1
|
Pincus K, Kearns PJ, Williams K, Woodhams DC. Nutrient enrichment alters the microbiome and increases chytrid load in the American bullfrog Lithobates catesbeianus. DISEASES OF AQUATIC ORGANISMS 2025; 162:27-34. [PMID: 40272000 DOI: 10.3354/dao03846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Agricultural practices have a profound impact on watershed dynamics, water quality, and the well-being of aquatic life. One major concern is agricultural pollution, particularly the excess of nutrients, which can elevate disease risks in various host-pathogen relationships. However, the exact mechanisms driving this effect remain uncertain. Elevated nutrient levels are believed to significantly influence populations of aquatic environmental bacteria, potentially reshaping the microbiomes of aquatic organisms and affecting their vulnerability to disease. Despite this, the impact of nutrient enrichment on host microbiomes as a link to diseases in aquatic organisms has been largely overlooked. In this study, we investigated the impact of nutrient enrichment on the skin-associated microbial communities of the American bullfrog Lithobates catesbeianus. We observed a significant shift in bacterial richness and community composition in nutrient-enriched ponds compared with reference ponds. Although the proportion of the community inhibitory towards Batrachochytrium dendrobatidis (Bd) did not change significantly, Bd loads were markedly higher in nutrient-enriched ponds. Nutrient enrichment significantly altered carbon utilization patterns as measured by Biolog EcoPlates, and antibiotic resistance was prevalent across all ponds and samples, with resistance to trimethoprim, sulfamethazine, and chloramphenicol significantly higher in nutrient-enriched ponds. Our findings indicate that nutrient enrichment affects the structure and function of skin-associated microbial communities in American bullfrogs, influencing both Bd load and antibiotic resistance.
Collapse
Affiliation(s)
- Katie Pincus
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA 02115, USA
| | - Patrick J Kearns
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kaitlyn Williams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
2
|
He H, Zhou ZY, Zhan D, Zhang Y, Xia WC, Fu B, Lan FJ, Tao XX, Huang ZX. Adsorption characteristics of sulfate reducing bacteria Clostridium sp. on lignite surface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11052-11062. [PMID: 40195223 DOI: 10.1007/s11356-025-36319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Biogenic coal bed methane has attracted great attention in recent years. During the process of biogas production, the interaction between microorganisms and coal is a crucial step. Sulfate-reducing bacteria (SRB) play an important role in biogas production. However, the interaction between SRB and coal has always remained an open problem. In the present work, the SRB strain Clostridium sp. and lignite were used to investigate the adsorption process with the extended DLVO (XDLVO) theory, calorimetry, and scanning electron microscopy (SEM). The results showed that the adsorption rate has a positive correlation with pH when it went from 3 to 8. XDLVO theoretical analysis was in good agreement with the adsorption experimental result. Acid-base potential energy is a more critical factor driving the adsorption comparing with electrostatic potential energy and Lifshitz-van Der Waals potential energy. The adsorption process of Clostridium sp. cells on lignite surface can be divided into three main stages: the direct adsorption, or reversible adsorption; desorption process; and irreversible adsorption. From the SEM results, the intercellular cohesion is also a very important adsorption form. The morphology and roughness of coal surface may also have a key effect on adsorption. Overall, our results provide some insights into the surface energy changes of Clostridium sp. adsorbed on coal and their interactions from the perspective of adsorption kinetics.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Zi Yang Zhou
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Di Zhan
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yong Zhang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Wen Cheng Xia
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiang Nan University, Wuxi, 214122, China
| | - Feng Juan Lan
- Key Laboratory of Coal Bed Methane Resource & Reserving Process of the Ministry of Education, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221008, China
| | - Xiu Xiang Tao
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zai Xing Huang
- Center for Biogenic Natural Gas Research, Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, 82071, USA
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
3
|
Amundson KK, Borton MA, Wilkins MJ. Anthropogenic impacts on the terrestrial subsurface biosphere. Nat Rev Microbiol 2025; 23:147-161. [PMID: 39406896 DOI: 10.1038/s41579-024-01110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
The terrestrial subsurface is estimated to be the largest reservoir of microbial life on Earth. However, the subsurface also harbours economic, industrial and environmental resources, on which humans heavily rely, including diverse energy sources and formations for the storage of industrial waste and carbon dioxide for climate change mitigation. As a result of this anthropogenic activity, the subsurface landscape is transformed, including the subsurface biosphere. Through the creation of new environments and the introduction of substrates that fuel microbial life, the structure and function of subsurface microbiomes shift markedly. These microbial changes often have unintended effects on overall ecosystem function and are frequently challenging to manage from the surface of the Earth. In this Review, we highlight emerging research that investigates the impacts of anthropogenic activity on the terrestrial subsurface biosphere. We explore how humans alter the constraints on microbial life in the subsurface through drilling, mining, contamination and resource extraction, along with the resulting impacts of microorganisms on resource recovery and subsurface infrastructure.
Collapse
Affiliation(s)
- Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Khan S, Deng Z, Wang B, Yu Z. Coal-straw co-digestion-induced biogenic methane production: perspectives on microbial communities and associated metabolic pathways. Sci Rep 2024; 14:26554. [PMID: 39489782 PMCID: PMC11532504 DOI: 10.1038/s41598-024-75655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
This study assessed the impacts of wheat straw as a cosubstrate on coal biocoverion into methane and the associated mechanism within methane metabolic pathways. Co-digestion of coal with varying wheat straw concentrations resulted in a remarkable (1246.05%) increase in methane yield compared to that of the control (CK). Moreover, microbial analysis revealed a uniform distribution of Methanosarcinaceae (51.14%) and Methanobacteriaceae (39.90%) in the co-digestion of coal and wheat straw (CWS1) at a ratio of 3:1 (w/w) compared to other treatments such as coal and wheat straw (CWS2) at a ratio of 3:0.5. In addition, Hungatieclostridiaceae and Rhodobacteriaceae were abundant in both co-digesters, whereas the bacterial communities in the CK group were significantly different and more abundant than those in the Peptostreptococcaceae and Enterobacteriaceae groups. The key enzymes related to methanogenic metabolic pathways, including EC: 1.2.99.5 and EC: 2.1.1.86 (facilitating the conversion of CO2 into methane), and EC:1.12.98.1 exhibited significant abundance within CWS1. Aromatic compounds such as 4-(2-chloroanilino)-4-oxobutanoic acid and phthalic acid were substantially more abundant in CWS1 and CWS2 than in CK, indicating the increased bioavailability of coal to microbial activities. This novel approach demonstrates that wheat straw co-digestion with coal during anaerobic digestion modulates microbial communities and their metabolic pathways to enhance methane production from complex substrates such as coal.
