1
|
Li J, Li X, Li Y, Liu H, Wang Q. Artificial sweeteners in wastewater treatment plants: A systematic review of global occurrence, distribution, removal, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138644. [PMID: 40393290 DOI: 10.1016/j.jhazmat.2025.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/02/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
The widespread use of artificial sweeteners in foods, drinks, and pharmaceuticals has led to rising concentrations in wastewater, with specific sweeteners raising concerns due to demonstrated toxicological risks to ecosystems and humans. To date, a comprehensive summary of the occurrence, distribution, and removal status of artificial sweeteners in wastewater treatment plants (WWTP) is lacking, making it difficult to evaluate the associated risks and environmental impacts. We conducted a systematic review of scientific literature and grey literature with rigorous screening covering 24 countries and 6 continents. Globally, sucralose, acesulfame, saccharin, and cyclamate are prevalent artificial sweeteners in WWTP, with concentrations of 0.6-303.0 µg/L in influent and 0.1-81.2 µg/L in effluent. Sucralose showed obvious increasing concentrations over time in wastewater in the United States and Canada, with an increase of 5.6-5.7 µg/L·y in influent and 4.7-5.5 µg/L·y in effluent. Summer wastewater usually contains 11.1-33.3 % higher concentrations of artificial sweeteners than other seasons. Saccharin and cyclamate are the most easily removable sweeteners (>90.0 % removal) in WWTP, followed by acesulfame (25.0-70.1 %) and sucralose (-10.0-10.0 %). Wastewater treatment processes with longer HRT and more diverse microbial communities showed better performance in sucralose removal, while processes with aerobic conditions showed better performance in acesulfame and saccharin removal than anaerobic processes. Increasing trends for persistent sucralose and acesulfame removal have been observed globally, suggesting potential microbial evolution/adaptation. This review contributes to a comprehensive understanding of the spatiotemporal distribution and ever-evolving biodegradation of artificial sweeteners in WWTP, providing future perspectives and potential policy requirements.
Collapse
Affiliation(s)
- Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Yi Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
2
|
Li C, Wang L, Dai Q, Chong Y, Utsunomiya S, Wang H, Zhang Y, Han J. Chiral pesticide permethrin promotes the antibiotic resistance genes dissemination by transformation: Different chiral isomers engage in distinct regulatory pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137416. [PMID: 39904165 DOI: 10.1016/j.jhazmat.2025.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/28/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
The global dissemination of antibiotic resistance genes (ARGs) poses an increasingly urgent threat to both environmental and human health. The extensive use of chiral permethrin (PM), the most popular synthetic type I pyrethroid insecticide worldwide, has led to its increased detection in aquatic environments. However, our understanding of PM's role in spreading ARGs is still limited. Here, we systematically assessed the effects of two chiral isomers of 1R-cis-PM (CPM) and 1R-trans-PM (TPM) on the dissemination of ARGs in the aquatic environments by using a natural transformation (NT) model comprising plasmid pWH1274 and Acinetobacter baylyi ADP1. It was found that reactive oxygen species (ROS) was the main factor facilitating the NT of ARGs mediated by CPM and TPM, although their respective production mechanisms exhibited distinct pathways: CPM generates ROS primarily through the primary electron transport chain (ETC), whereas TPM does so via a secondary ETC. Furthermore, CPM enhanced NT by improving the bacterial competent state, while TPM promotes it by enhancing recombination. It was confirmed that both CPM and TPM have the potential to accelerate the spread of ARGs through distinct mechanisms. These findings will help us understand that different chiral isomers may pose risks through distinct mechanisms.
Collapse
Affiliation(s)
- Chenxi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Linjie Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qi Dai
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225000, PR China
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Institute of Technology for Carbon Neutralization, School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Xu J, Ding D, Fan Y, Chen R, Xia Y, Liang Y, Ding Y, Feng H. The overlooked risk of horizontal transfer of plasmid-borne antibiotic resistance genes induced by synthetic phenolic antioxidants. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137459. [PMID: 39908756 DOI: 10.1016/j.jhazmat.2025.137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Plasmid-borne conjugation transfer of antibiotic resistance genes (ARGs) triggered by non-antibiotic stresses has attracted widespread attention, known to motivate conjugation through well-recognized reactive oxygen species and SOS response. However, a notable knowledge gap remains on the potential risks of reductive compounds, such as synthetic phenolic antioxidants (SPAs), in facilitating horizontal gene transfer by the other mechanisms beyond intracellular ROS. Therefore, intragenus and wastewater indigenous microbiota conjugation models were established to examine conjugative transfer frequency of RP4 plasmid under exposure of four extensively detected SPAs. The mechanisms were elucidated utilizing fluorescence detection, RT-qPCR, and transcriptomic analysis with 3-tert-butyl-4-hydroxyanisole (BHA) serving as a representative SPA. Results demonstrated that conjugation transfer frequencies of both models were significantly promoted without triggering SOS responses under exposure to high doses of BHA. Furthermore, BHA exposure benefited conjugation progress through improving membrane permeability of donors and ameliorating cellular energy supply. In addition, BHA exposure activated the RP4-encoded transfer apparatus by regulating the expression of associated genes. This study highlighted and provided a stark reminder about the potential horizontal gene transfer risks posed by SPAs exposure, which were regarded as a neglected driver in the dissemination of ARGs.
Collapse
Affiliation(s)
- Jixiao Xu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Danna Ding
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Yuhang Fan
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ruya Chen
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yijing Xia
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yuxiang Liang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Yangcheng Ding
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China.
| | - Huajun Feng
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| |
Collapse
|
4
|
Hossain MS, Wazed MA, Asha S, Hossen MA, Fime SNM, Teeya ST, Jenny LY, Dash D, Shimul IM. Flavor and Well-Being: A Comprehensive Review of Food Choices, Nutrition, and Health Interactions. Food Sci Nutr 2025; 13:e70276. [PMID: 40384991 PMCID: PMC12082435 DOI: 10.1002/fsn3.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
Human beings are naturally drawn to food flavors and pleasant aromas, which not only guide food choices but also contribute to health by promoting the intake of nutritious foods, aiding digestion, and enhancing emotional well-being. This review explores the complex relationship between flavor, nutrition, and health, highlighting that flavor perception can be affected by genetic susceptibility, age, culture, gender, and early life experiences. They influence emotional and physiological responses through brain mechanisms, directly affecting food selection and health outcomes. The use of natural flavors enhances the taste of food and encourages healthier food choices. In contrast, the widespread use of artificial flavors, while often boosting food sales, often leads to the overconsumption of less nutritious products, thereby increasing potential health risks. There is a growing trend among health-conscious consumers that shows a preference for natural and organic flavors, despite challenges such as low bioavailability and limited evidence of their effectiveness. However, advancements in food processing technologies such as microencapsulation and novel extraction methods offer promising tools to improve flavor stability and sensory acceptance, making healthier products more appealing and widely acceptable. In addition, the use of flavor in a strategic manner is most relevant in food reformulation, dietary interventions, and nutrition education, where it can influence consumers to make more health-conscious and sustainable food choices. Subsequent research needs to focus on human trials to optimize flavor delivery techniques and dosages, along with the role of genetic traits and environmental influences on customized flavor perception. Governments across the world need to impose stricter regulations on synthetic additives to ensure safety and safeguard consumer health.
Collapse
Affiliation(s)
- Md Sakhawot Hossain
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
| | - Md Abdul Wazed
- School of Nutrition and Public Health, College of Health Oregon State University Corvallis Oregon USA
| | - Sharmin Asha
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
| | - Md Alomgir Hossen
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
- College of Food Science Sichuan Agricultural University Yaan China
| | - Sk Nur Muhammad Fime
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
| | - Shamiha Tabassum Teeya
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
| | - Lubna Yeasmin Jenny
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
| | - Diptho Dash
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
| | - Islam Md Shimul
- Department of Nutrition and Food Technology Jashore University of Science and Technology Jashore Bangladesh
| |
Collapse
|
5
|
Jiang Z, Zeng J, Wang X, Yu H, Yue L, Wang C, Chen F, Wang Z. Biodegradable microplastics and dissemination of antibiotic resistance genes: An undeniable risk associated with plastic additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125952. [PMID: 40032228 DOI: 10.1016/j.envpol.2025.125952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Biodegradable plastics (BDPs) represent a promising alternative to conventional plastics; however, the release of microplastics (MPs) during degradation necessitates an urgent investigation into their biological effects. The potential risks associated with MPs and additives released from BDPs, particularly in facilitating the dissemination of antibiotic resistance genes (ARGs), remain largely unknown. This study aims to investigate the effects of polylactic acid (PLA) MPs and their common plasticizer, dibutyl phthalate (DBP), on the horizontal gene transfer (HGT) of ARGs using conjugative transfer and transformation model systems. The viability of Escherichia coli (E. coli) cells after exposure to PLA MPs (0.01, 0.1, 1, and 10 mg L-1), DBP (0.01, 0.1, 1, and 10 μg L-1) alone, or in combination (1 mg L-1 PLA MPs + 1 μg L-1DBP) remained unaffected. Exposure to PLA MPs at environmentally relevant concentrations did not promote the HGT of ARGs. However, the addition of DBP significantly enhanced the transfer frequency by 1.5-1.8 folds compared to exposure to PLA MPs alone. The accelerated dissemination of ARGs was primarily attributed to the elevated levels of reactive oxygen species (by 26.2%), increased membrane permeability (by 19.4%), and the up-regulation of genes involved in mating pair formation (by 1.6-3.8 folds) and DNA translocation (by 1.5-3.4 folds). These findings underscore the critical role of additives and highlight the potential accumulative effects associated with prolonged exposure to high concentrations of PLA MPs, which should be considered for a comprehensive risk assessment of BDPs.
