1
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
2
|
Hu T, Meng Y, Zhao C, Sheng D, Yang S, Dai J, Wei T, Zhang Y, Zhao G, Liu Y, Wang Q, Zhang L. Genome-scale metabolic modeling reveals specific vaginal Lactobacillus strains and their metabolites as key inhibitors of Candida albicans. Microbiol Spectr 2025:e0298424. [PMID: 40237492 DOI: 10.1128/spectrum.02984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
As the predominant constituents of the vaginal microbiome in healthy women, Lactobacillus species are considered essential in maintaining a homeostatic vaginal microbiome. Specific Lactobacillus species can produce beneficial metabolites to support their persistence within the host environment and inhibit Candida albicans colonization. Due to the extensive diversity of Lactobacillus species and their metabolites, comprehensively investigating all possible interactions remains challenging. This study employed an integrative approach combining genome-scale metabolic modeling, metagenomic sequencing, and in vitro validation to explore Lactobacillus and C. albicans interactions. Pairwise simulations of 159 Lactobacillus strains with C. albicans revealed that most strains exhibit inhibitory effects, altering fungal amino acid and carbohydrate metabolism. Key inhibitory metabolites identified included formate, L-lactate, and L-malate. Metagenomic analysis of vaginal swabs from 20 vulvovaginal candidiasis (VVC) patients and 20 healthy women showed a correlation between Lactobacillus species abundance and reduced C. albicans colonization. In vitro experiments confirmed the inhibitory effects of these metabolites and the selected Lactobacillus strains on C. albicans growth, thereby validating our computational predictions. These findings provide insights into the metabolic interactions within the vaginal microbiome and pave the way for targeted microbial or metabolite-based therapeutic strategies to manage VVC.IMPORTANCEVulvovaginal candidiasis is a prevalent fungal infection with significant implications for women's health, caused primarily by Candida albicans. Although the protective role of a Lactobacillus-dominated vaginal microbiome is well established, the metabolic mechanisms underlying the interactions between Lactobacillus species and C. albicans remain inadequately understood. Specifically, the Lactobacillus species that effectively inhibit C. albicans and the metabolic pathways involved warrant further investigation. This study offers novel insights into the metabolic mechanisms underlying Lactobacillus antagonism against C. albicans. By identifying critical metabolic pathways and inhibitory metabolites, this study enhances our understanding of vaginal microbiome dynamics and host-microbe interactions. The findings suggest that key Lactobacillus strains and their metabolites could significantly reduce harmful levels of C. albicans, paving the way for future therapeutic strategies that leverage these microbial characteristics to promote vaginal health.
Collapse
Affiliation(s)
- Tianqi Hu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya Meng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sijie Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Junhui Dai
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tiantian Wei
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yiming Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanan Liu
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
4
|
Misselwitz B, Haller D. [The intestinal microbiota in inflammatory bowel diseases]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2025; 66:146-155. [PMID: 39870907 DOI: 10.1007/s00108-024-01845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND The intestinal microbiota comprises all living microorganisms in the gastrointestinal tract and is crucial for its function. Clinical observations and laboratory findings confirm a central role of the microbiota in chronic inflammatory bowel diseases (IBD). However, many mechanistic details remain unclear. OBJECTIVES Changes in the microbiota and the causal relationship with the pathogenesis of IBD are described and current and future diagnostic and therapeutic options are discussed. MATERIALS AND METHODS Narrative review. RESULTS The intestinal microbiota is altered in composition, diversity, and function in IBD patients, but specific (universal) IBD-defining bacteria have not been identified. The healthy microbiota has numerous anti-inflammatory functions such as the production of short-chain fatty acids or competition with pathogens. In contrast, the IBD microbiota promotes inflammation through the destruction of the intestinal barrier and direct interaction with the immune system. The balance between pro- and anti-inflammatory effects of the microbiota appears to be crucial for the development of intestinal inflammation. Microbiota-based IBD diagnostics show promise but are not yet ready for clinical use. Probiotics and fecal microbiota transplantation have clinical effects, especially in ulcerative colitis, but the potential of microbiota-based therapies is far from being fully realized. CONCLUSION IBD dysbiosis remains undefined so far. It is unclear how the many parallel pro- and anti-inflammatory mechanisms contribute to IBD pathogenesis. An inadequate mechanistic understanding hinders the development of microbiota-based diagnostics and therapies.
Collapse
Affiliation(s)
- Benjamin Misselwitz
- Medizinische Klinik und Poliklinik II, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 83477, München, Deutschland.
| | - Dirk Haller
- Lehrstuhl für Ernährung und Immunologie, School of Life Sciences, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Deutschland.
| |
Collapse
|
5
|
Veerapandian R, Paudyal A, Schneider SM, Lee STM, Vediyappan G. A mouse model of immunosuppression facilitates oral Candida albicans biofilms, bacterial dysbiosis and dissemination of infection. Front Cell Infect Microbiol 2025; 14:1467896. [PMID: 39902181 PMCID: PMC11788080 DOI: 10.3389/fcimb.2024.1467896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Opportunistic pathogens are a major threat to people, especially those with impaired immune systems. Two of the most important microbes in this category are the fungus Candida albicans and Gram-positive bacteria of the genus Enterococcus, which share overlapping niches in the oral cavity, gastrointestinal and urogenital tracts. The clinical importance of oral C. albicans biofilm and its interaction with the host under immunosuppressive conditions remains largely understudied. Here, we used a mouse model of oropharyngeal candidiasis (OPC) with cortisone acetate injection on alternate days and a continuous supply of C. albicans in drinking water for three days, resulting in immunosuppression. Results showed abundant growth of resident oral bacteria and a strong C. albicans biofilm on the tongue consisting of hyphae which damaged papillae, the epidermal layer, and invaded tongue tissue with the accumulation of inflammatory cells as demonstrated by Grocott's methenamine silver and hematoxylin and eosin staining, respectively. The dispersed microbes from the oral biofilm colonized the gastrointestinal (GI) tract and damaged its integrity, disseminating microbes to other organs. Although no visible damage was observed in the kidney and liver, except increased lipid vacuoles in the liver cells, C. albicans was found in the liver homogenate. Intriguingly, we found co-occurrence of Enterococcus faecalis in the tongue, liver, and stool of immunosuppressed control and C. albicans infected organs. Targeted 16S rRNA and ITS2 amplicon sequencing of microbes from the fecal samples of mice confirmed the above results in the stool samples and revealed an inverse correlation of beneficial microbes in the dysbiosis condition. Our study shows that mucosal-oral infection of C. albicans under immunosuppressed conditions causes tissue damage and invasion in local and distant organs; the invasion may be aided by the overgrowth of the resident endogenous Enterobacteriaceae and other members, including the opportunistic pathogen Enterococcus faecalis.