Collapse
Affiliation(s)
- Sohail Khan
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
- RCEES-IMCAS-UCAS Joint-Laboratory of Microbial Technology for Environmental Science, Beijing, 100085, P. R. China
| | - Ze Deng
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 100083, P. R. China.
| | - Bobo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China.
- RCEES-IMCAS-UCAS Joint-Laboratory of Microbial Technology for Environmental Science, Beijing, 100085, P. R. China.
- College of Resources and Environment, University of Chinese Academy of Science, 19 A Yuquan Road, Beijing, 100049, P. R. China.
| |
Collapse
|
5
|
Li Y, Yan X, Qin T, Gan Y, Li N, Zheng C. Applicability of blue algae as an activator for microbial enhanced coal bed methane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123063. [PMID: 39461147 DOI: 10.1016/j.jenvman.2024.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
The blue algae can be used as a nitrogen agent for promoting biological coalbed methane, but its applicability and microbial mechanism in different microbial enhanced coalbed methane technologies kept unknown. This study evaluated the methanogenic efficiency of blue algae addition with a mass ratio of 10% under fermentative degradation and microbial electrolytic cell technologies, and studied the changes of coal microstructure, surface functional groups, organic components and microbiome. The results showed that the algae addition affected the micro-concave-convex structure, non-uniform distribution of micro-particles and micro-cracks of coals, and finally increased the methanogenic rate by 1.74-2.66 times. The algae addition mainly affected the coal organic components including hydroxyl structure, hydrocarbon structure, aliphatic oxygen-containing functional groups and aromatic structure, as well increased the humus acids and microbial metabolites in fermentation broth; among them, the increased metabolites showed great differences between different technologies. The algae addition mainly increased the genera belonging to phylum Bacillota (such as Bacillus and Clostridium) and methanogens (Methanosarcina and Methanoculleus). These Bacillota groups could degrade organic matter into acetate and methanol via pathways of glycolysis and benzoate degradation, which provided substrates for such methanogens. This study strengthened the effectiveness of blue algae in enhancing technologies for biological coalbed methane.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xinyue Yan
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Tianqi Qin
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Ying Gan
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Na Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Chunshan Zheng
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
6
|
Li S, Deng Q, Xiang S, Zhang Z, Zhou Y. Study on the changes and transformation characteristics of intermediate liquid products in hydrogen sulfide production from lignite degraded by sulfate-reducing bacteria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:408. [PMID: 39215874 DOI: 10.1007/s10653-024-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The changes and transformation laws of intermediate liquid-phase products during the anaerobic degradation of lignite by sulfate-reducing bacteria in the formation of hydrogen sulfide play an important role in supplementing and improving the existing theories on the genesis of hydrogen sulfide gas in coal mines. In this paper, H2S gas and key intermediate liquid-phase products produced during the anaerobic degradation of lignite by sulfate-reducing bacteria were detected and analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the process of hydrogen sulfide production from lignite degradation by sulfate-reducing bacteria can be roughly divided into four stages: slow production phase, rapid growth phase, steady production phase, and slight decline phase. In this reaction system, the SO42- concentration showed a decreasing trend, the pH value showed an increasing trend, and the ORP value decreased and then slightly increased with time. Ten volatile component types were detected during the experiment: straight-chain alkanes, branched-chain alkanes, alcohols, aldehydes, ketones, olefins, amines, lipids, acids and phenols. The key components in the intermediate liquid phase products were straight chain alkanes, straight chain alkanes, acids, alcohols, phenols and amines. PAHs, alkanes, and phenols are closely related to H2S production, while amides stimulate nitrogen production. The process is divided into three stages: hydrolysis stage, H2S gas production stage, and decay stage. Liquid-phase intermediates play an important role in the formation process of coal mine BSR hydrogen sulfide and the mechanism of coal mine H2S genesis.
Collapse
Affiliation(s)
- Shuai Li
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Qigen Deng
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, 454003, China.
- Collaborative Innovation Center of Coal Safety Production of Henan Province, Jiaozuo, 454003, China.
| | - Sisi Xiang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Zhecheng Zhang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yinzi Zhou
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| |
Collapse
|
7
|
Niu Y, Wang Z, Xiong Y, Wang Y, Chai L, Guo C. Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development. Molecules 2024; 29:3494. [PMID: 39124898 PMCID: PMC11313768 DOI: 10.3390/molecules29153494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
By allowing coal to be converted by microorganisms into products like methane, hydrogen, methanol, ethanol, and other products, current coal deposits can be used effectively, cleanly, and sustainably. The intricacies of in situ microbial coal degradation must be understood in order to develop innovative energy production strategies and economically viable industrial microbial mining. This review covers various forms of conversion (such as the use of MECoM, which converts coal into hydrogen), stresses, and in situ use. There is ongoing discussion regarding the effectiveness of field-scale pilot testing when translated to commercial production. Assessing the applicability and long-term viability of MECoM technology will require addressing these knowledge gaps. Developing suitable nutrition plans and utilizing lab-generated data in the field are examples of this. Also, we recommend directions for future study to maximize methane production from coal. Microbial coal conversion technology needs to be successful in order to be resolved and to be a viable, sustainable energy source.
Collapse
Affiliation(s)
- Yu Niu
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Zhiqian Wang
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Yingying Xiong
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Yuqi Wang
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| | - Lin Chai
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
| | - Congxiu Guo
- School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, China; (Z.W.); (Y.X.); (Y.W.); (C.G.)
| |
Collapse
|
8
|
Ruan Z, Chen K, Cao W, Meng L, Yang B, Xu M, Xing Y, Li P, Freilich S, Chen C, Gao Y, Jiang J, Xu X. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 2024; 15:4694. [PMID: 38824157 PMCID: PMC11144243 DOI: 10.1038/s41467-024-49098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Weimiao Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Lei Meng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Chen Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
9
|
Mukherjee D, Selvi VA, Ganguly J, Masto RE. New insights into the coal-associated methane architect: the ancient archaebacteria. Arch Microbiol 2024; 206:234. [PMID: 38664262 DOI: 10.1007/s00203-024-03961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 05/20/2024]
Abstract
Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.
Collapse
Affiliation(s)
- Diptangshu Mukherjee
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India
| | - Vetrivel Angu Selvi
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India.
