominated surface dictyochophytes under stratification at BATS and in the ENP, and DEC-IV was also important in the latter. Additionally, although less common at BATS, Florenciella-related clades (FC) were prominent at depth in the ENP. In both ecosystems, pelagophytes contributed notably at depth, with PEC-VIII (Pelagophyte Environmental Clade) and (cultured) Pelagomonas calceolata being most important. Q-PCR confirmed the near absence of P. calceolata at the surface of the same oligotrophic sites where it reached ∼1,500 18S rRNA gene copies ml–1 at the DCM. To further characterize phytoplankton present in our samples, we performed staining and at-sea single-cell sorting experiments. Sequencing results from these indicated several uncultured dictyochophyte clades are comprised of predatory mixotrophs. From an evolutionary perspective, these cells showed both conserved and unique features in the chloroplast genome. In ENP metatranscriptomes we observed high expression of multiple chloroplast genes as well as expression of a selfish element (group II intron) in the psaA gene. Comparative analyses across the Pacific and Atlantic sites support the conclusion that predatory dictyochophytes thrive under low nutrient conditions. The observations that several uncultured dictyochophyte lineages are seemingly capable of photosynthesis and predation, raises questions about potential shifts in phytoplankton trophic roles associated with seasonality and long-term ocean change.
Collapse
Affiliation(s)
- Chang Jae Choi
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Valeria Jimenez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - David M Needham
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Harriet Alexander
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| |
Collapse
|
42
|
Benchmarking microbial growth rate predictions from metagenomes. ISME JOURNAL 2020; 15:183-195. [PMID: 32939027 PMCID: PMC7852909 DOI: 10.1038/s41396-020-00773-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/19/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022]
Abstract
Growth rates are central to understanding microbial interactions and community dynamics. Metagenomic growth estimators have been developed, specifically codon usage bias (CUB) for maximum growth rates and “peak-to-trough ratio” (PTR) for in situ rates. Both were originally tested with pure cultures, but natural populations are more heterogeneous, especially in individual cell histories pertinent to PTR. To test these methods, we compared predictors with observed growth rates of freshly collected marine prokaryotes in unamended seawater. We prefiltered and diluted samples to remove grazers and greatly reduce virus infection, so net growth approximated gross growth. We sampled over 44 h for abundances and metagenomes, generating 101 metagenome-assembled genomes (MAGs), including Actinobacteria, Verrucomicrobia, SAR406, MGII archaea, etc. We tracked each MAG population by cell-abundance-normalized read recruitment, finding growth rates of 0 to 5.99 per day, the first reported rates for several groups, and used these rates as benchmarks. PTR, calculated by three methods, rarely correlated to growth (r ~−0.26–0.08), except for rapidly growing γ-Proteobacteria (r ~0.63–0.92), while CUB correlated moderately well to observed maximum growth rates (r = 0.57). This suggests that current PTR approaches poorly predict actual growth of most marine bacterial populations, but maximum growth rates can be approximated from genomic characteristics.
Collapse
|
43
|
Liu Y, Lin Q, Feng J, Yang F, Du H, Hu Z, Wang H. Differences in metabolic potential between particle-associated and free-living bacteria along Pearl River Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138856. [PMID: 32570327 DOI: 10.1016/j.scitotenv.2020.138856] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Particulate organic matter (POM) in aquatic ecosystem is critical for biogeochemical cycling and host distinct communities of microbes, compared to its surrounding water. In this study, the structures and functional potentials of microbial communities associated with particles or free-living in water samples from the Pearl River Estuary were investigated using 16S rRNA gene sequencing and GeoChip 5.0 analysis. Significant differences in the community structure and genetic functional potentials between particle-associated bacteria and free-living bacteria were observed across all eight sampling sites. In particle-associated bacteria communities, Rhodobacteraceae and Flavobacteriaceae were more abundant, while SAR11 clade and SAR86 clade were the most abundant in free-living bacteria communities. The richness and abundance of functional genes involved in nutrient cycling and stress response, including carbon degradation, nitrogen fixation, DMSP degradation, and polyphosphate degradation, were much higher in particle-associated bacteria compared with free-living bacteria. Thus, the particle-associated bacteria seem to play a much more important role in the biogeochemical cycles than free-living bacteria. In conclusion, the results from this study highlight the central role played by particle-associated bacteria in structuring microbial assemblages, and their importance for mediating biogeochemical cycling in the estuarine ecosystem.