Collapse
Affiliation(s)
- Zhaoheng Jiang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Hanxiao Yu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
de Dios R, Gadar K, Proctor CR, Maslova E, Han J, Soliman MAN, Krawiel D, Dunbar EL, Singh B, Peros S, Killelea T, Warnke AL, Haugland MM, Bolt EL, Lentz CS, Rudolph CJ, McCarthy RR. Saccharin disrupts bacterial cell envelope stability and interferes with DNA replication dynamics. EMBO Mol Med 2025; 17:993-1017. [PMID: 40169895 DOI: 10.1038/s44321-025-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Saccharin has been part of the human diet for over 100 years, and there is a comprehensive body of evidence demonstrating that it can influence the gut microbiome, ultimately impacting human health. However, the precise mechanisms through which saccharin can impact bacteria have remained elusive. In this work, we demonstrate that saccharin inhibits cell division, leading to cell filamentation with altered DNA synthesis dynamics. We show that these effects on the cell are superseded by the formation of bulges emerging from the cell envelope, which ultimately trigger cell lysis. We demonstrate that saccharin can inhibit the growth of both Gram-negative and Gram-positive bacteria as well as disrupt key phenotypes linked to host colonisation, such as motility and biofilm formation. In addition, we test its potential to disrupt established biofilms (single-species as well as polymicrobial) and its capacity to re-sensitise multidrug-resistant pathogens to last-resort antibiotics. Finally, we present in vitro and ex vivo evidence of the versatility of saccharin as a potential antimicrobial by integrating it into an effective hydrogel wound dressing.
Collapse
Affiliation(s)
- Rubén de Dios
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Kavita Gadar
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Chris R Proctor
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Evgenia Maslova
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Jie Han
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Mohamed A N Soliman
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Dominika Krawiel
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Emma L Dunbar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706-1544, USA
| | - Bhupender Singh
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Stelinda Peros
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Tom Killelea
- School of Life Sciences, Faculty of Medicine & Health Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Anna-Luisa Warnke
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Marius M Haugland
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Edward L Bolt
- School of Life Sciences, Faculty of Medicine & Health Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Christian J Rudolph
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Ronan R McCarthy
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
7
|
Swain PP, Sahoo RK. Blocking horizontal transfer of antibiotic resistance genes: an effective strategy in combating antibiotic resistance. Crit Rev Microbiol 2025:1-20. [PMID: 40207493 DOI: 10.1080/1040841x.2025.2489463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant public health threat, with emerging and novel forms of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) potentially crossing international borders and challenging the global health systems. The rate of development of antibiotic resistance surpasses the development of new antibiotics. Consequently, there is a growing threat of bacteria acquiring resistance even to newer antibiotics further complicating the treatment of bacterial infections. Horizontal gene transfer (HGT) is the key mechanism for the spread of antibiotic resistance in bacteria through the processes of conjugation, transformation, and transduction. Several compounds, other than antibiotics, have also been shown to promote HGT of ARGs. Given the crucial role of HGT in the dissemination of ARGs, inhibition of HGT is a key strategy to mitigate AMR. Therefore, this review explores the contribution of HGT in bacterial evolution, identifies specific hotspots andhighlights the role of HGT inhibitors in impeding the spread of ARGs. By specifically focusing on the HGT mechanism and its inhibition, these inhibitors offer a highly promising approach to combating AMR.
Collapse
Affiliation(s)
- Pragyan Paramita Swain
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
8
|
Ye T, Li Y, Zhou X, Ye Y, Liu X, Xiong W. Hormesis-like effects of black phosphorus nanosheets on the spread of multiple antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137207. [PMID: 39827804 DOI: 10.1016/j.jhazmat.2025.137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes. The results indicated that BPNSs exhibited concentration-dependent hormesis-like effects on bacterial conjugation gene transfer. Specifically, at sub-inhibitory concentrations (0.0001-1 mg/L), BPNSs promoted both intra- and intergeneric conjugative transfer, demonstrating an initial increase followed by a decline, with transfer rates rising by 1.5-3.1-fold and 1.5-3.3-fold, respectively. BPNSs were found to induce reactive oxygen species (ROS) production, increase malondialdehyde levels, and trigger the SOS response, enhancing plasmid uptake. Additionally, BPNSs increased membrane permeability by forming pores and upregulating outer membrane porins (OMPs) genes. At higher BPNSs concentrations (0.1-1 mg/L), conjugative frequency was inhibited due to the disruption of the cellular antioxidant system and changes in the adsorption process. These findings underscore the influence of BPNSs on the conjugative transfer of ARGs, complementing current knowledge of the biotoxicity and potential ecological risks associated with BPNSs.
Collapse
Affiliation(s)
- Tao Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yingbin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiangming Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
EFSA Panel on Food Additives and Flavourings (FAF), Castle L, Andreassen M, Aquilina G, Bastos ML, Boon P, Fallico B, FitzGerald R, Frutos Fernandez MJ, Grasl‐Kraupp B, Gundert‐Remy U, Gürtler R, Houdeau E, Kurek M, Louro H, Morales P, Passamonti S, Batke M, Bruzell E, Chipman J, Cheyns K, Crebelli R, Fortes C, Fürst P, Halldorsson T, Leblanc J, Mirat M, Lindtner O, Mortensen A, Wright M, Barmaz S, Civitella C, Le Gall P, Mazzoli E, Rasinger JD, Rincon A, Tard A, Lodi F. Re-evaluation of acesulfame K (E 950) as food additive. EFSA J 2025; 23:e9317. [PMID: 40309404 PMCID: PMC12041894 DOI: 10.2903/j.efsa.2025.9317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The present opinion deals with the re-evaluation of acesulfame K (E 950) as a food additive. Acesulfame K (E 950) is the chemically manufactured compound 6-methyl-1,2,3-oxathiazin-4(3H)-one-2,2-dioxide potassium salt. It is authorised for use in the European Union (EU) in accordance with Regulation (EC) No 1333/2008. The assessment involved a comprehensive review of existing authorisations, evaluations and new scientific data. Acesulfame K (E 950) was found to be stable under various conditions; at pH lower than 3 with increasing temperatures, it is degraded to a certain amount. Based on the available data, no safety concerns arise for genotoxicity of acesulfame K (E 950) and its degradation products. For the potential impurities, based on in silico data, a concern for genotoxicity was identified for 5-chloro-acesulfame; a maximum limit of 0.1 mg/kg, or alternatively, a request for appropriate genotoxicity data was recommended. Based on the synthesis of systematically appraised evidence of human and animal studies, the Panel concluded that there are no new studies suitable for identification of a reference point (RP) on adverse effects. Consequently, the Panel established an acceptable daily intake (ADI) of 15 mg/kg body weight (bw) per day based on the highest dose tested without adverse effects in a chronic toxicity and carcinogenicity study in rats; a study considered of moderate risk of bias and one of two key studies from the previous evaluations by the Scientific Committee on Food (SCF) and the Joint FAO/WHO Expert Committee on Food Additives (JECFA). This revised ADI replaces the ADI of 9 mg/kg bw per day established by the SCF. The Panel noted that the highest estimate of exposure to acesulfame K (E 950) was generally below the ADI in all population groups. The Panel recommended the European Commission to consider the revision of the EU specifications of acesulfame K (E 950).