Collapse
Affiliation(s)
- Raja Veerapandian
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Anuja Paudyal
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sarah M. Schneider
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Govindsamy Vediyappan
- Division of Biology, Kansas State University, Manhattan, KS, United States
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
6
|
Jangi S, Zhao N, Hsia K, Park YS, Michaud DS, Yoon H. Specific Bacterial Co-abundance Groups Are Associated With Inflammatory Status in Patients With Ulcerative Colitis. J Crohns Colitis 2025; 19:jjae125. [PMID: 39126385 PMCID: PMC11725523 DOI: 10.1093/ecco-jcc/jjae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS While there is increasing interest in microbiome-directed therapies for patients with ulcerative colitis (UC), the identification of microbial targets remains elusive, underlining the need for novel approaches. METHODS Utilizing metagenomic data from the Study of a Prospective Adult Research Cohort with Inflammatory Bowel Disease (SPARC IBD), available via the IBD Plexus Program of the Crohn's & Colitis Foundation, we used a tree-based dichotomous approach to assemble distinct clusters of species-level bacterial co-abundance groups (CAGs). We evaluated the abundance of bacterial CAGs and fungal taxa during remission (n = 166) and activity (n = 46). We examined if the bacterial CAGs identified in our cohorts were conserved in 2 healthy cohorts and a Korean UC cohort. RESULTS CAG3 and CAG8, dominated by bacteria from the family Lachnospiraceae, were associated with remission. Low abundance of CAG8 and elevated abundance of Candida genus were predictive of active UC. Constituents from CAG8 were influential hub species of the remission-associated microbial UC network, including Ruminococcus gnavus, Erysipelatoclostridium ramosum, Blautia, and Dorea species. These hub species interactions were preserved in 2 healthy cohorts and were partially recapitulated in a Korean UC cohort. CAG8 abundance correlated with the secondary bile acid production pathway. Bacterial CAGs did not correlate with Candida; however, Bifidobacterium adolescentis and Alistipes putredinis were negatively associated with Candida. CONCLUSIONS Lachnospiraceae-dominated bacterial CAGs were associated with remission in UC, with key bacterial interactions within the CAG also observed in 2 healthy cohorts and a Korean UC cohort. Bacterial CAG-based analyses may aid in designing candidate consortia for microbiome-based therapeutics.
Collapse
Affiliation(s)
- Sushrut Jangi
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Naisi Zhao
- Tufts University School of Medicine, Public Health and Community Medicine, Boston, MA, USA
| | - Katie Hsia
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dominique S Michaud
- Tufts University School of Medicine, Public Health and Community Medicine, Boston, MA, USA
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Sentürk NB, Kasapoglu B, Sahin E, Ozcan O, Ozansoy M, Ozansoy MB, Siyah P, Sezerman U, Sahin F. The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study. Pharmaceuticals (Basel) 2024; 17:1334. [PMID: 39458975 PMCID: PMC11510266 DOI: 10.3390/ph17101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The role of the gut microbiome in the development and progression of many diseases has received increased attention in recent years. Boron, a trace mineral found in dietary sources, has attracted interest due to its unique electron depletion and coordination characteristics in chemistry, as well as its potential role in modulating the gut microbiota. This study investigates the effects of inorganic boron derivatives on the gut microbiota of mice. Methods: For three weeks, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) were dissolved (200 mg/kg each) in drinking water and administered to wild-type BALB/c mice. The composition of the gut microbiota was analyzed to determine the impact of these treatments. Results: The administration of BA significantly altered the composition of the gut microbiota, resulting in a rise in advantageous species such as Barnesiella and Alistipes. Additionally, there was a decrease in some taxa associated with inflammation and illness, such as Clostridium XIVb and Bilophila. Notable increases in genera like Treponema and Catellicoccus were observed, suggesting the potential of boron compounds to enrich microbial communities with unique metabolic functions. Conclusions: These findings indicate that boron compounds may have the potential to influence gut microbiota composition positively, offering potential prebiotic effects. Further research with additional analyses is necessary to fully understand the interaction between boron and microbiota and to explore the possibility of their use as prebiotic agents in clinical settings.
Collapse
Affiliation(s)
- Nermin Basak Sentürk
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
| | - Burcu Kasapoglu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
- Abdi Ibrahim Pharmaceuticals, Biotechnological Products Production Facility (AbdiBio), 34538 Istanbul, Turkey
| | - Eray Sahin
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | | | - Mehmet Ozansoy
- Department of Physiology, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Muzaffer Beyza Ozansoy
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Fenerbahçe University, 34758 Istanbul, Turkey;
| | - Pinar Siyah
- Department of Biochemistry, School of Pharmacy, Bahçeşehir University, 34353 Istanbul, Turkey;
| | - Ugur Sezerman
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
| |
Collapse
|
8
|
Li Y, Han S. Metabolomic Applications in Gut Microbiota-Host Interactions in Human Diseases. Gastroenterol Clin North Am 2024; 53:383-397. [PMID: 39068001 DOI: 10.1016/j.gtc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The human gut microbiota, consisting of trillions of microorganisms, encodes diverse metabolic pathways that impact numerous aspects of host physiology. One key way in which gut bacteria interact with the host is through the production of small metabolites. Several of these microbiota-dependent metabolites, such as short-chain fatty acids, have been shown to modulate host diseases. In this review, we examine how disease-associated metabolic signatures are identified using metabolomic platforms, and where metabolomics is applied in gut microbiota-disease interactions. We further explore how integration of metagenomic and metabolomic data in human studies can facilitate biomarkers discoveries in precision medicine.