Collapse
Affiliation(s)
- Yanyang Liu
- Biology Department, College of Science, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Qun Lin
- Biology Department, College of Science, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jiarong Feng
- Biology Department, College of Science, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Fumin Yang
- Biology Department, College of Science, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hong Du
- Biology Department, College of Science, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
44
|
Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, Fernandez-Guerra A, Liebeke M, Schweder T, Polz MF, Hehemann JH. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol 2020; 5:1026-1039. [PMID: 32451471 DOI: 10.1038/s41564-020-0720-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.
Collapse
Affiliation(s)
- Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Antonio Fernandez-Guerra
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany.
| |
Collapse
|
45
|
Tang W, Cerdán-García E, Berthelot H, Polyviou D, Wang S, Baylay A, Whitby H, Planquette H, Mowlem M, Robidart J, Cassar N. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME JOURNAL 2020; 14:2514-2526. [PMID: 32581316 DOI: 10.1038/s41396-020-0703-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/26/2023]
Abstract
Nitrogen availability limits marine productivity across large ocean regions. Diazotrophs can supply new nitrogen to the marine environment via nitrogen (N2) fixation, relieving nitrogen limitation. The distributions of diazotrophs and N2 fixation have been hypothesized to be generally controlled by temperature, phosphorus, and iron availability in the global ocean. However, even in the North Atlantic where most research on diazotrophs and N2 fixation has taken place, environmental controls remain contentious. Here we measure diazotroph composition, abundance, and activity at high resolution using newly developed underway sampling and sensing techniques. We capture a diazotrophic community shift from Trichodesmium to UCYN-A between the oligotrophic, warm (25-29 °C) Sargasso Sea and relatively nutrient-enriched, cold (13-24 °C) subpolar and eastern American coastal waters. Meanwhile, N2 fixation rates measured in this study are among the highest ever recorded globally and show significant increase with phosphorus availability across the transition from the Gulf Stream into subpolar and coastal waters despite colder temperatures and higher nitrate concentrations. Transcriptional patterns in both Trichodesmium and UCYN-A indicate phosphorus stress in the subtropical gyre. Over this iron-replete transect spanning the western North Atlantic, our results suggest that temperature is the major factor controlling the diazotrophic community structure while phosphorous drives N2 fixation rates. Overall, the occurrence of record-high UCYN-A abundance and peak N2 fixation rates in the cold coastal region where nitrate concentrations are highest (~200 nM) challenges current paradigms on what drives the distribution of diazotrophs and N2 fixation.
Collapse
Affiliation(s)
- Weiyi Tang
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.,Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Elena Cerdán-García
- Department of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, SO14 3ZH, Southampton, UK
| | - Hugo Berthelot
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Despo Polyviou
- Department of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, SO14 3ZH, Southampton, UK
| | - Seaver Wang
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Alison Baylay
- Department of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, SO14 3ZH, Southampton, UK
| | - Hannah Whitby
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzané, France.,Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | | | - Matthew Mowlem
- Ocean Technology and Engineering Group, National Oceanography Centre, European Way, SO14 3ZH, Southampton, UK
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre, European Way, SO14 3ZH, Southampton, UK.
| | - Nicolas Cassar
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA. .,CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzané, France.