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, PO Botanical Garden, Howrah, West Bengal, 711103, India
| | - Reginald Ebhin Masto
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India
| |
Collapse
|
10
|
Basera P, Lavania M, Singh N, Lal B. Laboratory investigation and core flood demonstration of enhanced biogenic methane generation from lignite. Front Bioeng Biotechnol 2024; 12:1308308. [PMID: 38440326 PMCID: PMC10910356 DOI: 10.3389/fbioe.2024.1308308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Over the last several decades, coalbed methane (CBM) has emerged as an important energy source in developing nations like India as well as worldwide and is expected to play a significant role in the energy portfolio of the future. The current scenario of rapid exhaustion of fossil fuels is leading to the need to explore alternative and efficient fuel resources. The present study demonstrates enhanced methane production per gram of lignite (lowest-rank coal). Optimization of the bioconversion of lignite to methane revealed 55°C temperature and 1.5 g/L NaCl concentration as ambient conditions for the process. A scale-up study in the optimized condition showed 2,800 mM methane production per 25 g of lignite in anaerobic conditions. Further, Fourier transform Infrared (FTIR) and Gas Chromatography Mass Spectrometry (GCMS) analysis showed bioconversion of lignite into simpler intermediate substrates required for methane production. The results highlighted that the bacterial action first converts lignite into volatile fatty acids, which subsequently get converted into methane. Further, the exploration of indigenous microbial consortia in Tharad well (THAA) mainly comprises the order Methanosarcinales and Methanomicrobiales. The pathogenicity of the microbial consortium THAA was declared safe for use in mice via the oral route by The Energy and Resources Institute (TERI), India. The study demonstrated the development of indigenous consortia (TERI THAA), which can potentially enhance methane production from the lowest coal grade under extreme conditions in Indian coal beds.
Collapse
Affiliation(s)
| | - Meeta Lavania
- The Energy and Resources Institute (TERI), New Delhi, India
| | | | - Banwari Lal
- The Energy and Resources Institute (TERI), New Delhi, India
| |
Collapse
|
11
|
Chin KJ, Ünal B, Sanderson M, Aboderin F, Nüsslein K. Selective trace elements significantly enhanced methane production in coal bed methane systems by stimulating microbial activity. Microbiol Spectr 2024; 12:e0350823. [PMID: 38236038 PMCID: PMC10846109 DOI: 10.1128/spectrum.03508-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
Trace elements are associated with the microbial degradation of organic matter and methanogenesis, as enzymes in metabolic pathways often employ trace elements as essential cofactors. However, only a few studies investigated the effects of trace elements on the metabolic activity of microbial communities associated with biogenic coalbed methane production. We aimed to determine the effects of strategically selected trace elements on structure and function of active bacterial and methanogenic communities to stimulate methane production in subsurface coalbeds. Microcosms were established with produced water and coal from coalbed methane wells located in the Powder River Basin, Wyoming, USA. In initial pilot experiments with eight different trace elements, individual amendments of Co, Cu, and Mo lead to significantly higher methane production. Transcript levels of mcrA, the key marker gene for methanogenesis, positively correlated with increased methane production. Phylogenetic analysis of the mcrA cDNA library demonstrated compositional shifts of the active methanogenic community and increase of their diversity, particularly of hydrogenotrophic methanogens. High-throughput sequencing of cDNA obtained from 16S rRNA demonstrated active and abundant bacterial groups in response to trace element amendments. Active Acetobacterium members increased in response to Co, Cu, and Mo additions. The findings of this study yield new insights into the importance of essential trace elements on the metabolic activity of microbial communities involved in subsurface coalbed methane and provide a better understanding of how microbial community composition is shaped by trace elements.IMPORTANCEMicrobial life in the deep subsurface of coal beds is limited by nutrient replenishment. While coal bed microbial communities are surrounded by carbon sources, we hypothesized that other nutrients such as trace elements needed as cofactors for enzymes are missing. Amendment of selected trace elements resulted in compositional shifts of the active methanogenic and bacterial communities and correlated with higher transcript levels of mcrA. The findings of this study yield new insights to not only identify possible limitations of microbes by replenishment of trace elements within their specific hydrological placement but also into the importance of essential trace elements for the metabolic activity of microbial communities involved in subsurface coalbed methane production and provides a better understanding of how microbial community composition is shaped by trace elements. Furthermore, this finding might help to revive already spent coal bed methane well systems with the ultimate goal to stimulate methane production.
Collapse
Affiliation(s)
- Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Burcu Ünal
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Environmental Engineering, RheinMain University of Applied Sciences, Wiesbaden, Germany
| | - Michael Sanderson
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Feranmi Aboderin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
12
|
Bao Y, Hu Y, Huang H, Meng J, Zheng R. Evidence of Coal Biodegradation from Coalbed-Produced Water - A Case Study of Dafosi Gas Field, Ordos Basin, China. ACS OMEGA 2023; 8:41885-41896. [PMID: 37969973 PMCID: PMC10633850 DOI: 10.1021/acsomega.3c06835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Bioconversion of coal to methane occurs in the coalbed aquifer environment. To investigate the evidence of coal biodegradation from coalbed-produced water, we collected six field water samples from the Dafosi gas field and prepared one laboratory-simulated water sample and one indoor anaerobic microbial degradation sample with the highest compound concentration as the two reference standards. Gas chromatography-mass spectrometry was used to detect the organic compound type, concentration, and differences in the biomarker compound sensitivity. Results indicate that extracted organic matter from coalbed-produced water samples can be evidence of biodegradation. Variations in range compounds (such as n-alkanes, tri- and pentacyclic terpenes, and steranes) and their sensitivity confirmed active microbial degradation in the studied area. A positive correlation between the n-alkanes content in the coalbed-produced water and the stable carbon isotope value of methane further verifies that the n-alkanes are primary substrates for maintaining microbial activity. Therefore, evidence including n-alkanes, tri- and pentacyclic terpenes, steranes, unresolved complex mixtures, and stable carbon isotope composition of methane contribute to biogenic methane generation in situ. Our limited data suggest that managing soluble organic matter in the coalbed-produced water may provide a viable route for coal biodegradation since most microorganisms survive within the coal seam water.