Collapse
|
10
|
Li Y, Zhang Y, Liu X, Zhou X, Ye T, Fu Q, Du M, Lu Q, Zheng Y, Wang D. Per- and polyfluoroalkyl substances exacerbate the prevalence of plasmid-borne antibiotic resistance genes by enhancing natural transformation, in vivo stability, and expression in bacteria. WATER RESEARCH 2025; 272:122972. [PMID: 39706060 DOI: 10.1016/j.watres.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) as emerging pollutants are ubiquitous and disrupt biological processes across water boundaries. Their coexistence with antibiotic resistance genes (ARGs) in water matrix is associated with the spread of ARGs via conjugative transfer, posing a threat to public health. However, their role in natural transformation-where microorganisms actively take up extracellular ARGs (eARGs)-and the subsequent persistence and expression of ARGs after transformation remains poorly understood. Here, we demonstrated that environmentally relevant concentrations (0.1-10 µg/L) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), two typical PFAS, increased transformation frequencies by 2.54- and 3.26-fold, respectively. This increase was driven by increased cell envelope permeability, biofilm formation, reactive oxygen species (ROS) production, and upregulation of DNA uptake genes. At higher concentrations (100 µg/L), PFAS inhibited transformation. Nevertheless, PFOA and PFOS at all tested concentrations promoted long-term plasmid in vivo stability, reducing plasmid loss rates from 68.5% to 6% and 38.7%, respectively. Furthermore, they induced ARGs expression in transformants by up to 1.33- and 1.37-fold. Our findings revealed that PFOA and PFOS impacted the spread, persistence, and expression of ARGs, from extracellular uptake to intracellular activity in bacteria. These results highlight the underestimated environmental health risks posed by PFAS and underscore the intricate chemical and biological co-contamination in aquatic ecosystems and wastewater treatment.
Collapse
Affiliation(s)
- Yingbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yunxuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Xiangming Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Tao Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
11
|
Feng B, Chen J, Wang C, Wang P, You G, Lin J, Gao H. Removal of ofloxacin and inhibition of antibiotic resistance gene spread during the aerobic biofilm treatment of rural domestic sewage through the micro-nano aeration technology. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137020. [PMID: 39733752 DOI: 10.1016/j.jhazmat.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions. Results showed that the MNA increased OFL removal by 17.27 %-40.54 % and decreased total ARG abundance by 36.37 %-54.98 %, compared with CVA. MNA-induced biofilm rough morphology, high zeta potential, and reduced extracellular polymeric substance (EPS) secretion enhanced OFL adsorption. High dissolved oxygen and temperature, induced by MNA-enriched aerobic bacteria and their carrying OFL-degrading genes, enhanced OFL biodegradation. MNA inhibited the enrichment of ARG host bacteria, which acquired ARGs possibly via horizontal gene transfer (HGT). Functional profiles involved in the HGT process, including reactive oxygen species production, membrane permeability, mobile genetic elements (MGEs), adenosine triphosphate synthesis, and EPS secretion, were down-regulated by MNA, inhibiting ARG spread. Partial least-squares path modeling revealed that MGEs might be the main factor inhibiting ARG spread. This study provides insights into the mechanisms by which MNA enhances antibiotic removal and inhibits ARG spread in aerobic biofilm systems.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Junkai Lin
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
12
|
Li YQ, Zhang CM, Liu Y. Antihistamine drug loratadine at environmentally relevant concentrations promotes conjugative transfer of antibiotic resistance genes: Coeffect of oxidative stress and ion transport. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124430. [PMID: 39919578 DOI: 10.1016/j.jenvman.2025.124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Due to the widespread use of loratadine (LOR) as an antihistamine, it is widely distributed in the environment as an emerging contaminant. However, its impact on the dissemination of antibiotic resistance genes (ARGs) remains unclear. This study investigated the effect of LOR on the conjugative transfer of ARGs and elucidated the potential mechanisms through transcriptome analysis. The results showed that LOR significantly promoted the frequency of conjugative transfer up to 1.5- to 8.6-fold higher compared with the control group. Exposure to LOR increased reactive oxidative species (ROS) and intracellular Ca2+ concentrations, leading to the upregulation of expression of genes related to transmembrane transport and SOS response. Meanwhile, it stimulated the increase of cell membrane permeability. Moreover, LOR exposure could enhance H+ efflux in donor bacteria, resulting in the decrease of intracellular pH and the elevation of transmembrane potential, which could induce the increase of ion transport, thereby promoting plasmid efflux from the cell membrane. Based on this, we inferred that LOR can induce an increase in ROS level and intracellular Ca2+ concentrations, and promoted the efflux of intracellular H+. This, in turn, triggered the intensification of various ion transport processes on the cell membrane, thereby increasing membrane permeability and accelerating plasmid efflux. Ultimately, the coeffect of oxidative stress response and ion transport promoted conjugative transfer. This study demonstrated that LOR significantly promotes plasmid-mediated conjugative transfer of ARGs, providing novel insights into the mechanisms underlying this process.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
13
|
Tan L, Liang J, Qin Z, Ning T, Wei X, Yang B, Wang Q, Xu Y, Shen F. Unveiling the sustained effects of plant root exudates on soil microbiome and resistome and the related functional traits. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124485. [PMID: 39938296 DOI: 10.1016/j.jenvman.2025.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Investigating the transmission mechanisms and influencing factors of antibiotic resistance genes (ARGs) in the soil-plant continuum is vital for mitigating ARG contamination and safeguarding plant and human health. Rhizosphere soil serves as a crucial interface for ARG propagation and transmission; however, it is unclear whether and how plant involved in regulating ARGs in their rhizosphere environment. Root exudates acting as vital links in the plant-soil-microbe interaction. Here, we examined the fluctuating patterns of the resistome and mobile genetic elements (MGEs) following exposure to four types of common root exudates: amino acids (AAs), sugars, long-chain organic acids (LCOAs), and short-chain organic acids (SCOAs). AAs exerted a rapid and pronounced effect, leading to a significant elevation in total ARG and MGE abundance by 3.18-fold and 21.06-fold, respectively, compared to the control group by day 7. Conversely, the impact of sugars manifested gradually over time. The influence of AAs and sugars persisted beyond 240 days post-treatment cessation. Importantly, the proliferation of ARGs was closely linked to the enrichment of plant growth-promoting bacteria (PGPBs) such as Pseudomonas, Cupriavidus, Azospirillum, Variovorax, and Ensifer. Functional analysis revealed that the potential features of ARGs and MGEs were associated with cell wall/membrane/envelope biogenesis, cell motility, and inorganic ion transport. This study offers novel insights into the factors influencing the dynamics of ARGs in the plant rhizosphere and may contribute to ecologically sustainable agricultural practices.
Collapse
Affiliation(s)
- Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ziyi Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bo Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
14
|
Xu J, Xiang Y, Yang Z, Peng H, He S, He L, Ye Y, Liu Y, Xie H, Xiong W. Aspartame affects methane yield and enhances transmission of antibiotic resistance genes during anaerobic digestion of sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136715. [PMID: 39616849 DOI: 10.1016/j.jhazmat.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 01/28/2025]
Abstract
Aspartame (ASP) is a widely used artificial sweetener, yet recent studies have shown that ASP have potential toxic effect. ASP is also detected in sludge, however, the influence of ASP on the performance of sludge anaerobic digestion and the fate of antibiotic resistance genes (ARGs) have not been thoroughly investigated. Under stress of 0, 0.5, 5 and 50 mg/L ASP, cumulative methane production was 181.7, 167.0, 154.0 and 140.8 mlCH4/g VSS, respectively. ASP inhibited the dissolution and conversion of organic matter in sludge. Sequencing data revealed a decline in the abundance of functional microorganisms compared to control, such as hydrolytic-acidifying bacteria and methanogens, potentially attributed to increased intracellular reactive oxygen species and damaged cell membranes caused by ASP addition. Specifically, 50 mg/L ASP reduced the total abundance of methanogens by 59.40 % compared to control. Concurrently, alterations in microbial communities along with an increase in Tn916 and intI1 were observed, increasing the abundance of ARGs. The total abundance of five ARGs peaked at 1.43E+ 12 copies/g at 5 mg/L ASP, representing 139 % of the control. This research contributes valuable insights into the alterations in anaerobic digestion caused by ASP, emphasizing the potential risks in the overall environmental system.
Collapse
Affiliation(s)
- Jialu Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan Liu
- Hunan Modern Environmental Technology Co. Ltd, Changsha 410004, PR China
| | - Huaming Xie
- Hunan Modern Environmental Technology Co. Ltd, Changsha 410004, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
15
|
Guo Z, Tang X, Wang W, Luo Z, Zeng Y, Zhou N, Yu Z, Wang D, Song B, Zhou C, Xiong W. The photo-based treatment technology simultaneously removes resistant bacteria and resistant genes from wastewater. J Environ Sci (China) 2025; 148:243-262. [PMID: 39095161 DOI: 10.1016/j.jes.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.