Collapse
Affiliation(s)
- Yuxin Li
- Biochemistry Graduate Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shuo Han
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, NC 27710, USA.
| |
Collapse
|
9
|
Chow EW, Pang LM, Wang Y. The impact of the host microbiota on Candida albicans infection. Curr Opin Microbiol 2024; 80:102507. [PMID: 38955050 DOI: 10.1016/j.mib.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The human microbiota is a complex microbial ecosystem populated by bacteria, fungi, viruses, protists, and archaea. The coexistence of fungi alongside with many billions of bacteria, especially in the gut, involves complex interactions, ranging from antagonistic to beneficial, between the members of these two kingdoms. Bacteria can impact fungi through various means, such as physical interactions, secretion of metabolites, or alteration of the host immune response, thereby affecting fungal growth and virulence. This review summarizes recent progress in this field, delving into the latest understandings of bacterial-fungal-immune interactions and innovative therapeutic approaches addressing the challenges of treating fungal infections associated with microbiota imbalances.
Collapse
Affiliation(s)
- Eve Wl Chow
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Li M Pang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Yue Wang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
d'Humières C, Delavy M, Alla L, Ichou F, Gauliard E, Ghozlane A, Levenez F, Galleron N, Quinquis B, Pons N, Mullaert J, Bridier-Nahmias A, Condamine B, Touchon M, Rainteau D, Lamazière A, Lesnik P, Ponnaiah M, Lhomme M, Sertour N, Devente S, Docquier JD, Bougnoux ME, Tenaillon O, Magnan M, Ruppé E, Grall N, Duval X, Ehrlich D, Mentré F, Denamur E, Rocha EPC, Le Chatelier E, Burdet C. Perturbation and resilience of the gut microbiome up to 3 months after β-lactams exposure in healthy volunteers suggest an important role of microbial β-lactamases. MICROBIOME 2024; 12:50. [PMID: 38468305 DOI: 10.1186/s40168-023-01746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/20/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the β-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of β-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the β-lactamase activity of the microbiota. The level of β-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous β-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.
Collapse
Affiliation(s)
- Camille d'Humières
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Margot Delavy
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
| | - Laurie Alla
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Farid Ichou
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Emilie Gauliard
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Amine Ghozlane
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, F-75015, France
| | - Florence Levenez
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Nathalie Galleron
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Benoit Quinquis
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Nicolas Pons
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Jimmy Mullaert
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France
| | | | | | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Dominique Rainteau
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Antonin Lamazière
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Philippe Lesnik
- INSERM UMR-S 1166, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Maharajah Ponnaiah
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Marie Lhomme
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
| | - Savannah Devente
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
- AP-HP, Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Paris, F-75015, France
| | | | - Mélanie Magnan
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
| | - Etienne Ruppé
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, F-75018, France
| | - Nathalie Grall
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, F-75018, France
| | - Xavier Duval
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Centre d'Investigation Clinique, INSERM CIC 1425, Hôpital Bichat, Paris, F-75018, France
| | - Dusko Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
- University College London, Institute for Neurology, London, UK
| | - France Mentré
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France
| | - Erick Denamur
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, F-75018, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | | | - Charles Burdet
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France.
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France.
| |
Collapse
|
11
|
Kreulen IAM, de Jonge WJ, van den Wijngaard RM, van Thiel IAM. Candida spp. in Human Intestinal Health and Disease: More than a Gut Feeling. Mycopathologia 2023; 188:845-862. [PMID: 37294505 PMCID: PMC10687130 DOI: 10.1007/s11046-023-00743-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Fungi are an essential part of the normal collection of intestinal microorganisms, even though their collective abundance comprises only 0.1-1% of all fecal microbes. The composition and role of the fungal population is often studied in relation to early-life microbial colonization and development of the (mucosal) immune system. The genus Candida is frequently described as one of the most abundant genera, and altered fungal compositions (including elevated abundance of Candida spp.) have been linked with intestinal diseases such as inflammatory bowel disease and irritable bowel syndrome. These studies are performed using both culture-dependent and genomic (metabarcoding) techniques. In this review, we aimed to summarize existing data on intestinal Candida spp. colonization in relation to intestinal disease and provide a brief overview of the biological and technical challenges in this field, including the recently described role of sub-species strain variation of intestinal Candida albicans. Together, the evidence for a contributing role of Candida spp. in pediatric and adult intestinal disease is quickly expanding, even though technical and biological challenges may limit full understanding of host-microbe interactions.
Collapse
Affiliation(s)
- Irini A M Kreulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127, Bonn, Germany
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Isabelle A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands.
- Royal Netherlands Academy of Arts and Sciences, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Delavy M, Sertour N, d'Enfert C, Bougnoux ME. Metagenomics and metabolomics approaches in the study of Candida albicans colonization of host niches: a framework for finding microbiome-based antifungal strategies. Trends Microbiol 2023; 31:1276-1286. [PMID: 37652786 DOI: 10.1016/j.tim.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
In silico and experimental approaches have allowed an ever-growing understanding of the interactions within the microbiota. For instance, recently acquired data have increased knowledge of the mechanisms that support, in the gut and vaginal microbiota, the resistance to colonization by Candida albicans, an opportunistic fungal pathogen whose overgrowth can initiate severe infections in immunocompromised patients. Here, we review how bacteria from the microbiota interact with C. albicans. We show how recent OMICs-based pipelines, using metagenomics and/or metabolomics, have identified bacterial species and metabolites modulating C. albicans growth. We finally discuss how the combined use of cutting-edge OMICs-based and experimental approaches could provide new means to control C. albicans overgrowth within the microbiota and prevent its consequences.