Collapse
Affiliation(s)
- Yuan Bao
- Xi’an
University of Science and Technology, College
of Geology and Environment, Xi’an 710054, China
| | - Yiliang Hu
- Xi’an
University of Science and Technology, College
of Geology and Environment, Xi’an 710054, China
| | - Haiping Huang
- University
of Calgary, Department of Geoscience, Calgary, AB T2N 1N4, Canada
| | - Jiahao Meng
- Xi’an
University of Science and Technology, College
of Geology and Environment, Xi’an 710054, China
| | - Ruihui Zheng
- Xi’an
University of Science and Technology, College
of Geology and Environment, Xi’an 710054, China
| |
Collapse
|
13
|
Karnachuk OV, Panova IA, Rusanov II, Schetinina L, Lepokurova OY, Domrocheva EV, Kadnikov VV, Avakyan MR, Lukina AP, Glukhova LB, Pimenov NV, Ravin NV. Coexistence of Psychrophilic, Mesophilic, and Thermophilic Sulfate-Reducing Bacteria in a Deep Subsurface Aquifer Associated with Coal-Bed Methane Production. MICROBIAL ECOLOGY 2023; 86:1934-1946. [PMID: 36821051 DOI: 10.1007/s00248-023-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The microbial community of subsurface environments remains understudied due to limited access to deep strata and aquifers. Coal-bed methane (CBM) production is associated with a large number of wells pumping water out of coal seams. CBM wells provide access to deep biotopes associated with coal-bed water. Temperature is one of the key constraints for the distribution and activity of subsurface microorganisms, including sulfate-reducing prokaryotes (SRP). The 16S rRNA gene amplicon sequencing coupled with in situ sulfate reduction rate (SRR) measurements with a radioactive tracer and cultivation at various temperatures revealed that the SRP community of the coal bed water of the Kuzbass coal basin is characterized by an overlapping mesophilic-psychrophilic boundary. The genus Desulfovibrio comprised a significant share of the SRP community. The D. psychrotolerans strain 1203, which has a growth optimum below 20 °C, dominated the cultivated SRP. SRR in coal bed water varied from 0.154 ± 0.07 to 2.04 ± 0.048 nmol S cm-3 day-1. Despite the ambient water temperature of ~ 10-20 °C, an active thermophilic SRP community occurred in the fracture water, which reduced sulfate with the rate of 0.159 ± 0.023 to 0.198 ± 0.007 nmol S cm-3 day-1 at 55 °C. A novel moderately thermophilic "Desulforudis audaxviator"-clade SRP has been isolated in pure culture from the coal-bed water.
Collapse
Affiliation(s)
- Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, 634050, Russia.
| | - Inna A Panova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, 634050, Russia
| | - Igor I Rusanov
- Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Lilia Schetinina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, 634050, Russia
| | - Olesya Y Lepokurova
- Tomsk Branch of the Trofimuk Institute of Petroleum Geology and Geophysics in the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 4, 634055, Tomsk, Russia
| | - Evgenia V Domrocheva
- Tomsk Branch of the Trofimuk Institute of Petroleum Geology and Geophysics in the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 4, 634055, Tomsk, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, Bld. 33‑2, Moscow, Russia, 119071
| | - Marat R Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, 634050, Russia
| | - Anstasia P Lukina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, 634050, Russia
| | - Liubov B Glukhova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, 634050, Russia
| | - Nikolai V Pimenov
- Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, Bld. 33‑2, Moscow, Russia, 119071
| |
Collapse
|
14
|
Li Y, Chen J, Tang S, Xi Z. Microbial Communities Affected by Hydraulic Fracturing and Environmental Factors within an In Situ Coal Reservoir. Microorganisms 2023; 11:1657. [PMID: 37512830 PMCID: PMC10385777 DOI: 10.3390/microorganisms11071657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The rise of coalbed methane bioengineering enables the conversion and utilization of carbon dioxide through microbial action and the carbon cycle. The environment of underground coal reservoirs is the result of a comprehensive effort by microorganisms. Some studies on reservoir microorganisms have progressed in laboratory conditions. However, it does not replicate the interaction between microorganisms and the environment on site. Hydraulic fracturing is an engineering technology to improve the natural permeability of tight reservoirs and is also a prerequisite for increasing biomethane production. In addition to expanding the pore and fracture systems of coal reservoirs, hydraulic fracturing also improves the living conditions of microbial communities in underground space. The characteristics of microbial communities in the reservoir after hydraulic fracturing are unclear. To this end, we applied the 16S rRNA sequencing technique to coalbed methane production water after hydraulic fracturing south of the Qinshui Basin to analyze the microbial response of the hydraulic fracturing process in the coal reservoir. The diversity of microbial communities associated with organic degradation was improved after hydraulic fracturing in the coal reservoir. The proportion of Actinobacteria in the reservoir water of the study area increased significantly, and the abundance of Aminicenantes and Planctomycetes increased, which do not exist in non-fracturing coalbed methane wells or exist at very low abundance. There are different types of methanogens in the study area, especially in fracturing wells. Ecological factors also determine the metabolic pathway of methanogens in coal seams. After hydraulic fracturing, the impact on the reservoir's microbial communities remains within months. Hydraulic fracturing can strengthen the carbon circulation process, thereby enhancing the block's methane and carbon dioxide circulation. The study provides a unique theoretical basis for microbially enhanced coalbed methane.
Collapse
Affiliation(s)
- Yang Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
- The Key Laboratory of Universities in Anhui Province for Prevention of Mine Geological Disasters, Anhui University of Science and Technology, Huainan 232001, China
- Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Jian Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
- The Key Laboratory of Universities in Anhui Province for Prevention of Mine Geological Disasters, Anhui University of Science and Technology, Huainan 232001, China
| | - Shuheng Tang
- School of Energy Resource, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China
- Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China
| | - Zhaodong Xi
- School of Energy Resource, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China
- Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China
| |
Collapse
|
15
|
Fu L, Lai S, Zhou Z, Chen Z, Cheng L. Seasonal variation of microbial community and methane metabolism in coalbed water in the Erlian Basin, China. Front Microbiol 2023; 14:1114201. [PMID: 36846781 PMCID: PMC9953142 DOI: 10.3389/fmicb.2023.1114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Coalbed water is a semi-open system connecting underground coalbeds with the external environment. Microorganisms in coalbed water play an important role in coal biogasification and the carbon cycle. The community assemblages of microorganisms in such a dynamic system are not well understood. Here, we used high-throughput sequencing and metagenomic analysis to investigate microbial community structure and identify the potential functional microorganisms involved in methane metabolism in coalbed water in the Erlian Basin, a preferred low-rank coal bed methane (CBM) exploration and research area in China. The results showed that there were differences in the responses of bacteria and archaea to seasonal variation. Bacterial community structure was affected by seasonal variation but archaea was not. Methane oxidation metabolism dominated by Methylomonas and methanogenesis metabolism dominated by Methanobacterium may exist simultaneously in coalbed water.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Shouchao Lai
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhenhong Chen
- Research Institute of Petroleum Exploration and Development, Beijing, China,*Correspondence: Zhenhong Chen, ✉
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China,Lei Cheng, ✉
| |
Collapse
|
16
|
Ross DE, Lipus D, Gulliver D. Predominance of Methanomicrobiales and diverse hydrocarbon-degrading taxa in the Appalachian coalbed biosphere revealed through metagenomics and genome-resolved metabolisms. Environ Microbiol 2022; 24:5984-5997. [PMID: 36251278 DOI: 10.1111/1462-2920.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023]
Abstract
Coalbed deposits are a unique subsurface environment and represent an underutilized resource for methane generation. Microbial communities extant in coalbed deposits are responsible for key subsurface biogeochemical cycling and could be utilized to enhance methane production in areas where existing gas wells have depleted methane stores, or in coalbeds that are unmined, or conversely be utilized for mitigation of methane release. Here we utilize metagenomics and metagenome-assembled genomes (MAGs) to identify extant microbial lineages and genome-resolved microbial metabolisms of coalbed produced water, which has not yet been explored in the Appalachian Basin (AppB). Our analyses resulted in the recovery of over 40 MAGs from 8 coalbed methane wells. The most commonly identified taxa among samples were hydrogenotrophic methanogens from the order Methanomicrobiales and these dominant MAGs were highly similar to one another. Conversely, low-abundance coalbed bacterial populations were taxonomically and functionally diverse, mostly belonging to a variety of Proteobacteria classes, and encoding various hydrocarbon solubilization and degradation pathways. The data presented herein provides novel insights into AppB coalbed microbial ecology, and our findings provide new perspectives on underrepresented Methanocalculus species and low-relative abundance bacterial assemblages in coalbed environments, and their potential roles in stimulation or mitigation of methane release.