Collapse
Affiliation(s)
- Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Zhangxiong Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
16
|
Dogra S, Kumar M, Zang J. The nexus of microplastics, food and antimicrobial resistance in the context of aquatic environment: Interdisciplinary linkages of pathways. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104512. [PMID: 39922004 DOI: 10.1016/j.jconhyd.2025.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/04/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The exponential rise in plastic production since the mid-20th century has led to the widespread existence of microplastics in various ecosystems, posing significant environmental and health concerns. Microplastics, defined as plastic particles smaller than 5 mm, have infiltrated diverse environments, including oceans, freshwater bodies, and even remote Arctic ice. Their ability to absorb toxic chemicals and serve as vectors for microbial colonization raises concerns about their impacts on aquatic organisms and human health. This review examines the pathways by which microplastics infiltrate the food chain, highlighting their presence in various food items consumed by humans. Furthermore, it explores the nexus between microplastics and antimicrobial resistance (AMR), elucidating how microorganisms inhabiting plastic surfaces facilitate the transmission of antibiotic resistance genes (ARGs). The review underscores the urgent need for interdisciplinary research integrating environmental science, microbiology, public health, and policy to address the multifaceted challenges posed by microplastics. Standardized protocols for sampling and analysis are essential to enable meaningful comparisons across research and regions. By collectively addressing these challenges, we can strive towards a more sustainable and resilient future for ecosystems and human societies.
Collapse
Affiliation(s)
- Shiwangi Dogra
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Jian Zang
- The National Centre for International Research of Low-carbon & Green Buildings, Ministry of Science & Technology, School of Civil Engineering, Chongqing University, Chongqing, China; Tianfu Yongxing Laboratory, Chengdu, China
| |
Collapse
|
17
|
Wang D, Zhou X, Fu Q, Li Y, Ni BJ, Liu X. Understanding bacterial ecology to combat antibiotic resistance dissemination. Trends Biotechnol 2025:S0167-7799(24)00394-9. [PMID: 39855970 DOI: 10.1016/j.tibtech.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
The dissemination of antibiotic resistance from environmental sources is a growing concern. Despite the widespread occurrence of antibiotic resistance transmission events, there are actually multiple obstacles in the ecosystem that restrict the flow of bacteria and genes, in particular nonnegligible biological barriers. How these ecological factors help combat the dissemination of antibiotic resistance and relevant antibiotic resistance-diminishing organisms (ARDOs) deserves further exploration. This review summarizes the factors that influence the growth, metabolism, and environmental adaptation of antibiotic-resistant bacteria (ARB) and restrict the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Additionally, this review discusses the achievements in the application of ARDOs to improve biotechnology for wastewater and solid waste remediation while highlighting current challenges limiting their broader implementation.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiangming Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yingbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xuran Liu
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
18
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
19
|
Markus V. Artificial sweetener-induced dysbiosis and associated molecular signatures. Biochem Biophys Res Commun 2024; 735:150798. [PMID: 39406022 DOI: 10.1016/j.bbrc.2024.150798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Despite their approval for inclusion in beverages, and food products, the safety of artificial sweeteners is still a topic of debate within the scientific community. A significant aspect of this debate focuses on the potential of artificial sweeteners to induce dysbiosis, an imbalance in the intestinal microbiota, which has been associated with many diseases including obesity, Type 2 diabetes, and cardiovascular diseases. The interactions and mechanisms of action of artificial sweeteners within the gut microbiota, as well as the extent of associated molecular alterations, are still under active investigation. This review aims to evaluate recent developments in artificial sweetener-induced dysbiosis with its associated molecular signatures. Importantly, potential future directions for research are proposed, offering insights that could guide further targeted studies and inform dietary recommendations and policy revisions.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, 99138, Lefkosa/ TRNC Mersin 10, Turkey.
| |
Collapse
|
20
|
Wang Q, Wang M, Yang Q, Feng L, Zhang H, Wang R, Wang R. The role of bacteriophages in facilitating the horizontal transfer of antibiotic resistance genes in municipal wastewater treatment plants. WATER RESEARCH 2024; 268:122776. [PMID: 39541852 DOI: 10.1016/j.watres.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Bacteriophages play integral roles in the ecosystem; however, their precise involvement in horizontal gene transfer and the spread of antibiotic resistance genes (ARGs) are not fully understood. In this study, a coculture system involving consortia of bacteriophages and multidrug-resistant bacteria from an aerobic tank in a municipal wastewater treatment plant (WWTP) was established to investigate the functions of bacteriophages in ARG transfer and spread. The results of the cocultivation of the MRB and bacteriophage consortia indicated that the bacterial community remained stable throughout the whole process, but the addition of bacteriophages significantly increased ARG abundance, especially in bacteriophage DNA. Nine out of the 11 identified ARGs significantly increased, indicating that more bacteriophage particles carried ARGs in the system after cocultivation. In addition, 686 plasmids were detected during cocultivation, of which only 3.36 % were identified as conjugative plasmids, which is significantly lower than the proportion found among previously published plasmids (25.2 %, totaling 14,029 plasmids). Our findings revealed that bacteriophages may play important roles in the horizontal transfer of ARGs through both bacteriophage-mediated conduction and an increase in extracellular ARGs; however, conjugative transfer may not be the main mechanism by which multidrug-resistant bacteria acquire and spread ARGs. Unlike in most previous reports, a coculture system of diverse bacteria and bacteriophages was established in this study to assess bacteriophage functions in ARG transfer and dissemination in the environment, overcoming the limitations associated with the isolation of bacteria and bacteriophages, as well as the specificity of bacteriophage hosts.
Collapse
Affiliation(s)
- Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Min Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China.
| | - Lingran Feng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Hao Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Ruimin Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
21
|
Gao Y, Zhou S, Yang Z, Tang Z, Su Y, Duan Y, Song J, Huang Z, Wang Y. Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135624. [PMID: 39208634 DOI: 10.1016/j.jhazmat.2024.135624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Zhengqing Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| |
Collapse
|
22
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
EFSA Panel on Food Additives and Flavourings (FAF), Castle L, Andreassen M, Aquilina G, Bastos ML, Boon P, Fallico B, FitzGerald R, Frutos Fernandez MJ, Grasl‐Kraupp B, Gundert‐Remy U, Gürtler R, Houdeau E, Kurek M, Louro H, Morales P, Passamonti S, Batke M, Bruzell E, Chipman J, Cheyns K, Crebelli R, Fortes C, Fürst P, Halldorsson T, LeBlanc J, Mirat M, Lindtner O, Mortensen A, Ntzani E, Shah R, Wallace H, Wright M, Barmaz S, Civitella C, Georgelova P, Lodi F, Mazzoli E, Rasinger J, Maria Rincon A, Tard A, Zakidou P, Younes M. Re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. EFSA J 2024; 22:e9044. [PMID: 39553702 PMCID: PMC11565076 DOI: 10.2903/j.efsa.2024.9044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
This opinion deals with the re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. Saccharin is the chemically manufactured compound 1,2-benzisothiazol-3(2H)-one-1,1-dioxide. Along with its sodium (Na), potassium (K) and calcium (Ca) salts, they are authorised as sweeteners (E 954). E 954 can be produced by two manufacturing methods i.e. Remsen-Fahlberg and Maumee. No analytical data on potential impurities were provided for products manufactured with the Maumee process; therefore, the Panel could only evaluate saccharins (E 954) manufactured with the Remsen-Fahlberg process. The Panel concluded that the newly available studies do not raise a concern for genotoxicity of E 954 and the saccharins impurities associated with the Remsen-Fahlberg manufacturing process. For the potential impurities associated with the Maumee process, a concern for genotoxicity was identified. The data set evaluated consisted of animals and human studies. The Panel considered appropriate to set a numerical acceptable daily intake (ADI) and considered the decrease in body weight in animal studies as the relevant endpoint for the derivation of a reference point. An ADI of 9 mg/kg body weight (bw) per day, expressed as free imide, was derived for saccharins (E 954). This ADI replaces the ADI of 5 mg /kg bw per day (expressed as sodium saccharin, corresponding to 3.8 mg /kg bw per day saccharin as free imide) established by the Scientific Committee on Food. The Panel considered the refined brand-loyal exposure assessment scenario the most appropriate exposure scenario for the risk assessment. The Panel noted that the P95 exposure estimates for chronic exposure to saccharins (E 954) were below the ADI. The Panel recommended the European Commission to consider the revision of the EU specifications of saccharin and its sodium, potassium and calcium salts (E 954).