Collapse
Affiliation(s)
- Margot Delavy
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France; Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Necker-Enfants-Malades, Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Paris, France.
| |
Collapse
|
13
|
Ning L, Zhou YL, Sun H, Zhang Y, Shen C, Wang Z, Xuan B, Zhao Y, Ma Y, Yan Y, Tong T, Huang X, Hu M, Zhu X, Ding J, Zhang Y, Cui Z, Fang JY, Chen H, Hong J. Microbiome and metabolome features in inflammatory bowel disease via multi-omics integration analyses across cohorts. Nat Commun 2023; 14:7135. [PMID: 37932270 PMCID: PMC10628233 DOI: 10.1038/s41467-023-42788-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
The perturbations of the gut microbiota and metabolites are closely associated with the progression of inflammatory bowel disease (IBD). However, inconsistent findings across studies impede a comprehensive understanding of their roles in IBD and their potential as reliable diagnostic biomarkers. To address this challenge, here we comprehensively analyze 9 metagenomic and 4 metabolomics cohorts of IBD from different populations. Through cross-cohort integrative analysis (CCIA), we identify a consistent characteristic of commensal gut microbiota. Especially, three bacteria, namely Asaccharobacter celatus, Gemmiger formicilis, and Erysipelatoclostridium ramosum, which are rarely reported in IBD. Metagenomic functional analysis reveals that essential gene of Two-component system pathway, linked to fecal calprotectin, are implicated in IBD. Metabolomics analysis shows 36 identified metabolites with significant differences, while the roles of these metabolites in IBD are still unknown. To further elucidate the relationship between gut microbiota and metabolites, we construct multi-omics biological correlation (MOBC) maps, which highlights gut microbial biotransformation deficiencies and significant alterations in aminoacyl-tRNA synthetases. Finally, we identify multi-omics biomarkers for IBD diagnosis, validated across multiple global cohorts (AUROC values ranging from 0.92 to 0.98). Our results offer valuable insights and a significant resource for developing mechanistic hypotheses on host-microbiome interactions in IBD.
Collapse
Affiliation(s)
- Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yi-Lu Zhou
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Han Sun
- Department of Gastroenterology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Chaoqin Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Zhenhua Wang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Ying Zhao
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yuqing Yan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jinmei Ding
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yue Zhang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine. 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
14
|
Mirhakkak MH, Chen X, Ni Y, Heinekamp T, Sae-Ong T, Xu LL, Kurzai O, Barber AE, Brakhage AA, Boutin S, Schäuble S, Panagiotou G. Genome-scale metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome. Nat Commun 2023; 14:4369. [PMID: 37474497 PMCID: PMC10359302 DOI: 10.1038/s41467-023-39982-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
Aspergillus fumigatus, an opportunistic human pathogen, frequently infects the lungs of people with cystic fibrosis and is one of the most common causes of infectious-disease death in immunocompromised patients. Here, we construct 252 strain-specific, genome-scale metabolic models of this important fungal pathogen to study and better understand the metabolic component of its pathogenic versatility. The models show that 23.1% of A. fumigatus metabolic reactions are not conserved across strains and are mainly associated with amino acid, nucleotide, and nitrogen metabolism. Profiles of non-conserved reactions and growth-supporting reaction fluxes are sufficient to differentiate strains, for example by environmental or clinical origin. In addition, shotgun metagenomics analysis of sputum from 40 cystic fibrosis patients (15 females, 25 males) before and after diagnosis with an A. fumigatus colonization suggests that the fungus shapes the lung microbiome towards a more beneficial fungal growth environment associated with aromatic amino acid availability and the shikimate pathway. Our findings are starting points for the development of drugs or microbiome intervention strategies targeting fungal metabolic needs for survival and colonization in the non-native environment of the human lung.
Collapse
Affiliation(s)
- Mohammad H Mirhakkak
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
| | - Xiuqiang Chen
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
| | - Tongta Sae-Ong
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
| | - Lin-Lin Xu
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, 97080, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute of Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute of Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
| | - Amelia E Barber
- Junior Research Group Fungal Informatics, Institute of Microbiology, Friedrich-Schiller-University Jena, 07745, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Sebastien Boutin
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23562, Lübeck, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, 69120, Heidelberg, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany.
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China.
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, 07745, Germany.
| |
Collapse
|
15
|
Seelbinder B, Lohinai Z, Vazquez-Uribe R, Brunke S, Chen X, Mirhakkak M, Lopez-Escalera S, Dome B, Megyesfalvi Z, Berta J, Galffy G, Dulka E, Wellejus A, Weiss GJ, Bauer M, Hube B, Sommer MOA, Panagiotou G. Candida expansion in the gut of lung cancer patients associates with an ecological signature that supports growth under dysbiotic conditions. Nat Commun 2023; 14:2673. [PMID: 37160893 PMCID: PMC10169812 DOI: 10.1038/s41467-023-38058-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Candida species overgrowth in the human gut is considered a prerequisite for invasive candidiasis, but our understanding of gut bacteria promoting or restricting this overgrowth is still limited. By integrating cross-sectional mycobiome and shotgun metagenomics data from the stool of 75 male and female cancer patients at risk but without systemic candidiasis, bacterial communities in high Candida samples display higher metabolic flexibility yet lower contributional diversity than those in low Candida samples. We develop machine learning models that use only bacterial taxa or functional relative abundances to predict the levels of Candida genus and species in an external validation cohort with an AUC of 78.6-81.1%. We propose a mechanism for intestinal Candida overgrowth based on an increase in lactate-producing bacteria, which coincides with a decrease in bacteria that regulate short chain fatty acid and oxygen levels. Under these conditions, the ability of Candida to harness lactate as a nutrient source may enable Candida to outcompete other fungi in the gut.