| |
Collapse
|
46
|
Anderson SR, Harvey EL. Temporal Variability and Ecological Interactions of Parasitic Marine Syndiniales in Coastal Protist Communities. mSphere 2020; 5:e00209-20. [PMID: 32461270 PMCID: PMC7253595 DOI: 10.1128/msphere.00209-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Syndiniales are a ubiquitous group of protist parasites that infect and kill a wide range of hosts, including harmful bloom-forming dinoflagellates. Despite the importance of parasitism as an agent of plankton mortality, parasite-host dynamics remain poorly understood, especially over time, hindering the inclusion of parasitism in food web and ecosystem models. For a full year in the Skidaway River Estuary (Georgia), we employed weekly 18S rRNA sampling and co-occurrence network analysis to characterize temporal parasite-host infection dynamics of Syndiniales. Over the year, Syndiniales exhibited strong temporal variability, with higher relative abundance from June to October (7 to 28%) than other months in the year (0.01% to 6%). Nonmetric dimensional scaling of Syndiniales composition revealed tight clustering in June to October that coincided with elevated temperatures (23 to 31°C), though in general, abiotic factors poorly explained composition (canonical correspondence analysis [CCA] and partial least-squares [PLS]) and were less important in the network than biotic relationships. Syndiniales amplicon sequence variants (ASVs) were well represented in the co-occurrence network (20% of edges) and had significant positive associations (Spearman r > 0.7), inferred to be putative parasite-host relationships, with known dinoflagellate hosts (e.g., Akashiwo and Gymnodinium) and other protist groups (e.g., ciliates, radiolarians, and diatoms). Positive associations rarely involved a single Syndiniales and dinoflagellate species, implying flexible parasite-host infection dynamics. These findings provide insight into the temporal dynamics of Syndiniales over a full year and reinforce the importance of single-celled parasites in driving plankton population dynamics. Further empirical work is needed to confirm network interactions and to incorporate parasitism within the context of ecosystem models.IMPORTANCE Protist parasites in the marine alveolate group, Syndiniales, have been observed within infected plankton host cells for decades, and recently, global-scale efforts (Tara Ocean exploration) have confirmed their importance within microbial communities. Yet, protist parasites remain enigmatic, particularly with respect to their temporal dynamics and parasite-host interactions. We employed weekly 18S amplicon surveys over a full year in a coastal estuary, revealing strong temporal shifts in Syndiniales parasites, with highest relative abundance during warmer summer to fall months. Though influenced by temperature, Syndiniales population dynamics were also driven by a high frequency of biological interactions with other protist groups, as determined through co-occurrence network analysis. Parasitic interactions implied by the network highlighted a range of confirmed (dinoflagellates) and putative (diatoms) interactions and suggests parasites may be less selective in their preferred hosts. Understanding parasite-host dynamics over space and time will improve our ability to include parasitism as a loss term in microbial food web models.
Collapse
Affiliation(s)
- Sean R Anderson
- Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia, USA
| | | |
Collapse
|
47
|
Scheifler M, Ruiz-Rodríguez M, Sanchez-Brosseau S, Magnanou E, Suzuki MT, West N, Duperron S, Desdevises Y. Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach. PLoS One 2019; 14:e0221475. [PMID: 31504055 PMCID: PMC6736230 DOI: 10.1371/journal.pone.0221475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/07/2019] [Indexed: 02/01/2023] Open
Abstract
Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales). These results highlighted that (1) the metabarcoding approach was able to uncover a large spectrum of symbiotic organisms associated to the fish species studied, (2) symbionts not yet identified in several teleost species were putatively present, (3) the parasitic diversity differed markedly across host species and (4) in most cases, the distribution of known parasitic genera within tissues is in accordance with the literature. The current work illustrates the large insights that can be gained by making maximum use of data from a metabarcoding approach.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Magdalena Ruiz-Rodríguez
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Marcelino T. Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM Observatoire Océanologique, Banyuls/Mer, France
| | - Nyree West
- Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls/Mer, France
| | - Sébastien Duperron
- CNRS, Muséum National d’Histoire Naturelle, Molécules de Communication et Adaptation des Micro-organismes, UMR7245 MCAM, Muséum National d’Histoire Naturelle, Paris, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| |
Collapse
|
48
|
Krüger K, Chafee M, Ben Francis T, Glavina Del Rio T, Becher D, Schweder T, Amann RI, Teeling H. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME JOURNAL 2019; 13:2800-2816. [PMID: 31316134 PMCID: PMC6794258 DOI: 10.1038/s41396-019-0476-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/09/2022]
Abstract
We investigated Bacteroidetes during spring algae blooms in the southern North Sea in 2010–2012 using a time series of 38 deeply sequenced metagenomes. Initial partitioning yielded 6455 bins, from which we extracted 3101 metagenome-assembled genomes (MAGs) including 1286 Bacteroidetes MAGs covering ~120 mostly uncultivated species. We identified 13 dominant, recurrent Bacteroidetes clades carrying a restricted set of conserved polysaccharide utilization loci (PULs) that likely mediate the bulk of bacteroidetal algal polysaccharide degradation. The majority of PULs were predicted to target the diatom storage polysaccharide laminarin, alpha-glucans, alpha-mannose-rich substrates, and sulfated xylans. Metaproteomics at 14 selected points in time revealed expression of SusC-like proteins from PULs targeting all of these substrates. Analyses of abundant key players and their PUL repertoires over time furthermore suggested that fewer and simpler polysaccharides dominated early bloom stages, and that more complex polysaccharides became available as blooms progressed.