Collapse
|
24
|
Liu QH, Yuan L, Li ZH, Leung KMY, Sheng GP. Natural Organic Matter Enhances Natural Transformation of Extracellular Antibiotic Resistance Genes in Sunlit Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17990-17998. [PMID: 39324609 DOI: 10.1021/acs.est.4c08211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Antibiotic resistance genes (ARGs) as emerging environmental contaminants exacerbate the risk of spreading antibiotic resistance. Natural organic matter (NOM) is ubiquitous in aquatic environments and plays a crucial role in biogeochemical cycles. However, its impact on the dissemination of extracellular antibiotic resistance genes (eARGs) under sunlight exposure remains elusive. This study reveals that environmentally relevant levels of NOM (0.1-20 mg/L) can significantly enhance the natural transformation frequency of the model bacterium Acinetobacter baylyi ADP1 by up to 7.6-fold under simulated sunlight. Similarly, this enhancement was consistently observed in natural water and wastewater systems. Further mechanism analysis revealed that reactive oxygen species (ROS) generated by NOM under sunlight irradiation, primarily singlet oxygen and hydroxyl radicals, play a crucial role in this process. These ROS induce intracellular oxidative stress and elevated cellular membrane permeability, thereby indirectly boosting ATP production and enhancing cell competence of extracellular DNA uptake and integration. Our findings highlight a previously underestimated role of natural factors in the dissemination of eARGs within aquatic ecosystems and deepen our understanding of the complex interplay between NOM, sunlight, and microbes in environmental water bodies. This underscores the importance of developing comprehensive strategies to mitigate the spread of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Qian-He Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Zhou Z, Keiblinger KM, Huang Y, Bhople P, Shi X, Yang S, Yu F, Liu D. Virome and metagenomic sequencing reveal the impact of microbial inoculants on suppressions of antibiotic resistome and viruses during co-composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135355. [PMID: 39068883 DOI: 10.1016/j.jhazmat.2024.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life-Sciences, Vienna 1190, Austria
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Parag Bhople
- Crops, Environment, and Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford Y35TC98, Ireland
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
26
|
Zhang J, Zhu S, Sun J, Liu Y. Bisphenol S Promotes the Transfer of Antibiotic Resistance Genes via Transformation. Int J Mol Sci 2024; 25:9819. [PMID: 39337307 PMCID: PMC11431945 DOI: 10.3390/ijms25189819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 μg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants.
Collapse
Affiliation(s)
- Jiayi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuyao Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Attrah M, Schärer MR, Esposito M, Gionchetta G, Bürgmann H, Lens PNL, Fenner K, van de Vossenberg J, Robinson SL. Disentangling abiotic and biotic effects of treated wastewater on stream biofilm resistomes enables the discovery of a new planctomycete beta-lactamase. MICROBIOME 2024; 12:164. [PMID: 39242535 PMCID: PMC11380404 DOI: 10.1186/s40168-024-01879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Environmental reservoirs of antibiotic resistance pose a threat to human and animal health. Aquatic biofilms impacted by wastewater effluent (WW) are known environmental reservoirs for antibiotic resistance; however, the relative importance of biotic factors and abiotic factors from WW on the abundance of antibiotic resistance genes (ARGs) within aquatic biofilms remains unclear. Additionally, experimental evidence is limited within complex aquatic microbial communities as to whether genes bearing low sequence similarity to validated reference ARGs are functional as ARGs. RESULTS To disentangle the effects of abiotic and biotic factors on ARG abundances, natural biofilms were previously grown in flume systems with different proportions of stream water and either ultrafiltered or non-ultrafiltered WW. In this study, we conducted deep shotgun metagenomic sequencing of 75 biofilm, stream, and WW samples from these flume systems and compared the taxonomic and functional microbiome and resistome composition. Statistical analysis revealed an alignment of the resistome and microbiome composition and a significant association with experimental treatment. Several ARG classes exhibited an increase in normalized metagenomic abundances in biofilms grown with increasing percentages of non-ultrafiltered WW. In contrast, sulfonamide and extended-spectrum beta-lactamase ARGs showed greater abundances in biofilms grown in ultrafiltered WW compared to non-ultrafiltered WW. Overall, our results pointed toward the dominance of biotic factors over abiotic factors in determining ARG abundances in WW-impacted stream biofilms and suggested gene family-specific mechanisms for ARGs that exhibited divergent abundance patterns. To investigate one of these specific ARG families experimentally, we biochemically characterized a new beta-lactamase from the Planctomycetota (Phycisphaeraceae). This beta-lactamase displayed activity in the cleavage of cephalosporin analog despite sharing a low sequence identity with known ARGs. CONCLUSIONS This discovery of a functional planctomycete beta-lactamase ARG is noteworthy, not only because it was the first beta-lactamase to be biochemically characterized from this phylum, but also because it was not detected by standard homology-based ARG tools. In summary, this study conducted a metagenomic analysis of the relative importance of biotic and abiotic factors in the context of WW discharge and their impact on both known and new ARGs in aquatic biofilms. Video Abstract.
Collapse
Affiliation(s)
- Mustafa Attrah
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Milo R Schärer
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Mauro Esposito
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Giulia Gionchetta
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Piet N L Lens
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057, Zurich, Switzerland
| | - Jack van de Vossenberg
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
| |
Collapse
|
28
|
Jurcevic Zidar B, Luetic S, Jurcic K, Knezovic Z, Sutlovic D. Intake of Artificial Sweeteners through Soft Drinks in the Preschool- and School-Aged Population. Nutrients 2024; 16:2278. [PMID: 39064721 PMCID: PMC11279787 DOI: 10.3390/nu16142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
One of the main public health issues that has recently been observed in a greater number of children is being overweight. The cause certainly lies in the decreasing physical activity of children, but mostly in their eating habits. Soft drinks are recognized as the most significant contributor to body overweight due to high sugar content; thus, as a result of numerous campaigns, part of the sugar is replaced by artificial sweeteners (ASs). Despite their advantage due to their low caloric value, WHO recommends that they should not be used to achieve weight control or as prevention for reducing the risk of non-communicable diseases, as there is no evidence of their effectiveness. Apart from beverages, artificial sweetener combinations are also added to a variety of "low fat" and "high protein" food products, which are highly favored especially among the young population. Therefore, it is necessary to take care of the cumulative intake. The conducted study included a survey of 323 parents of children aged 1-14 years, as well as an analysis of the AS content in the products most often consumed by the respondents. The results of the survey show that a large part of children (40%) aged 3-14 often consume soft drinks. Different products (soft drinks, juices/nectars, syrups) were sampled based on the respondents' responses, and an analysis showed that 54% of them contained one or more ASs. In addition, the survey indicated parents' lack of information about the presence of AS in products, as 51% of parents declared that they do not read the declarations of the products they buy. It is necessary to persist in consumer education and changes in dietary preferences and habits, especially among children.
Collapse
Affiliation(s)
- Branka Jurcevic Zidar
- Teaching Institute for Public Health, Split-Dalmatia County, 21000 Split, Croatia; (B.J.Z.); (S.L.); (K.J.)
| | - Sanja Luetic
- Teaching Institute for Public Health, Split-Dalmatia County, 21000 Split, Croatia; (B.J.Z.); (S.L.); (K.J.)
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Katarina Jurcic
- Teaching Institute for Public Health, Split-Dalmatia County, 21000 Split, Croatia; (B.J.Z.); (S.L.); (K.J.)
| | - Zlatka Knezovic
- Teaching Institute for Public Health, Split-Dalmatia County, 21000 Split, Croatia; (B.J.Z.); (S.L.); (K.J.)
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Davorka Sutlovic
- Department of Health Studies, University of Split, 21000 Split, Croatia;
- Department of Toxicology and Pharmacogenetics, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
29
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
30
|
Wang Q, Li X, Zhou K, Li Y, Wang Y, Zhang G, Guo H, Zhou J, Wang T. Mechanisms of conjugative transfer of antibiotic resistance genes induced by extracellular polymeric substances: Insights into molecular diversities and electron transfer properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135181. [PMID: 39003806 DOI: 10.1016/j.jhazmat.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) has become a critical threat to public health. Activated sludge, rich in extracellular polymeric substances (EPS), is an important pool of ARGs. In this study, mechanisms of conjugation transfer of ARGs induced by EPS, including tightly bound EPS (TBEPS), soluble EPS (SEPS), and loosely bound EPS (LBEPS), were explored in terms of molecular diversities and electron transfer properties of EPS. Conjugation transfer frequency was increased by 9.98-folds (SEPS), 4.21-folds (LBEPS), and 15.75-folds (TBEPS) versus the control, respectively. Conjugation-related core genes involving SOS responses (9 genes), membrane permeability (18 genes), intercellular contact (17 genes), and energy metabolism pathways (13 genes) were all upregulated, especially in the presence of TBEPS. Carbohydrates and aliphatic substances in SEPS and LBEPS were contributors to ARG transfer, via influencing reactive oxygen species (ROS) formation (SEPS) and ROS and adenosine triphosphate (ATP) production (LBEPS). TBEPS had the highest redox potential and greatest lability and facilitated electron transfer and alternated respiration between cells, thus promoting ARG transfer by producing ATP. Generally, the chemical molecular characteristics and redox properties of EPS facilitated ARG transfer mainly by influencing lipid peroxidation and ATP, respectively.