Collapse
Affiliation(s)
- Bastian Seelbinder
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sascha Brunke
- Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Xiuqiang Chen
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Mohammad Mirhakkak
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Silvia Lopez-Escalera
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | - Anja Wellejus
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
| | - Glen J Weiss
- Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bernhard Hube
- Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
16
|
A Clinical Study Provides the First Direct Evidence That Interindividual Variations in Fecal β-Lactamase Activity Affect the Gut Mycobiota Dynamics in Response to β-Lactam Antibiotics. mBio 2022; 13:e0288022. [PMID: 36448778 PMCID: PMC9765473 DOI: 10.1128/mbio.02880-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Antibiotics disturb the intestinal bacterial microbiota, leading to gut dysbiosis and an increased risk for the overgrowth of opportunistic pathogens. It is not fully understood to what extent antibiotics affect the fungal fraction of the intestinal microbiota, the mycobiota. There is no report of the direct role of antibiotics in the overgrowth in healthy humans of the opportunistic pathogenic yeast Candida albicans. Here, we have explored the gut mycobiota of 22 healthy subjects before, during, and up to 6 months after a 3-day regimen of third-generation cephalosporins (3GCs). Using ITS1-targeted metagenomics, we highlighted the strong intra- and interindividual diversity of the healthy gut mycobiota. With a specific quantitative approach, we showed that C. albicans prevalence was much higher than previously reported, with all subjects but one being carriers of C. albicans, although with highly variable burdens. 3GCs significantly altered the mycobiota composition and the fungal load was increased both at short and long term. Both C. albicans relative and absolute abundances were increased but 3GCs did not reduce intersubject variability. Variations in C. albicans burden in response to 3GC treatment could be partly explained by changes in the levels of endogenous fecal β-lactamase activity, with subjects characterized by a high increase of β-lactamase activity displaying a lower increase of C. albicans levels. A same antibiotic treatment might thus affect differentially the gut mycobiota and C. albicans carriage, depending on the treated subject, suggesting a need to adjust the current risk factors for C. albicans overgrowth after a β-lactam treatment. IMPORTANCE Fungal infections are redoubtable healthcare-associated complications in immunocompromised patients. Particularly, the commensal intestinal yeast Candida albicans causes invasive infections in intensive care patients and is, therefore, associated with high mortality. These infections are preceded by an intestinal expansion of C. albicans before its translocation into the bloodstream. Antibiotics are a well-known risk factor for C. albicans overgrowth but the impact of antibiotic-induced dysbiosis on the human gut mycobiota-the fungal microbiota-and the understanding of the mechanisms involved in C. albicans overgrowth in humans are very limited. Our study shows that antibiotics increase the fungal proportion in the gut and disturb the fungal composition, especially C. albicans, in a subject-dependent manner. Indeed, variations across subjects in C. albicans burden in response to β-lactam treatment could be partly explained by changes in the levels of endogenous fecal β-lactamase activity. This highlighted a potential new key factor for C. albicans overgrowth. Thus, the significance of our research is in providing a better understanding of the factors behind C. albicans intestinal overgrowth, which might lead to new means to prevent life-threatening secondary infections.
Collapse
|
17
|
Zheng X, Nie W, Xu J, Zhang H, Liang X, Chen Z. Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose. Food Res Int 2022; 162:112024. [PMID: 36461308 DOI: 10.1016/j.foodres.2022.112024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/13/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Fungal infection and/or spoilage are major concerns of crop and food security worldwide, prompting the developments and application of various antimicrobial agents. In this study, nine strains of lactic acid bacteria (LAB) with antifungal activities were isolated from the traditional Chinese fermented wort of Meigui rice vinegar, where fungi coexist. The cell-free supernatant (CFS) of Lacticaseibacillus paracasei ZX1231 exhibited significant inhibitory activities against Aspergillus niger, Penicillium citrinum, Penicillium polonicum, Zygosaccharomyces rouxii, Talaromyces rubrifaciens, and Candida albicans. Among the four cyclic dipeptides (CDPs) uncovered from the CFS, cyclo(Phe-Leu) and cyclo(Anthranily-Pro) were found in the family Lactobacillaceae for the first time, which inhibited the C. albicans filamentation by targeting upon RAS1-cAMP-PKA pathway. CFS antifungal activities were optimally combined with a bacterial nanocellulose (BNC) matrix to prepare the active quality packaging CFS-BNC films. The challenge tests confirmed that CFS-BNC films significantly inhibited the fungi growth and thus prolonged the shelf life of bread, beef, cheese and soy sauce. L. paracasei ZX1231, its CFS, and the CFS-BNC film may have extensive applications in food preservation and food packaging.
Collapse
|
18
|
Aminian-Dehkordi J, Valiei A, Mofrad MRK. Emerging computational paradigms to address the complex role of gut microbial metabolism in cardiovascular diseases. Front Cardiovasc Med 2022; 9:987104. [PMID: 36299869 PMCID: PMC9589059 DOI: 10.3389/fcvm.2022.987104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The human gut microbiota and its associated perturbations are implicated in a variety of cardiovascular diseases (CVDs). There is evidence that the structure and metabolic composition of the gut microbiome and some of its metabolites have mechanistic associations with several CVDs. Nevertheless, there is a need to unravel metabolic behavior and underlying mechanisms of microbiome-host interactions. This need is even more highlighted when considering that microbiome-secreted metabolites contributing to CVDs are the subject of intensive research to develop new prevention and therapeutic techniques. In addition to the application of high-throughput data used in microbiome-related studies, advanced computational tools enable us to integrate omics into different mathematical models, including constraint-based models, dynamic models, agent-based models, and machine learning tools, to build a holistic picture of metabolic pathological mechanisms. In this article, we aim to review and introduce state-of-the-art mathematical models and computational approaches addressing the link between the microbiome and CVDs.
Collapse
Affiliation(s)
| | | | - Mohammad R. K. Mofrad
- Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
19
|
Ricci L, Mackie J, Donachie GE, Chapuis A, Mezerová K, Lenardon MD, Brown AJP, Duncan SH, Walker AW. Human gut bifidobacteria inhibit the growth of the opportunistic fungal pathogen Candida albicans. FEMS Microbiol Ecol 2022; 98:fiac095. [PMID: 36007932 PMCID: PMC9486989 DOI: 10.1093/femsec/fiac095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
The human gut microbiota protects the host from invading pathogens and the overgrowth of indigenous opportunistic species via a process called colonization resistance. Here, we investigated the antagonistic activity of human gut bacteria towards Candida albicans, an opportunistic fungal pathogen that can cause severe infections in susceptible individuals. Coculture batch incubations of C. albicans in the presence of faecal microbiota from six healthy individuals revealed varying levels of inhibitory activity against C. albicans. 16S rRNA gene amplicon profiling of these faecal coculture bacterial communities showed that the Bifidobacteriaceae family, and Bifidobacterium adolescentis in particular, were most correlated with antagonistic activity against C. albicans. Follow-up mechanistic studies performed under anaerobic conditions confirmed that culture supernatants of Bifidobacterium species, particularly B. adolescentis, inhibited C. albicans in vitro. Fermentation acids (FA), including acetate and lactate, present in the bifidobacterial supernatants were important contributors to inhibitory activity. However, increasing the pH of both bacterial supernatants and mixtures of FA reduced their anti-Candida effects, indicating a combinatorial effect of prevailing pH and FA. This work, therefore, demonstrates potential mechanisms underpinning gut microbiome-mediated colonization resistance against C. albicans, and identifies particularly inhibitory components such as bifidobacteria and FA as targets for further study.