Collapse
Affiliation(s)
- Daniel E Ross
- Research and Innovation Center, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, USA.,Leidos Research Support Team (LRST), NETL Support Contractor, Pittsburgh, Pennsylvania, USA
| | - Daniel Lipus
- Research and Innovation Center, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, USA.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States.,Section Geomicrobiology, GFZ Geoforschungszentrum Potsdam, Potsdam, Brandenburg, Germany
| | - Djuna Gulliver
- Research and Innovation Center, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
McLeish AG, Gong S, Greenfield P, Midgley DJ, Paulsen IT. Microbial Community Shifts on Organic Rocks of Different Maturities Reveal potential Catabolisers of Organic Matter in Coal. MICROBIAL ECOLOGY 2022; 84:780-793. [PMID: 34686899 DOI: 10.1007/s00248-021-01857-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The global trend of transiting to more renewable energy sources requires transition fuels, such as coal seam gas, to supplement and secure energy needs. In order to optimise strategies and technologies for enhancing gas production, an understanding of the fundamental microbial processes and interactions would be advantageous. Models have recently begun mapping the microbial roles and interactions in coal seam environments, from direct coal degradation to methanogenesis. This study seeks to expand those models by observing community compositional shifts in the presence of differing organic matter by conducting 16S rRNA microbial surveys using formation water from the Surat and Sydney Basins grown on varying types of organic matter (black and brown coal, oil shale, humic acid, and lignin). A total of 135 microbes were observed to become enriched in the presence of added organic matter in comparison to carbon-free treatments. These surveys allowed detailed analysis of microbial compositions in order to extrapolate which taxa favour growth in the presence of differing organic matter. This study has experimentally demonstrated shifts in the microbial community composition due to differing carbon sources and, for the first time, generated a conceptual model to map putative degradation pathways regarding subsurface microbial consortia.
Collapse
Affiliation(s)
- Andrew G McLeish
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia.
- Department of Energy, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 11 Julius Ave, North Ryde, Sydney, NSW, 2113, Australia.
| | - Se Gong
- Department of Energy, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 11 Julius Ave, North Ryde, Sydney, NSW, 2113, Australia
| | - Paul Greenfield
- Department of Energy, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 11 Julius Ave, North Ryde, Sydney, NSW, 2113, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, Australia
| | - David J Midgley
- Department of Energy, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 11 Julius Ave, North Ryde, Sydney, NSW, 2113, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia
| |
Collapse
|
18
|
Li Y, Liu B, Chen J, Yue X. Carbon-Nitrogen-Sulfur-Related Microbial Taxa and Genes Maintained the Stability of Microbial Communities in Coals. ACS OMEGA 2022; 7:22671-22681. [PMID: 35811862 PMCID: PMC9260939 DOI: 10.1021/acsomega.2c02126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 06/03/2023]
Abstract
Coal microbes are the predominant form of life in the subsurface ecosystem, which play a vital role in biogeochemical cycles. However, the systematic information about carbon-nitrogen-sulfur (C-N-S)-related microbial communities in coal seams is limited. In this study, 16S rRNA gene data from a total of 93 microbial communities in coals were collected for meta-analysis. The results showed that 718 functional genera were related to the C-N-S cycle, wherein N2 fixation, denitrification, and C degradation groups dominated in relative abundance, Chao1 richness, Shannon diversity, and niche width. Genus Pseudomonas having the most C-N-S-related functions showed the highest relative abundance, and genus Herbaspirillum with a higher abundance participated in C degradation, CH4 oxidation, N2 fixation, ammoxidation, and denitrification. Such Herbaspirillum was a core genus in the co-occurrence network of microbial prokaryotes and showed higher levels in weight degree, betweenness centrality, and eigenvector centrality. In addition, most of the methanogens could fix N2 and dominated in the N2 fixation groups. Among them, genera Methanoculleus and Methanosaeta showed higher levels in the betweenness centrality index. In addition, the genus Clostridium was linked to the methanogenesis co-occurrence network module. In parallel, the S reduction gene was present in the highest total relative abundance of genes, followed by the C degradation and the denitrification genes, and S genes (especially cys genes) were the main genes linked to the co-occurrence network of the C-N-S-related genes. In summary, this study strengthened our knowledge regarding the C-N-S-related coal microbial communities, which is of great significance in understanding the microbial ecology and geochemical cycle of coals.