Collapse
Affiliation(s)
- Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Keying Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
31
|
Winter M, Vos M, Buckling A, Johnsen PJ, Harms K. Effect of chemotherapeutic agents on natural transformation frequency in Acinetobacter baylyi. Access Microbiol 2024; 6:000733.v4. [PMID: 39135654 PMCID: PMC11318045 DOI: 10.1099/acmi.0.000733.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Natural transformation is the ability of a bacterial cell to take up extracellular DNA which is subsequently available for recombination into the chromosome (or maintenance as an extrachromosomal element). Like other mechanisms of horizontal gene transfer, natural transformation is a significant driver for the dissemination of antimicrobial resistance. Recent studies have shown that many pharmaceutical compounds such as antidepressants and anti-inflammatory drugs can upregulate transformation frequency in the model species Acinetobacter baylyi. Chemotherapeutic compounds have been shown to increase the abundance of antimicrobial resistance genes and increase colonization rates of potentially pathogenic bacteria in patient gastrointestinal tracts, indicating an increased risk of infection and providing a pool of pathogenicity or resistance genes for transformable commensal bacteria. We here test for the effect of six cancer chemotherapeutic compounds on A. baylyi natural transformation frequency, finding two compounds, docetaxel and daunorubicin, to significantly decrease transformation frequency, and daunorubicin to also decrease growth rate significantly. Enhancing our understanding of the effect of chemotherapeutic compounds on the frequency of natural transformation could aid in preventing the horizontal spread of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Macaulay Winter
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Exeter TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Exeter TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK
| | - Pål Jarle Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
32
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
33
|
Li H, Wang Q, Wang Y, Liu Y, Zhou J, Wang T, Zhu L, Guo J. EDTA enables to alleviate impacts of metal ions on conjugative transfer of antibiotic resistance genes. WATER RESEARCH 2024; 257:121659. [PMID: 38692255 DOI: 10.1016/j.watres.2024.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Various heavy metals are reported to be able to accelerate horizontal transfer of antibiotic resistance genes (ARGs). In real water environmental settings, ubiquitous complexing agents would affect the environmental behaviors of heavy metal ions due to the formation of metal-organic complexes. However, little is known whether the presence of complexing agents would change horizontal gene transfer due to heavy metal exposure. This study aimed to fill this gap by investigating the impacts of a typical complexing agent ethylenediaminetetraacetic acid (EDTA) on the conjugative transfer of plasmid-mediated ARGs induced by a range of heavy metal ions. At the environmentally relevant concentration (0.64 mg L-1) of metal ions, all the tested metal ions (Mg2+, Ca2+, Co2+, Pb2+, Ni2+, Cu2+, and Fe3+) promoted conjugative transfer of ARGs, while an inhibitory effect was observed at a relatively higher concentration (3.20 mg L-1). In contrast, EDTA (0.64 mg L-1) alleviated the effects of metal ions on ARGs conjugation transfer, evidenced by 11 %-66 % reduction in the conjugate transfer frequency. Molecular docking and dynamics simulations disclosed that this is attributed to the stronger binding of metal ions with the lipids in cell membranes. Under metal-EDTA exposure, gene expressions related to oxidative stress response, cell membrane permeability, intercellular contact, energy driving force, mobilization, and channels of plasmid transfer were suppressed compared with the metal ions exposure. This study offers insights into the alleviation mechanisms of complexing agents on ARGs transfer induced by free metal ions.
Collapse
Affiliation(s)
- Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, PR China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qi Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yanjie Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yue Liu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jian Zhou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
34
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
35
|
Cheng ZH, Luo XY, Liu DF, Han J, Wang HD, Min D, Yu HQ. Optimized Antibiotic Resistance Genes Monitoring Scenarios Promote Sustainability of Urban Water Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9636-9645. [PMID: 38770702 DOI: 10.1021/acs.est.4c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xi-Yan Luo
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jing Han
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao-Da Wang
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Di Min
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Xu M, Gao P, Gao Y, Xiong SJ, Chen HQ, Shen XX. Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121090. [PMID: 38772228 DOI: 10.1016/j.jenvman.2024.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shi-Jin Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
37
|
He Z, Dechesne A, Schreiber F, Zhu YG, Larsson DGJ, Smets BF. Understanding Stimulation of Conjugal Gene Transfer by Nonantibiotic Compounds: How Far Are We? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9017-9030. [PMID: 38753980 DOI: 10.1021/acs.est.3c06060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.
Collapse
Affiliation(s)
- Zhiming He
- Department of Biotechnology and Biomedicine, Technical University of Denmark, So̷ltofts Plads Building 221, 2800 Kongens Lyngby, Denmark
- Sino-Danish College (SDC) for Education and Research, University of Chinese Academy of Sciences, 8000 Aarhus C, Denmark
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, So̷ltofts Plads Building 221, 2800 Kongens Lyngby, Denmark
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021 Xiamen, China
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Västra Götaland, SE-405 30 Göteborg, Sweden
| | - Barth F Smets
- Department of Biological and Chemical Engineering-Environmental Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| |
Collapse
|
38
|
Qin J, Qi X, Li Y, Tang Z, Zhang X, Ru S, Xiong JQ. Bisphenols can promote antibiotic resistance by inducing metabolic adaptations and natural transformation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134149. [PMID: 38554512 DOI: 10.1016/j.jhazmat.2024.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Whether bisphenols, as plasticizers, can influence bacterial uptake of antibiotic resistance genes (ARGs) in natural environment, as well as the underlying mechanism remains largely unknown. Our results showed that four commonly used bisphenols (bisphenol A, S, F, and AF) at their environmental relative concentrations can significantly promote transmission of ARGs by 2.97-3.56 times in Acinetobacter baylyi ADP1. Intriguingly, we observed ADP1 acquired resistance by integrating plasmids uptake and cellular metabolic adaptations other than through reactive oxygen species mediated pathway. Metabolic adaptations including upregulation of capsules polysaccharide biosynthesis and intracellularly metabolic enzymes, which enabled formation of thicker capsules for capturing free plasmids, and degradation of accumulated compounds. Simultaneously, genes encoding DNA uptake and translocation machinery were incorporated to enhance natural transformation of antibiotic resistance carrying plasmids. We further exposed aquatic fish to bisphenols for 120 days to monitor their long-term effects in aquatic environment, which showed that intestinal bacteria communities were dominated by a drug resistant microbiome. Our study provides new insight into the mechanism of enhanced natural transformation of ARGs by bisphenols, and highlights the investigations for unexpectedly-elevated antibiotic-resistant risks by structurally related environmental chemicals.
Collapse
Affiliation(s)
- Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Life Sciences, Department of Immunology and Microbiology, Department of Chemical Biology, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China
| | - Xin Qi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhuyun Tang
- School of Life Sciences, Department of Immunology and Microbiology, Department of Chemical Biology, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
39
|
Wu J, Lv YH, Sun D, Zhou JH, Wu J, He RL, Liu DF, Song H, Li WW. Phthalates Boost Natural Transformation of Extracellular Antibiotic Resistance Genes through Enhancing Bacterial Motility and DNA Environmental Persistence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7291-7301. [PMID: 38623940 DOI: 10.1021/acs.est.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Yun-Hui Lv
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dan Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| |
Collapse
|
40
|
Liu F, Luo Y, Xu T, Lin H, Qiu Y, Li B. Current examining methods and mathematical models of horizontal transfer of antibiotic resistance genes in the environment. Front Microbiol 2024; 15:1371388. [PMID: 38638913 PMCID: PMC11025395 DOI: 10.3389/fmicb.2024.1371388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in the environment has garnered significant attention due to their health risk to human beings. Horizontal gene transfer (HGT) is considered as an important way for ARG dissemination. There are four general routes of HGT, including conjugation, transformation, transduction and vesiduction. Selection of appropriate examining methods is crucial for comprehensively understanding characteristics and mechanisms of different HGT ways. Moreover, combined with the results obtained from different experimental methods, mathematical models could be established and serve as a powerful tool for predicting ARG transfer dynamics and frequencies. However, current reviews of HGT for ARG spread mainly focus on its influencing factors and mechanisms, overlooking the important roles of examining methods and models. This review, therefore, delineated four pathways of HGT, summarized the strengths and limitations of current examining methods, and provided a comprehensive summing-up of mathematical models pertaining to three main HGT ways of conjugation, transformation and transduction. Finally, deficiencies in current studies were discussed, and proposed the future perspectives to better understand and assess the risks of ARG dissemination through HGT.