Collapse
Affiliation(s)
- Liviana Ricci
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
- CIBIO - Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, 38123, Italy
| | - Joanna Mackie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Gillian E Donachie
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Ambre Chapuis
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Kristýna Mezerová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, 77515, Czech Republic
| | - Megan D Lenardon
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Sylvia H Duncan
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
20
|
Nel Van Zyl K, Whitelaw AC, Hesseling AC, Seddon JA, Demers AM, Newton-Foot M. Fungal diversity in the gut microbiome of young South African children. BMC Microbiol 2022; 22:201. [PMID: 35978282 PMCID: PMC9387017 DOI: 10.1186/s12866-022-02615-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal microbiome, or mycobiome, is a poorly described component of the gut ecosystem and little is known about its structure and development in children. In South Africa, there have been no culture-independent evaluations of the child gut mycobiota. This study aimed to characterise the gut mycobiota and explore the relationships between fungi and bacteria in the gut microbiome of children from Cape Town communities. METHODS Stool samples were collected from children enrolled in the TB-CHAMP clinical trial. Internal transcribed spacer 1 (ITS1) gene sequencing was performed on a total of 115 stool samples using the Illumina MiSeq platform. Differences in fungal diversity and composition in relation to demographic, clinical, and environmental factors were investigated, and correlations between fungi and previously described bacterial populations in the same samples were described. RESULTS Taxa from the genera Candida and Saccharomyces were detected in all participants. Differential abundance analysis showed that Candida spp. were significantly more abundant in children younger than 2 years compared to older children. The gut mycobiota was less diverse than the bacterial microbiota of the same participants, consistent with the findings of other human microbiome studies. The variation in richness and evenness of fungi was substantial, even between individuals of the same age. There was significant association between vitamin A supplementation and higher fungal alpha diversity (p = 0.047), and girls were shown to have lower fungal alpha diversity (p = 0.003). Co-occurrence between several bacterial taxa and Candida albicans was observed. CONCLUSIONS The dominant fungal taxa in our study population were similar to those reported in other paediatric studies; however, it remains difficult to identify the true core gut mycobiota due to the challenges set by the low abundance of gut fungi and the lack of true gut colonising species. The connection between the microbiota, vitamin A supplementation, and growth and immunity warrants exploration, especially in populations at risk for micronutrient deficiencies. While we were able to provide insight into the gut mycobiota of young South African children, further functional studies are necessary to explain the role of the mycobiota and the correlations between bacteria and fungi in human health.
Collapse
Affiliation(s)
- K Nel Van Zyl
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa.
| | - A C Whitelaw
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- African Microbiome Institute, Stellenbosch University, Stellenbosch, South Africa
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - J A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A-M Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Service de Microbiologie, Département Clinique de Médecine de Laboratoire, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | - M Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
21
|
Kumar RK, Singh NK, Balakrishnan S, Parker CW, Raman K, Venkateswaran K. Metabolic modeling of the International Space Station microbiome reveals key microbial interactions. MICROBIOME 2022; 10:102. [PMID: 35791019 PMCID: PMC9258157 DOI: 10.1186/s40168-022-01279-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Recent studies have provided insights into the persistence and succession of microbes aboard the International Space Station (ISS), notably the dominance of Klebsiella pneumoniae. However, the interactions between the various microbes aboard the ISS and how they shape the microbiome remain to be clearly understood. In this study, we apply a computational approach to predict possible metabolic interactions in the ISS microbiome and shed further light on its organization. RESULTS Through a combination of a systems-based graph-theoretical approach, and a constraint-based community metabolic modeling approach, we demonstrated several key interactions in the ISS microbiome. These complementary approaches provided insights into the metabolic interactions and dependencies present amongst various microbes in a community, highlighting key interactions and keystone species. Our results showed that the presence of K. pneumoniae is beneficial to many other microorganisms it coexists with, notably those from the Pantoea genus. Species belonging to the Enterobacteriaceae family were often found to be the most beneficial for the survival of other microorganisms in the ISS microbiome. However, K. pneumoniae was found to exhibit parasitic and amensalistic interactions with Aspergillus and Penicillium species, respectively. To prove this metabolic prediction, K. pneumoniae and Aspergillus fumigatus were co-cultured under normal and simulated microgravity, where K. pneumoniae cells showed parasitic characteristics to the fungus. The electron micrography revealed that the presence of K. pneumoniae compromised the morphology of fungal conidia and degenerated its biofilm-forming structures. CONCLUSION Our study underscores the importance of K. pneumoniae in the ISS, and its potential positive and negative interactions with other microbes, including potential pathogens. This integrated modeling approach, combined with experiments, demonstrates the potential for understanding the organization of other such microbiomes, unravelling key organisms and their interdependencies. Video Abstract.
Collapse
Affiliation(s)
- Rachita K Kumar
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Nitin Kumar Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Sanjaay Balakrishnan
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Karthik Raman
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA.