Collapse
Affiliation(s)
- Yang Li
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan, Anhui 232001, China
- Institute
of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, China
| | - Bingjun Liu
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan, Anhui 232001, China
- Institute
of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, China
| | - Jian Chen
- Coal
Mining National Engineering and Technology Research Institute, Huainan, Anhui 232001, China
| | - Xuelian Yue
- Jinneng
Holding Shanxi Science and Technology Research Institute Co. LTD., Taiyuan, Shanxi 030600, China
| |
Collapse
|
19
|
Li Y, Liu B, Tu Q, Xue S, Liu X, Wu Z, An S, Chen J, Wang Z. The ecological roles of assembling genomes for Bacillales and Clostridiales in coal seams. FEMS Microbiol Lett 2022; 369:6605329. [PMID: 35687414 DOI: 10.1093/femsle/fnac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Biogenic coalbed methane is produced by biological processes mediated by synergistic interactions of microbial complexes in coal seams. However, the ecological role of functional bacteria in biogenic coalbed methane remains poorly understood. Here, we studied the metagenome assembled genomes (MAGs) of Bacillales and Clostridiales from coal seams, revealing further expansion of hydrogen and acetogen producers involved in organic matter decomposition. In this study, Bacillales and Clostridiales were dominant orders (91.85 ± 0.94%) in cultured coal seams, and a total of 16 MAGs from 6 families, including Bacillus, Paenibacillus, Staphylococcus, Anaerosalibacter, Hungatella and Paeniclostridium, were reconstructed. These microbial groups possessed multiple metabolic pathways (glycolysis/gluconeogenesis, pentose phosphate, β-oxidation, TCA cycle, assimilatory sulfate reduction, nitrogen metabolism and encoding hydrogenase) that provided metabolic substrates (acetate and/or H2) for the methanogenic processes. Therein, the hydrogenase-encoding gene and hydrogenase maturation factors were merely found in all the Clostridiales MAGs. β-oxidation was the main metabolic pathway involved in short-chain fatty acid degradation and acetate production, and most of these pathways were detected and exhibited different operon structures in Bacillales MAGs. In addition, assimilatory sulfate reduction and nitrogen metabolism processes were also detected in some MAGs, and these processes were also closely related to acetate production and/or organic matter degradation according to their operon structures and metabolic pathways. In summary, this study enabled a better understanding of the ecological roles of Bacillales and Clostridiales in biogenic methane in coal seams based on a combination of bioinformatic techniques.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui province, China
| | - Bingjun Liu
- Institute of Energy, Hefei Comprehensive National Science Center, Anhui, Hefei, 230031, China
| | - Qingyi Tu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui province, China
| | - Sheng Xue
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui province, China
| | - Xiaozhou Liu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui province, China
| | - Zhijian Wu
- Coal Mining National Engineering and Technology Research Institute, Huainan, Anhui Province, China
| | - Shikai An
- Coal Mining National Engineering and Technology Research Institute, Huainan, Anhui Province, China
| | - Jian Chen
- Coal Mining National Engineering and Technology Research Institute, Huainan, Anhui Province, China
| | - Zhigen Wang
- China National Coal Xinji Group Corporation, Huainan, Anhui Province, China
| |
Collapse
|
20
|
McKay LJ, Smith HJ, Barnhart EP, Schweitzer HD, Malmstrom RR, Goudeau D, Fields MW. Activity-based, genome-resolved metagenomics uncovers key populations and pathways involved in subsurface conversions of coal to methane. THE ISME JOURNAL 2022; 16:915-926. [PMID: 34689183 PMCID: PMC8941128 DOI: 10.1038/s41396-021-01139-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Microbial metabolisms and interactions that facilitate subsurface conversions of recalcitrant carbon to methane are poorly understood. We deployed an in situ enrichment device in a subsurface coal seam in the Powder River Basin (PRB), USA, and used BONCAT-FACS-Metagenomics to identify translationally active populations involved in methane generation from a variety of coal-derived aromatic hydrocarbons. From the active fraction, high-quality metagenome-assembled genomes (MAGs) were recovered for the acetoclastic methanogen, Methanothrix paradoxum, and a novel member of the Chlorobi with the potential to generate acetate via the Pta-Ack pathway. Members of the Bacteroides and Geobacter also encoded Pta-Ack and together, all four populations had the putative ability to degrade ethylbenzene, phenylphosphate, phenylethanol, toluene, xylene, and phenol. Metabolic reconstructions, gene analyses, and environmental parameters also indicated that redox fluctuations likely promote facultative energy metabolisms in the coal seam. The active "Chlorobi PRB" MAG encoded enzymes for fermentation, nitrate reduction, and multiple oxygenases with varying binding affinities for oxygen. "M. paradoxum PRB" encoded an extradiol dioxygenase for aerobic phenylacetate degradation, which was also present in previously published Methanothrix genomes. These observations outline underlying processes for bio-methane from subbituminous coal by translationally active populations and demonstrate activity-based metagenomics as a powerful strategy in next generation physiology to understand ecologically relevant microbial populations.
Collapse
Affiliation(s)
- Luke J McKay
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Elliott P Barnhart
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, 59601, USA
| | - Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA
- Arctic University of Norway, Tromsø, Norway
| | | | | | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
21
|
Li Y, Chen J, Tang S, Zhang S, Xi Z. Biogeochemical Assessment of the Coalbed Methane Source, Migration, and Fate: A Case Study of the Shizhuangnan Block, Southern Qinshui Basin. ACS OMEGA 2022; 7:7715-7724. [PMID: 35284701 PMCID: PMC8908359 DOI: 10.1021/acsomega.1c06496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The exploration and exploitation of coalbed methane (CBM), an essential unconventional gas resource, have received much attention. In terms of shallow groundwater assessment during CBM production, biogenic methane natural formation in situ and methane migration from deep sources into shallow aquifers need to be of most concern. This study analyzes geochemical surveys including ions, isotopes, and dissolved methane concentrations in 75 CBM coproduced water samples in the southern Qinshui Basin. Most of these water samples are weakly alkaline. Some samples' negative oxidation/reduction potential (ORP) values reveal that the CBM reservoir water samples are mainly produced from reductive groundwater environments. Cl-, Na+, and HCO3 - are the dominant ionic constituents of the water samples, which are usually associated with dissolved methane concentrations. The biogeochemical parameters and isotopic features provide an opportunity to assess the origin, migration, and oxidation of biogenic or thermogenic methane. Some water samples suggest biogenic methane formation in situ characterized by negligible SO4 2- and NO3 - concentrations and low δ13CCH4. Only a few water samples indicate the migration of biogenic methane into shallow aquifers without oxidation based on elevated SO4 2-, NO3 -, and δ13CDIC and low δ13CCH4. A few cases characterized by elevated δ13CCH4, negative δ13CDIC values, and negligible SO4 2- and methane concentrations suggest the oxidation of biogenic methane rather than the migration of thermogenic methane. A significant number of cases mean methane migration to shallow aquifers. Partial oxidation of thermogenic or mixed methane is evaluated by negligible SO4 2-, NO3 -, and methane concentrations and elevated δ13CCH4. Dissolved methane isotopic compositions and aqueous biogeochemical features help study methane formation and potential migration in shallow groundwater.