Collapse
Affiliation(s)
- Fan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
41
|
Wang L, Zhang T, Cai T, Xiang Q, Liu X, Zhu D. The pH-specific response of soil resistome to triclocarban and arsenic co-contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132952. [PMID: 37952336 DOI: 10.1016/j.jhazmat.2023.132952] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Heavy metals as well as disinfectants affect the spread of antibiotic resistance genes (ARGs) in soil microbes, however, their cumulative impacts on the proliferation of ARGs are not well studied. In addition, both the chemical stability/availability and ARG profiles are affected by the soil pH, but it has never been considered in the systematic evaluation of soil resistome. In the present study, a microcosm experiment was conducted to study the combined effects of arsenic and triclocarban on the resistome in soil samples with variable pH (pH 4-7). The simultaneous additions of arsenic and triclocarban increase the ARG abundance at pH > 6, because of the intensive co-selective pressures triggered by the increase in concentrations of available arsenic and triclocarban. The occurrence of multidrug ARGs increases with the addition of arsenic and triclocarban, due to the preferred selection of their functional flexibility. The presence of arsenic and triclocarban is strongly related to the spread of MGEs affecting the soil resistome. Furthermore, pH alters the patterns of microbial inhabitants, increasing the relative abundance of Bacteroidota and Proteobacteria and contributing to the prevalence of tetracycline and sulfonamide ARGs at neutral pH. These findings have insight that the effects of arsenic and triclocarban co-contamination on the soil antibiotic resistome is pH dependent.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Tianlun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tiangui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Xiaohui Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, PR China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
42
|
Chen H, Hu P, Liu H, Liu S, Liu Y, Chen L, Feng L, Chen L, Zhou T. Combining with domiphen bromide restores colistin efficacy against colistin-resistant Gram-negative bacteria in vitro and in vivo. Int J Antimicrob Agents 2024; 63:107066. [PMID: 38135012 DOI: 10.1016/j.ijantimicag.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Today, colistin is considered a last-resort antibiotic for treating multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, the increased and improper use of colistin has led to the emergence of colistin-resistant (Col-R) GNB. Thus, it is urgent to develop new drugs and therapies in response to the ongoing emergence of colistin resistance. In this study, we investigated the antibacterial and antibiofilm activities of the quaternary ammonium compound domiphen bromide (DB) in combination with colistin against clinical Col-R GNB both in vitro and in vivo. Checkerboard assay and time-kill analysis demonstrated significant synergistic antibacterial effects of the colistin/DB combination. The synergistic antibiofilm activity was confirmed through crystal violet staining and scanning electron microscopy (SEM). Furthermore, the colistin/DB combination exhibited increased survival rates in infected larvae and reduced bacterial loads in a mouse thigh infection model. The cytotoxicity measurement and hemolysis test showed that the combination did not adversely affect cell viability at synergistic concentrations. The alkaline phosphatase (ALP) leak test and propidium iodide (PI) staining analysis further revealed that the colistin/DB combination enhanced the therapeutic effect of colistin by altering bacterial membrane permeability. The ROS assays revealed that the combination induced the accumulation of bacterial ROS, leading to bacterial death. In conclusion, our study is the first to identify DB as a colistin potentiator, effectively restoring the sensitivity of bacteria to colistin. It provides a promising alternative approach for combating Col-R GNB infections.
Collapse
Affiliation(s)
- Huanchang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sichen Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luozhu Feng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
43
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Ke Z, Song J, Ma J, Wang M, Mao H, Xia C, Qi L, Zhou Y, Wang J. Isolation and characterization of the aspartame-degrading strain Pseudarthrobacter sp. AS-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122883. [PMID: 37944888 DOI: 10.1016/j.envpol.2023.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Aspartame is one of the main varieties of artificial sweeteners. Although it has been approved as a food additive, the environmental hazards and ecological risks posed by aspartame are attracting more and more attention. In the present study, strain Pseudarthrobacter sp. AS-1 was isolated and characterized as an efficient aspartame degrader. Strain AS-1 was capable of degrading 200 mg L-1 aspartame within 10 h under conditions optimized at 30 °C and pH 8.0. At the same time, it was found that enzymes degrading aspartame in strain AS-1 were induced and secreted extracellularly. Degradation of aspartame in Pseudarthrobacter sp. AS-1 was identified as following: it was first demethylated to aspartyl-phenylalanine, then degraded to phenylalanine and aspartate, and finally the two amino acids were further degraded. In addition, strain AS-1 was able to remove more than 85% of aspartame in soil and river water. It is the first time that pure bacterial cultures were reported to have the capability of aspartame degradation. These findings add to our knowledge of the microbial metabolic mechanisms of aspartame.
Collapse
Affiliation(s)
- Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, 315100, PR China
| | - Junyun Song
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, 315100, PR China; Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, PR China
| | - Jingrui Ma
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, 315100, PR China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, 315100, PR China
| | - Chunli Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, 315100, PR China
| | - Yidong Zhou
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang, 315100, PR China.
| |
Collapse
|
45
|
Hu X, Xu Y, Liu S, Gudda FO, Ling W, Qin C, Gao Y. Graphene Quantum Dots Nonmonotonically Influence the Horizontal Transfer of Extracellular Antibiotic Resistance Genes via Bacterial Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301177. [PMID: 37144438 DOI: 10.1002/smll.202301177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Graphene quantum dots (GQDs) coexist with antibiotic resistance genes (ARGs) in the environment. Whether GQDs influence ARG spread needs investigation, since the resulting development of multidrug-resistant pathogens would threaten human health. This study investigates the effect of GQDs on the horizontal transfer of extracellular ARGs (i.e., transformation, a pivotal way that ARGs spread) mediated by plasmids into competent Escherichia coli cells. GQDs enhance ARG transfer at lower concentrations, which are close to their environmental residual concentrations. However, with further increases in concentration (closer to working concentrations needed for wastewater remediation), the effects of enhancement weaken or even become inhibitory. At lower concentrations, GQDs promote the gene expression related to pore-forming outer membrane proteins and the generation of intracellular reactive oxygen species, thus inducing pore formation and enhancing membrane permeability. GQDs may also act as carriers to transport ARGs into cells. These factors result in enhanced ARG transfer. At higher concentrations, GQD aggregation occurs, and aggregates attach to the cell surface, reducing the effective contact area of recipients for external plasmids. GQDs also form large agglomerates with plasmids and thus hindering ARG entrance. This study could promote the understanding of the GQD-caused ecological risks and benefit their safe application.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
46
|
Xiang Q, Fu CX, Lu CY, Sun AQ, Chen QL, Qiao M. Flooding drives the temporal turnover of antibiotic resistance gene in manure-amended soil-water continuum. ENVIRONMENT INTERNATIONAL 2023; 179:108168. [PMID: 37647704 DOI: 10.1016/j.envint.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Rice paddy soil is a hotspot of antibiotic resistance genes (ARGs) due to the application of organic fertilizers. However, the temporal dynamics of ARGs in rice paddy soil and its flooded water during the growing season remain underexplored. In this study, a microcosm experiment was conducted to explore the ARG profiles in a long term (130 days) flooded two-phase manure-amended soil-water system. By using high-throughput quantitative PCR array, a total of 23-98 and 34-85 ARGs were detected in the soil and overlying water, respectively. Regression analysis exhibited significant negative correlations between ARG profile similarities and flooding duration, indicating that flooding significantly altered the resistome (P < 0.001). This finding was validated by the increased ARG abundance in the soil and the overlying water, for example, after 130 days flooding, the abundance of ARGs in CK soil was increased from 0.03 to 1.20 copies per 16S rRNA. The PCoA analysis further suggested pig manure application resulted in distinct ARG profiles in the soil-water continuum compared with those of the non-amended control (Adonis, P < 0.05). The Venn diagram showed that all ARGs detected in the pig manure were present in the treated soil. Twelve ARGs (e.g., sul1) were shared among the pig manure, manure-amended soil, and overlying water, indicating that certain manure- or soil-borne ARGs were readily dispersed from the soil to the overlying water. Moreover, the enhanced relationships between the ARGs and mobile genetic elements in pig manure applied soil-water continuum indicate that the application of organic matter could accelerate the emergence and dissemination of ARGs. These findings suggested that flooding represents a crucial pathway for dispersal of ARGs from the soil to the overlying water. Identification of highly mobile ARGs in the soil-water continuum is essential for assessing their potential risk to human health and promoting the development of sustainable agricultural practices to mitigate their spread.