| |
Collapse
|
22
|
Kumar RK, Singh NK, Balakrishnan S, Parker CW, Raman K, Venkateswaran K. Metabolic modeling of the International Space Station microbiome reveals key microbial interactions. MICROBIOME 2022. [PMID: 35791019 DOI: 10.1101/2021.09.03.458819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recent studies have provided insights into the persistence and succession of microbes aboard the International Space Station (ISS), notably the dominance of Klebsiella pneumoniae. However, the interactions between the various microbes aboard the ISS and how they shape the microbiome remain to be clearly understood. In this study, we apply a computational approach to predict possible metabolic interactions in the ISS microbiome and shed further light on its organization. RESULTS Through a combination of a systems-based graph-theoretical approach, and a constraint-based community metabolic modeling approach, we demonstrated several key interactions in the ISS microbiome. These complementary approaches provided insights into the metabolic interactions and dependencies present amongst various microbes in a community, highlighting key interactions and keystone species. Our results showed that the presence of K. pneumoniae is beneficial to many other microorganisms it coexists with, notably those from the Pantoea genus. Species belonging to the Enterobacteriaceae family were often found to be the most beneficial for the survival of other microorganisms in the ISS microbiome. However, K. pneumoniae was found to exhibit parasitic and amensalistic interactions with Aspergillus and Penicillium species, respectively. To prove this metabolic prediction, K. pneumoniae and Aspergillus fumigatus were co-cultured under normal and simulated microgravity, where K. pneumoniae cells showed parasitic characteristics to the fungus. The electron micrography revealed that the presence of K. pneumoniae compromised the morphology of fungal conidia and degenerated its biofilm-forming structures. CONCLUSION Our study underscores the importance of K. pneumoniae in the ISS, and its potential positive and negative interactions with other microbes, including potential pathogens. This integrated modeling approach, combined with experiments, demonstrates the potential for understanding the organization of other such microbiomes, unravelling key organisms and their interdependencies. Video Abstract.
Collapse
Affiliation(s)
- Rachita K Kumar
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Nitin Kumar Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Sanjaay Balakrishnan
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Karthik Raman
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA.
| |
Collapse
|
23
|
Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun 2022; 13:3192. [PMID: 35680868 PMCID: PMC9184479 DOI: 10.1038/s41467-022-30661-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species - a major predisposing factor for disseminated candidiasis. Commensal bacteria such as Lactobacillus rhamnosus can antagonize Candida albicans pathogenicity. Here, we investigate the interplay between C. albicans, L. rhamnosus, and intestinal epithelial cells by integrating transcriptional and metabolic profiling, and reverse genetics. Untargeted metabolomics and in silico modelling indicate that intestinal epithelial cells foster bacterial growth metabolically, leading to bacterial production of antivirulence compounds. In addition, bacterial growth modifies the metabolic environment, including removal of C. albicans' favoured nutrient sources. This is accompanied by transcriptional and metabolic changes in C. albicans, including altered expression of virulence-related genes. Our results indicate that intestinal colonization with bacteria can antagonize C. albicans by reshaping the metabolic environment, forcing metabolic adaptations that reduce fungal pathogenicity.
Collapse
|
24
|
Niemiec MJ, Kapitan M, Himmel M, Döll K, Krüger T, Köllner TG, Auge I, Kage F, Alteri CJ, Mobley HL, Monsen T, Linde S, Nietzsche S, Kniemeyer O, Brakhage AA, Jacobsen ID. Augmented Enterocyte Damage During Candida albicans and Proteus mirabilis Coinfection. Front Cell Infect Microbiol 2022; 12:866416. [PMID: 35651758 PMCID: PMC9149288 DOI: 10.3389/fcimb.2022.866416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
The human gut acts as the main reservoir of microbes and a relevant source of life-threatening infections, especially in immunocompromised patients. There, the opportunistic fungal pathogen Candida albicans adapts to the host environment and additionally interacts with residing bacteria. We investigated fungal-bacterial interactions by coinfecting enterocytes with the yeast Candida albicans and the Gram-negative bacterium Proteus mirabilis resulting in enhanced host cell damage. This synergistic effect was conserved across different P. mirabilis isolates and occurred also with non-albicans Candida species and C. albicans mutants defective in filamentation or candidalysin production. Using bacterial deletion mutants, we identified the P. mirabilis hemolysin HpmA to be the key effector for host cell destruction. Spatially separated coinfections demonstrated that synergism between Candida and Proteus is induced by contact, but also by soluble factors. Specifically, we identified Candida-mediated glucose consumption and farnesol production as potential triggers for Proteus virulence. In summary, our study demonstrates that coinfection of enterocytes with C. albicans and P. mirabilis can result in increased host cell damage which is mediated by bacterial virulence factors as a result of fungal niche modification via nutrient consumption and production of soluble factors. This supports the notion that certain fungal-bacterial combinations have the potential to result in enhanced virulence in niches such as the gut and might therefore promote translocation and dissemination.
Collapse
Affiliation(s)
- Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Maximilian Himmel
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Kristina Döll
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Isabel Auge
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Franziska Kage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Harry L.T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tor Monsen
- Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Susanne Linde
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- *Correspondence: Ilse D. Jacobsen,
| |
Collapse
|
25
|
Abstract
The tight association of Candida albicans with the human host has driven the evolution of mechanisms that permit metabolic flexibility. Amino acids, present in a free or peptide-bound form, are abundant carbon and nitrogen sources in many host niches. In C. albicans, the capacity to utilize certain amino acids, like proline, is directly connected to fungal morphogenesis and virulence. Yet the precise nature of proline sensing and uptake in this pathogenic fungus has not been investigated. Since C. albicans encodes 10 putative orthologs of the four Saccharomyces cerevisiae proline transporters, we tested deletion strains of the respective genes and identified Gnp2 (CR_09920W) as the main C. albicans proline permease. In addition, we found that this specialization of Gnp2 was reflected in its transcriptional regulation and further assigned distinct substrate specificities for the other orthologs, indicating functional differences of the C. albicans amino acid permeases compared to the model yeast. The physiological relevance of proline uptake is exemplified by the findings that strains lacking GNP2 were unable to filament in response to extracellular proline and had a reduced capacity to damage macrophages and impaired survival following phagocytosis. Furthermore, GNP2 deletion rendered the cells more sensitive to oxidative stress, illustrating new connections between amino acid uptake and stress adaptation in C. albicans. IMPORTANCE The utilization of various nutrients is of paramount importance for the ability of Candida albicans to successfully colonize and infect diverse host niches. In this context, amino acids are of special interest due to their ubiquitous availability, relevance for fungal growth, and direct influence on virulence traits like filamentation. In this study, we identify a specialized proline transporter in C. albicans encoded by GNP2. The corresponding amino acid permease is essential for proline-induced filamentation, oxidative stress resistance, and fungal survival following interaction with macrophages. Altogether, this work highlights the importance of amino acid uptake for metabolic and stress adaptation in this fungus.