Collapse
Affiliation(s)
- Yang Li
- School
of Earth and Environment, Anhui University
of Science and Technology, Huainan 232001, Anhui, China
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan 232001, Anhui, China
| | - Jian Chen
- School
of Earth and Environment, Anhui University
of Science and Technology, Huainan 232001, Anhui, China
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan 232001, Anhui, China
| | - Shuheng Tang
- School
of Energy Resource, China University of
Geosciences, Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment
Mechanism, Ministry of Education, Beijing 100083, China
- Key
Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China
| | - Songhang Zhang
- School
of Energy Resource, China University of
Geosciences, Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment
Mechanism, Ministry of Education, Beijing 100083, China
- Key
Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China
| | - Zhaodong Xi
- School
of Energy Resource, China University of
Geosciences, Beijing 100083, China
- Key
Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment
Mechanism, Ministry of Education, Beijing 100083, China
- Key
Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China
| |
Collapse
|
22
|
Barnhart EP, Ruppert LF, Hiebert R, Smith HJ, Schweitzer HD, Clark AC, Weeks EP, Orem WH, Varonka MS, Platt G, Shelton JL, Davis KJ, Hyatt RJ, McIntosh JC, Ashley K, Ono S, Martini AM, Hackley KC, Gerlach R, Spangler L, Phillips AJ, Barry M, Cunningham AB, Fields MW. In Situ Enhancement and Isotopic Labeling of Biogenic Coalbed Methane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3225-3233. [PMID: 35142487 DOI: 10.1021/acs.est.1c05979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.
Collapse
Affiliation(s)
- Elliott P Barnhart
- U.S. Geological Survey, Helena, Montana 59601, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | | | - Randy Hiebert
- Biosqueeze Inc., Butte, Montana 59701, United States
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Arthur C Clark
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - Edwin P Weeks
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - William H Orem
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | | | - George Platt
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Jenna L Shelton
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - Katherine J Davis
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | | | - Jennifer C McIntosh
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Kilian Ashley
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna M Martini
- Geology Department, Amherst College, Amherst, Massachusetts 01002, United States
| | - Keith C Hackley
- Isotech/Stratum Reservoir, Champaign, Illinois 61821, United States
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
- Isotech/Stratum Reservoir, Champaign, Illinois 61821, United States
| | - Lee Spangler
- Energy Research Institute, Montana State University, Bozeman, Montana 59717, United States
| | - Adrienne J Phillips
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
- Isotech/Stratum Reservoir, Champaign, Illinois 61821, United States
| | - Mark Barry
- Pro-Oceanus Systems Inc., Bridgewater, Nova Scotia B4V 1N1, Canada
| | - Alfred B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
23
|
Schweitzer HD, Smith HJ, Barnhart EP, McKay LJ, Gerlach R, Cunningham AB, Malmstrom RR, Goudeau D, Fields MW. Subsurface hydrocarbon degradation strategies in low- and high-sulfate coal seam communities identified with activity-based metagenomics. NPJ Biofilms Microbiomes 2022; 8:7. [PMID: 35177633 PMCID: PMC8854433 DOI: 10.1038/s41522-022-00267-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study—subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes—offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.
Collapse
Affiliation(s)
- Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA. .,UiT-The Arctic University of Norway, 9019, Tromsø, Norway.
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Elliott P Barnhart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,US Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, 59601, USA
| | - Luke J McKay
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.,Department of Biological and Chemical Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Alfred B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil Engineering, Montana State University, Bozeman, MT, 59717, USA
| | | | | | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA. .,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
24
|
Jin T, Meng Q, Li X, Zhou L. Fluorescence Characteristics of Coalbed Methane Produced Water and Its Influence on Freshwater Bacteria in the South Qinshui Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412921. [PMID: 34948531 PMCID: PMC8701165 DOI: 10.3390/ijerph182412921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022]
Abstract
Production of coalbed methane (CBM) resources commonly requires using hydraulic fracturing and chemical production well additives. Concern exists for the existence of chemical compounds in CBM produced water, due to the risk of environmental receptor contamination. In this study, parallel factor method analysis (PARAFAC), fluorescence index, and the fluorescence area integral methods were used to analyse the properties of CBM produced water sampled from Shizhuang Block (one of the most active CBM-producing regions in the Qinshui Basin). A culture experiment was designed to determine the effect of discharged CBM produced water on microorganisms in freshwater. Water quality analysis shows the hydrochemistry of most water samples as Na-HCO3 type produced water of CBM appears as a generally weak alkaline (pH 8.69 ± 0.185) with high salinity, high alkalinity, and a high chemical oxygen demand (COD) value. Three individual components were identified by using parallel factor method analysis as humic-like components (C1), fulvic-like components (C2), and amino acid-like substances (C3). The fluorescence characteristic index comprehensively explains that the fluorescent substances in CBM produced water has the characteristics of a low degree of humification and a high recent self-generating source. The region integration results of characteristic peaks show that tyrosine-like and tryptophan-like materials account for more than 67% of fluorescent substances in CBM produced water. The addition of produced water from coalbed methane promotes the growth of freshwater bacteria, and this process is accompanied by the decrease of the proportion of fulvic acid, humic acid, and the increase of the proportion of soluble microbial metabolites. This paper proposes a convenient method for organic matter identification of CBM produced water and provides some theoretical support and reference for the improvement of CBM water treatment and utilization.
Collapse
Affiliation(s)
- Tao Jin
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (T.J.); (X.L.); (L.Z.)
| | - Qingjun Meng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (T.J.); (X.L.); (L.Z.)
- Collaborative Innovation Center for Resource Utilization and Ecological Restoration of Old Industrial Base, Xuzhou 221116, China
- Correspondence: ; Tel.: +86-138-5203-7608
| | - Xiangdong Li
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (T.J.); (X.L.); (L.Z.)
- Collaborative Innovation Center for Resource Utilization and Ecological Restoration of Old Industrial Base, Xuzhou 221116, China
| | - Lai Zhou
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (T.J.); (X.L.); (L.Z.)
- Collaborative Innovation Center for Resource Utilization and Ecological Restoration of Old Industrial Base, Xuzhou 221116, China
| |
Collapse
|
25
|
Vaksmaa A, Knittel K, Abdala Asbun A, Goudriaan M, Ellrott A, Witte HJ, Vollmer I, Meirer F, Lott C, Weber M, Engelmann JC, Niemann H. Microbial Communities on Plastic Polymers in the Mediterranean Sea. Front Microbiol 2021; 12:673553. [PMID: 34220756 PMCID: PMC8243005 DOI: 10.3389/fmicb.2021.673553] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Andreas Ellrott
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Harry J Witte
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | | | | | - Julia C Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Mujica-Alarcon JF, Thornton SF, Rolfe SA. Long-term dynamic changes in attached and planktonic microbial communities in a contaminated aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116765. [PMID: 33647805 DOI: 10.1016/j.envpol.2021.116765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Biodegradation is responsible for most contaminant removal in plumes of organic compounds and is fastest at the plume fringe where microbial cell numbers and activity are highest. As the plume migrates from the source, groundwater containing the contaminants and planktonic microbial community encounters uncontaminated substrata on which an attached community subsequently develops. While attached microbial communities are important for biodegradation, the time needed for their establishment, their relationship with the planktonic community and the processes controlling their development are not well understood. We compare the dynamics of development of attached microbial communities on sterile substrata in the field and laboratory microcosms, sampled simultaneously at intervals over two years. We show that attached microbial cell numbers increased rapidly and stabilised after similar periods of incubation (∼100 days) in both field and microcosm experiments. These timescales were similar even though variation in the contaminant source evident in the field was absent in microcosm studies, implying that this period was an emergent property of the attached microbial community. 16S rRNA gene sequencing showed that attached and planktonic communities differed markedly, with many attached organisms strongly preferring attachment. Successional processes were evident, both in community diversity indices and from community network analysis. Community development was governed by both deterministic and stochastic processes and was related to the predilection of community members for different lifestyles and the geochemical environment.