Collapse
Affiliation(s)
- Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Chen-Xi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Yi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - An-Qi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Gajdoš S, Zuzáková J, Pacholská T, Kužel V, Karpíšek I, Karmann C, Šturmová R, Bindzar J, Smrčková Š, Sýkorová Z, Srb M, Šmejkalová P, Kok D, Kouba V. Synergistic removal of pharmaceuticals and antibiotic resistance from ultrafiltered WWTP effluent: Free-floating ARGs exceptionally susceptible to degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117861. [PMID: 37116413 DOI: 10.1016/j.jenvman.2023.117861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/10/2023] [Accepted: 04/01/2023] [Indexed: 05/12/2023]
Abstract
To protect the environment and human health, antibiotic resistance genes (ARGs) and persistent pharmaceuticals need to be removed from WWTP effluent prior to its reuse. However, an efficient process for removing free-floating extracellular DNA (exDNA) in combination with a wide range of pharmaceuticals is yet to be reported for real process conditions. As a possible solution, we treated real ultrafiltered WWTP effluent with UV/H2O2 and combined GAC and zeolite sorption. In terms of exDNA, sequencing and high-throughput quantitative PCR (HT-qPCR) showed that exDNA is a potent carrier of numerous ARGs in ultrafiltered WWTP effluent (123 ARGs), including multi-drug efflux pump mexF that became the dominant exARG in GAC effluent over time. Due to the exposure to degradation agents, exDNA was reduced more efficiently than intracellular DNA, and overall levels of ARGs were substantially lowered. Moreover, GAC sorption was particularly effective in the removal of almost all the 85 detected pharmaceutical residues, with fresh GAC demonstrating an efficiency of up to 100%. However, zeolite (Si/Al 0.8) addition was needed to enhance the removal of persistent pollutants such as gabapentin and diclofenac to 57% and up to 100%, respectively. Our combined approach eminently decreases the hazardous effects of pharmaceuticals and antibiotic resistance in the ultrafiltered WWTP effluent, producing effluent suitable for multiple reuse options according to the latest legislation. In addition, we provided similarly promising but less extensive data for surface water and treated greywater.
Collapse
Affiliation(s)
- Stanislav Gajdoš
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Jana Zuzáková
- PVK, a.s., Ke Kablu 971, 102 00 Praha 10, Czech Republic.
| | - Tamara Pacholská
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Vojtěch Kužel
- PVK, a.s., Ke Kablu 971, 102 00 Praha 10, Czech Republic.
| | - Ivan Karpíšek
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Christina Karmann
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Rebecca Šturmová
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Jan Bindzar
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Štěpánka Smrčková
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | | | - Martin Srb
- PVK, a.s., Ke Kablu 971, 102 00 Praha 10, Czech Republic.
| | - Pavla Šmejkalová
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Dana Kok
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| | - Vojtěch Kouba
- Department of Water Technology and Environmental Engineering, UCT Prague, Technická 3, Praha 6, 166 28, Czech Republic.
| |
Collapse
|
48
|
Yang G, Cao JM, Cui HL, Zhan XM, Duan G, Zhu YG. Artificial Sweetener Enhances the Spread of Antibiotic Resistance Genes During Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10919-10928. [PMID: 37475130 DOI: 10.1021/acs.est.2c08673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Artificial sweeteners have been frequently detected in the feedstocks of anaerobic digestion. As these sweeteners can lead to the shift of anaerobic microbiota in the gut similar to that caused by antibiotics, we hypothesize that they may have an antibiotic-like impact on antibiotic resistance genes (ARGs) in anaerobic digestion. However, current understanding on this topic is scarce. This investigation aimed to examine the potential impact of acesulfame, a typical artificial sweetener, on ARGs in anaerobic digestion by using metagenomics sequencing and qPCR. It was found that acesulfame increased the number of detected ARG classes and the abundance of ARGs during anaerobic digestion. The abundance of typical mobile genetic elements (MGEs) and the number of potential hosts of ARGs also increased under acesulfame exposure, suggesting the enhanced potential of horizontal gene transfer of ARGs, which was further confirmed by the correlation analysis between absolute abundances of the targeted ARGs and MGEs. The increased horizontal dissemination of ARGs may be associated with the SOS response induced by the increased ROS production, and the increased cellular membrane permeability. These findings indicate that artificial sweeteners may accelerate ARG spread through digestate disposal, thus corresponding strategies should be considered to prevent potential risks in practice.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jin-Man Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin-Min Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway H91 TK33, Ireland
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
49
|
Li XS, Qi Y, Li PH, Xue JZ, Li XY, Muhammad I, Li YZ, Zhu DM, Ma Y, Kong LC, Ma HX. Genetic characterization of MDR genomic elements carrying two aac(6')- aph(2″) genes in feline-derived clinical Enterococcus faecalis isolate. Front Microbiol 2023; 14:1191837. [PMID: 37577435 PMCID: PMC10413266 DOI: 10.3389/fmicb.2023.1191837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Multidrug-resistant Enterococcus faecalis (E. faecalis) often cause intestinal infections in cats. The aim of this study was to investigate a multidrug-resistant E. faecalis isolate for plasmidic and chromosomal antimicrobial resistance and their genetic environment. E. faecalis strain ESC1 was obtained from the feces of a cat. Antimicrobial susceptibility testing was carried out using the broth microdilution method. Conjugation experiments were performed using Escherichia coli and Staphylococcus aureus as receptors. Complete sequences of chromosomal DNA and plasmids were generated by whole genome sequencing (WGS) and bioinformatics analysis for the presence of drug resistance genes and mobile elements. Multidrug-resistant E. faecalis ESC1 contained a chromosome and three plasmids. The amino acid at position 80 of the parC gene on the chromosome was mutated from serine to isoleucine, and hence the amino acid mutation at this site led to the resistance of ESC1 strain to fluoroquinolones. Eleven antibiotic resistance genes were located on two plasmids. We identified a novel composite transposon carrying two aminoglycoside resistance genes aac(6')-aph(2″). This study reported the coexistence of a novel 5.4 kb composite transposon and a resistance plasmid with multiple homologous recombination in an isolate of E. faecalis ESC1. This data provides a basis for understanding the genomic signature and antimicrobial resistance mechanisms of this pathogen.
Collapse
Affiliation(s)
- Xue-Song Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Yu Qi
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Peng-hui Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Jun-ze Xue
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Xuan-yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Inam Muhammad
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- Department of Zoology, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Ya-zhuo Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Dao-mi Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Ying Ma
- Liaoyuan Animal Disease Prevention and Control Center, Liaoyuan, China
| | - Ling-Cong Kong
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Hong-Xia Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
50
|
Taitz JJ, Tan JK, Potier-Villette C, Ni D, King NJ, Nanan R, Macia L. Diet, commensal microbiota-derived extracellular vesicles, and host immunity. Eur J Immunol 2023; 53:e2250163. [PMID: 37137164 DOI: 10.1002/eji.202250163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
The gut microbiota has co-evolved with its host, and commensal bacteria can influence both the host's immune development and function. Recently, a role has emerged for bacterial extracellular vesicles (BEVs) as potent immune modulators. BEVs are nanosized membrane vesicles produced by all bacteria, possessing the membrane characteristics of the originating bacterium and carrying an internal cargo that may include nucleic acid, proteins, lipids, and metabolites. Thus, BEVs possess multiple avenues for regulating immune processes, and have been implicated in allergic, autoimmune, and metabolic diseases. BEVs are biodistributed locally in the gut, and also systemically, and thus have the potential to affect both the local and systemic immune responses. The production of gut microbiota-derived BEVs is regulated by host factors such as diet and antibiotic usage. Specifically, all aspects of nutrition, including macronutrients (protein, carbohydrates, and fat), micronutrients (vitamins and minerals), and food additives (the antimicrobial sodium benzoate), can regulate BEV production. This review summarizes current knowledge of the powerful links between nutrition, antibiotics, gut microbiota-derived BEV, and their effects on immunity and disease development. It highlights the potential of targeting or utilizing gut microbiota-derived BEV as a therapeutic intervention.
Collapse
Affiliation(s)
- Jemma J Taitz
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jian K Tan
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Nicholas Jc King
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Nepean Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, University of Sydney and Centenary Institute, Sydney, NSW, Australia
| |
Collapse
|