Collapse
|
26
|
Abstract
The fungus Candida albicans is a ubiquitous member of the human gut microbiota. Hundreds or thousands of bacterial taxa reside together with this fungus in the intestine, creating a milieu with myriad opportunities for inter-kingdom interactions. Indeed, recent studies examining the broader composition - that is, monitoring not only bacteria but also the often neglected fungal component - of the gut microbiota hint that there are significant interdependencies between fungi and bacteria. Gut bacteria closely associate with C. albicans cells in the colon, break down and feed on complex sugars decorating the fungal cell wall, and shape the intestinal microhabitats occupied by the fungus. Peptidoglycan subunits released by bacteria upon antibiotic treatment can promote C. albicans dissemination from the intestine, seeding bloodstream infections that often become life-threatening. Elucidating the principles that govern the fungus-bacteria interplay may open the door to novel approaches to prevent C. albicans infections originating in the gut.
Collapse
Affiliation(s)
- J. Christian Pérez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, USA,CONTACT J.Christian Pérez Department of Microbiology and Molecular Genetics, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
27
|
Analyzing the human gut mycobiome – a short guide for beginners. Comput Struct Biotechnol J 2022; 20:608-614. [PMID: 35116136 PMCID: PMC8790610 DOI: 10.1016/j.csbj.2022.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
The human body is a dynamic ecosystem consisting of millions of microbes which are often comprised under the term microbiome. Compared to bacteria, which count for the overwhelming majority of the microbiome, the number of human-associated fungi is small and often underestimated. Nonetheless, they can be found in different host niches such as the gut, the oral cavity and the skin. The fungal community has several potential roles in health and disease of the human host. In this review we will focus on intestinal fungi and their interaction with the host as well as bacteria. We also summarize technical challenges and possible biases researchers must be aware of when conducting mycobiome analysis.
Collapse
|
28
|
Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, Kost C. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr Biol 2021; 31:5547-5557.e6. [PMID: 34731676 DOI: 10.1016/j.cub.2021.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
The exchange of metabolites among different bacterial genotypes profoundly impacts the structure and function of microbial communities. However, the factors governing the establishment of these cross-feeding interactions remain poorly understood. While shared physiological features may facilitate interactions among more closely related individuals, a lower relatedness should reduce competition and thus increase the potential for synergistic interactions. Here, we investigate how the relationship between a metabolite donor and recipient affects the propensity of strains to engage in unidirectional cross-feeding interactions. For this, we performed pairwise cocultivation experiments between four auxotrophic recipients and 25 species of potential amino acid donors. Auxotrophic recipients grew in the vast majority of pairs tested (63%), suggesting metabolic cross-feeding interactions are readily established. Strikingly, both the phylogenetic distance between donor and recipient and the dissimilarity of their metabolic networks were positively associated with the growth of auxotrophic recipients. Analyzing the co-growth of species from a gut microbial community in silico also revealed that recipient genotypes benefitted more from interacting with metabolically dissimilar partners, thus corroborating the empirical results. Together, our work identifies the metabolic dissimilarity between bacterial genotypes as a key factor determining the establishment of metabolic cross-feeding interactions in microbial communities.
Collapse
Affiliation(s)
- Samir Giri
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Nutriinformatics, Christian-Albrechts-University Kiel, 24105 Kiel, Germany; Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Shraddha Shitut
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Ghada Yousif
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
29
|
Salekeen R, Siam MHB, Sharif DI, Lustgarten MS, Billah MM, Islam KMD. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. J Biochem Mol Toxicol 2021; 35:e22925. [PMID: 34580953 DOI: 10.1002/jbt.22925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Recent evidence has prompted the notion of gut-microbial signatures as an indirect marker of aging and aging-associated decline in humans. However, the underlying host-symbiont molecular interactions contributing to these signatures remain poorly understood. In this study, we address this gap using cheminformatic analyses to elucidate potential gut microbial metabolites that may perturb the longevity-associated NAD+ metabolic network. In silico ADMET, KEGG interaction analysis, molecular docking, molecular dynamics simulation, and molecular mechanics calculation predict a large number of safe and bioavailable microbial metabolites to be direct and/or indirect activators of NAD+-dependent sirtuin proteins. Our simulation results suggest dihydropteroate, phenylpyruvic acid, indole-3-propionic acid, phenyllactic acid, all-trans-retinoic acid, and multiple deoxy-, methyl-, and cyclic nucleotides from intestinal microbiota as the best-performing regulators of NAD+ metabolism. Retracing these molecules to their source microorganisms also suggest commensal Escherichia, Bacteroides, Bifidobacteria, and Lactobacilli to be associated with the highest number of pro-longevity metabolites. These findings from our early-stage study, therefore, provide an informatics-based context for previous evidence in the area and grant novel insights for future clinical investigation intersecting anti-aging drug discovery, probiotics, and gut microbial signatures.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Hasanul Banna Siam
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Dilara Islam Sharif
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
30
|
Loos D, Zhang L, Beemelmanns C, Kurzai O, Panagiotou G. DAnIEL: A User-Friendly Web Server for Fungal ITS Amplicon Sequencing Data. Front Microbiol 2021; 12:720513. [PMID: 34484161 PMCID: PMC8416086 DOI: 10.3389/fmicb.2021.720513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023] Open
Abstract
Trillions of microbes representing all kingdoms of life are resident in, and on, humans holding essential roles for the host development and physiology. The last decade over a dozen online tools and servers, accessible via public domain, have been developed for the analysis of bacterial sequences; however, the analysis of fungi is still in its infancy. Here, we present a web server dedicated to the comprehensive analysis of the human mycobiome for (i) translating raw sequencing reads to data tables and high-standard figures, (ii) integrating statistical analysis and machine learning with a manually curated relational database and (iii) comparing the user’s uploaded datasets with publicly available from the Sequence Read Archive. Using 1,266 publicly available Internal transcribed spacers (ITS) samples, we demonstrated the utility of DAnIEL web server on large scale datasets and show the differences in fungal communities between human skin and soil sites.
Collapse
Affiliation(s)
- Daniel Loos
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Lu Zhang
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, China
| |
Collapse
|