Collapse
Affiliation(s)
- Karen Krüger
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Meghan Chafee
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - T Ben Francis
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | | | - Dörte Becher
- Institute for Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Felix-Hausdorff-Straße 3, 17487, Greifswald, Germany.,Institute of Marine Biotechnology, Walther-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
49
|
Pujari L, Wu C, Kan J, Li N, Wang X, Zhang G, Shang X, Wang M, Zhou C, Sun J. Diversity and Spatial Distribution of Chromophytic Phytoplankton in the Bay of Bengal Revealed by RuBisCO Genes ( rbcL). Front Microbiol 2019; 10:1501. [PMID: 31333613 PMCID: PMC6624743 DOI: 10.3389/fmicb.2019.01501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Phytoplankton are the basis of primary production and play important roles in regulating energy export in marine ecosystems. Compared to other regions, chromophytic phytoplankton are considerably understudied in the Bay of Bengal (BOB). Here, we investigated community structure and spatial distribution of chromophytic phytoplankton in the BOB by using RuBisCO genes (Form ID rbcL). High throughput sequencing of rbcL genes revealed that diatoms, cyanobacteria (Cyanophyceae), Pelagophyceae, Haptophyceae, Chrysophyceae, Eustigamatophyceae, Xanthophyceae, Cryptophyceae, Dictyochophyceae, and Pinguiophyceae were the most abundant groups recovered in the BOB. Abundances and distribution of diatoms and Pelagophyceae were further verified using quantitative PCR analyses which showed the dominance of these groups near the Equator region (p < 0.01) where upwelling was likely the source of nutrients. Further, redundancy analysis demonstrated that temperature was an important environmental driver in structuring distributions of Cyanophyceae and dominant chromophytic phytoplankton. Morphological identification and quantification confirmed the dominance of diatoms, and also detected other cyanobacteria and dinoflagellates that were missing in our molecular characterizations. Pearson’s correlations of these morphologically identified phytoplankton with environmental gradients also indicated that nutrients and temperature were key variables shaping community structure. Combination of molecular characterization and morphological identification provided a comprehensive overview of chromophytic phytoplankton. This is the first molecular study of chromophytic phytoplankton accomplished in the BOB, and our results highlight a combination of molecular analysis targeting rbcL genes and microscopic detection in examining phytoplankton composition and diversity.
Collapse
Affiliation(s)
- Laxman Pujari
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Chao Wu
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, United States
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Xingzhou Wang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaomei Shang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Chun Zhou
- Key Laboratory of Physical Oceanography/CIMST, Ocean University of China, Qingdao, China
| | - Jun Sun
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
50
|
Gómez-Consarnau L, Needham DM, Weber PK, Fuhrman JA, Mayali X. Influence of Light on Particulate Organic Matter Utilization by Attached and Free-Living Marine Bacteria. Front Microbiol 2019; 10:1204. [PMID: 31214143 PMCID: PMC6558058 DOI: 10.3389/fmicb.2019.01204] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Light plays a central role on primary productivity of aquatic systems. Yet, its potential impact on the degradation of photosynthetically produced biomass is not well understood. We investigated the patterns of light-induced particle breakdown and bacterial assimilation of detrital C and N using 13C and 15N labeled freeze-thawed diatom cells incubated in laboratory microcosms with a marine microbial community freshly collected from the Pacific Ocean. Particles incubated in the dark resulted in increased bacterial counts and dissolved organic carbon concentrations compared to those incubated in the light. Light also influenced the attached and free-living microbial community structure as detected by 16S rRNA gene amplicon sequencing. For example, Sphingobacteriia were enriched on dark-incubated particles and taxa from the family Flavobacteriaceae and the genus Pseudoalteromonas were numerically enriched on particles in the light. Isotope incorporation analysis by phylogenetic microarray and NanoSIMS (a method called Chip-SIP) identified free-living and attached microbial taxa able to incorporate N and C from the particles. Some taxa, including members of the Flavobacteriaceae and Cryomorphaceae, exhibited increased isotope incorporation in the light, suggesting the use of photoheterotrophic metabolisms. In contrast, some members of Oceanospirillales and Rhodospirillales showed decreased isotope incorporation in the light, suggesting that their heterotrophic metabolism, particularly when occurring on particles, might increase at night or may be inhibited by sunlight. These results show that light influences particle degradation and C and N incorporation by attached bacteria, suggesting that the transfer between particulate and free-living phases are likely affected by external factors that change with the light regime, such as time of day, water column depth and season.
Collapse
Affiliation(s)
- Laura Gómez-Consarnau
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|