Collapse
Affiliation(s)
- Juan F Mujica-Alarcon
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield, United Kingdom; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Steven F Thornton
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
27
|
The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment. WATER 2020. [DOI: 10.3390/w12113008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microbially enhanced coal-bed methane could allow for a more sustainable method of harvesting methane from un-mineable coaldbeds. The model presented here is based on a previously validated batch model; however, this model system is based on upflow reactor columns compared to previous experiments and now includes flow, transport and reactions of amendment as well as intermediate products. The model implements filtration and retardation effects, biofilm decay, and attachment and detachment processes of microbial cells due to shear stress. The model provides additional insights into processes that cannot be easily observed in experiments. This study improves the understanding of complex and strongly interacting processes involved in microbially enhanced coal-bed methane production and provides a powerful tool able to model the entire process of enhancing methane production and transport during microbial stimulation.
Collapse
|
28
|
Selective Enrichment of Clostridium Spp. by Nutrition Control from Sihe Coal Geological Microbial Communities. Appl Biochem Biotechnol 2020; 192:952-964. [PMID: 32617844 DOI: 10.1007/s12010-020-03367-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
In the coal biogasification, butyric acid is an important intermediate product. The enrichment of butyric acid-producing bacteria in coal geological methanogens is critical to confirm this assertion. Therefore, to study a method for enrichment of butyric acid-producing bacteria and to explore characteristic factors for evaluating the enrichment effect would be the basis for further strain isolation and metabolomics research. In this study, the nutrition control method was used for the butyric acid-producing bacteria enrichment from concentrated bacteria solution in Sihe coal seam. The characteristic factors' changes in gas production, gas composition, butyric acid concentration, and pH were observed and analyzed in the experiment. High-throughput sequencing was used as a verification method to validate the medium and genera enrichment effect that can be used for the butyric acid-producing bacteria. Through experimental research and analysis, it was identified that the glucose-sucrose-maltose medium was the beneficial medium to the enrichment of butyric acid-producing bacteria, and the high-throughput sequencing determined that the enriched genera were Clostridium spp. Glucose-sucrose-maltose medium experimental data confirmed that the decrease of CO2 and H2 daily yield, the increase of butyric acid concentration, and the decrease of pH value had a significant positive correlation with the enrichment of Clostridium spp.
Collapse
|
29
|
Genomic and phenotypic insights point to diverse ecological strategies by facultative anaerobes obtained from subsurface coal seams. Sci Rep 2019; 9:16186. [PMID: 31700097 PMCID: PMC6838118 DOI: 10.1038/s41598-019-52846-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Microbes in subsurface coal seams are responsible for the conversion of the organic matter in coal to methane, resulting in vast reserves of coal seam gas. This process is important from both environmental and economic perspectives as coal seam gas is rapidly becoming a popular fuel source worldwide and is a less carbon intensive fuel than coal. Despite the importance of this process, little is known about the roles of individual bacterial taxa in the microbial communities carrying out this process. Of particular interest is the role of members of the genus Pseudomonas, a typically aerobic taxa which is ubiquitous in coal seam microbial communities worldwide and which has been shown to be abundant at early time points in studies of ecological succession on coal. The current study performed aerobic isolations of coal seam microbial taxa generating ten facultative anaerobic isolates from three coal seam formation waters across eastern Australia. Subsequent genomic sequencing and phenotypic analysis revealed a range of ecological strategies and roles for these facultative anaerobes in biomass recycling, suggesting that this group of organisms is involved in the degradation of accumulated biomass in coal seams, funnelling nutrients back into the microbial communities degrading coal to methane.
Collapse
|
30
|
Wang B, Wang Y, Cui X, Zhang Y, Yu Z. Bioconversion of coal to methane by microbial communities from soil and from an opencast mine in the Xilingol grassland of northeast China. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:236. [PMID: 31624498 PMCID: PMC6781394 DOI: 10.1186/s13068-019-1572-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/21/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND The Xilingol grassland ecosystem has abundant superficial coal reserves. Opencast coal mining and burning of coal for electricity have caused a series of environmental challenges. Biogenic generation of methane from coal possesses the potential to improve economic and environmental outcomes of clean coal utilization. However, whether the microbes inhabiting the grassland soil have the functional potential to convert coal into biomethane is still unclear. RESULTS Microbial communities in an opencast coal mine and in grassland soil covering and surrounding this mine and their biomethane production potential were investigated by Hiseq sequencing and anaerobic cultivation. The microbial communities in covering soil showed high similarity to those in the surrounding soil, according to the pairwise weighted UniFrac distances matrix. The majority of bacterial communities in coal and soil samples belonged to the phyla Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. The dominant bacterial genera in grassland soil included Gaiella, Solirubrobacter, Sphingomonas and Streptomyces; whereas, the most abundant genus in coal was Pseudarthrobacter. In soil, hydrogenotrophic Methanobacterium was the dominant methanogen, and this methanogen, along with acetoclastic Methanosarcina and methylotrophic Methanomassiliicoccus, was detected in coal. Network-like Venn diagram showed that an average of 28.7% of microbial communities in the samples belonged to shared genera, indicating that there is considerable microbial overlap between coal and soil samples. Potential degraders and methanogens in the soil efficiently stimulated methane formation from coal samples by the culturing-based approach. The maximum biogenic methane yields from coal degradation by the microbial community cultured from grassland soil reached 22.4 μmol after 28 day. CONCLUSION The potential microbial coal degraders and methanogenic archaea in grassland soil were highly diverse. Significant amounts of biomethane were generated from coal by the addition of grassland soil microbial communities. The unique species present in grassland soil may contribute to efficient methanogenic coal bioconversion. This discovery not only contributes to a better understanding of global microbial biodiversity in coal mine environments, but also makes a contribution to our knowledge of the synthetic microbiology with regard to effective methanogenic microbial consortia for coal degradation.
Collapse
Affiliation(s)
- Bobo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yiming Zhang
- Beijing Municipal Ecological Environment Bureau, Beijing, 100048 People’s Republic of China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|