1
|
Ma JY, Liu JH, Chen CZ, Zhang YZ, Guo ZS, Song MP, Jiang F, Chai ZT, Li Z, Lv SX, Zhen YJ, Wang L, Liang ZL, Jiang ZY. Characteristics of microbial carbon pump in the sediment of kelp aquaculture zone and its contribution to recalcitrant dissolved organic carbon turnover: insights into metabolic patterns and ecological functions. ENVIRONMENTAL RESEARCH 2025; 277:121559. [PMID: 40228693 DOI: 10.1016/j.envres.2025.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
The study delves into the microbial carbon pump (MCP) within the sediments of kelp aquaculture zones, focusing on its influence on the turnover of recalcitrant dissolved organic carbon (RDOC). Following kelp harvest, significant alterations in the microbial community structure were noted, with a decrease in complexity and heterogeneity within co-occurrence networks potentially impacting RDOC production efficiency. Metabolic models constructed identified four key microbial lineages crucial for RDOC turnover, with their abundance observed to decrease post-harvest. Analysis of metabolic complementarity revealed that RDOC-degrading microorganisms exhibit broad substrate diversity and are engaged in specific resource exchange patterns, with cross-feeding interactions possibly enhancing the ecological efficiency of the MCP. Notably, the degradation of RDOC was found not to deplete the RDOC pool; as aromatic compounds break down, new ones are released into the environment, thus supporting the renewal of the RDOC pool. The research highlights the pivotal role of microbial communities in RDOC turnover and offers fresh insights into their cross-feeding behavior related to RDOC cycling, providing valuable data to support the future development and application of MCP theory.
Collapse
Affiliation(s)
- Jun-Yang Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China; Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Ji-Hua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yi-Ze Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Zhan-Sheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Min-Peng Song
- Yantai Vocational College, Yantai, 264670, Shandong, PR China
| | - Feng Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zi-Tong Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhu Li
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Su-Xian Lv
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Yu-Jiao Zhen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhen-Lin Liang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhao-Yang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China.
| |
Collapse
|
2
|
Wang L, Zhao G, Guo W, Li Y, Chen J, Niu L. Microbial transformation of sulfur-containing dissolved organic matter in the intertidal zone of a mountainous river estuary responding to tidal fluctuation. ENVIRONMENTAL RESEARCH 2025; 274:121363. [PMID: 40068786 DOI: 10.1016/j.envres.2025.121363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Tidal fluctuation disturbances and amplified anthropogenic activities are defining characteristics of the intertidal zones of mountainous river estuaries. The accumulation and degradation of organic matter and nutrients in the sediments result in a complex element migration and transformation dynamics. Nonetheless, microbial transformation of dissolved organic sulfur (DOS) in the intertidal sediments upon tidal fluctuation remains poorly understood. Here, by taking a representative small mountainous river estuary in southeast China as an example, we synthesize evidence describing the composition of dissolved organic matter (DOM), microbial community structure and metabolic functions in sediments of variable depths (0-80 cm) at both high and low tide via FT-ICR-MS and metagenomic approach. Labile DOM, e.g., aliphatic and proteins were more inclined to be enriched in shallow sediments (0-30 cm). Upon tidal inundation, Thaumarchaeota was verified to facilitate the accumulation of recalcitrant organic matter through the mevalonate pathway, elevating the proportion of carboxyl-rich alicyclic molecules (CRAMs) and lignins in sediments. Whereas during ebb period, the microbial production of DOS through assimilated sulfate reduction (ASR) was signally intensified, contributing to the accumulation of sulfur-containing organic matter in deeper sediments. Based on the associations between Kyoto encyclopedia of Genes and Genomes modules and DOM formulas, cobalamin biosynthesis, ASR, and cysteine biosynthesis were observed positively correlated with the accumulation of sulfur-containing organic matter. Microbial community exhibited obvious taxonomic and functional variations between flood and ebb states. Nitrososphaerta in shallow sediments (0∼30 cm) was beneficial for the production of nitrogen-containing organic matter, while Bathyarchaeota and Chloroflexota in deep sediments (70-80 cm) predominantly governed the mineralization of organic matter. We firstly provided metagenomic evidence for the microbial transformation of sulfur-containing dissolved organic matter in the intertidal zone of a mountainous river estuary, which will be key to predicting coastal carbon storage and offer an important scientific basis for formulating intertidal ecosystem management and restoration strategies.
Collapse
Affiliation(s)
- Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Research Institute of Mulan Ecological River, Putian, 351100, China
| | - Guosheng Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Weidong Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361012, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Research Institute of Mulan Ecological River, Putian, 351100, China.
| | - Jiaying Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Research Institute of Mulan Ecological River, Putian, 351100, China
| |
Collapse
|
3
|
Chen S, Zhang C, Liu X, Shi Y, Lyu L, Gao G, Yang T, Fan K, Zhang L, Li J, Song L, Yan S, Chu H. Trophic transfer efficiency of microbial food webs differs in water and sediment in alpine wetlands across the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2025; 274:121291. [PMID: 40049352 DOI: 10.1016/j.envres.2025.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
The Tibetan Plateau contains the world's largest area of alpine wetlands, where coexisting water and sediment environments provide habitats for multitrophic microbial communities. However, the microbial food web (MFW) of coexisting water and sediment in wetland ecosystems and their responses to environmental changes remain unclear. In this study, we investigated MFWs (including archaea, bacteria, and eukaryotes) across 21 paired samples from alpine wetlands on the Tibetan Plateau along a salinity gradient. In both water and sediment, the MFWs exhibited enhanced predation and decreased mutualism with increasing salinity, with the total trophic transfer efficiency (TTE) community of bacteria, protists and metazoa increasing. The TTE of MFWs in sediment was higher than that in water, and the competition associations among species decreased while the cooperation associations increased. Compared to sediment, the MFWs in water were more complex and vulnerable. Salinity exerted top-down control on MFWs by directly influencing higher trophic levels (e.g., metazoa) in water. In contrast, salinity affected the MFWs through bottom-up effects by impacting lower trophic levels (heterotrophic archaea, heterotrophic bacteria) in sediment. Overall, this study provides new insights into understanding the trophic cycle and interactions of multi-trophic biological communities in coexisting water and sediment, and how MFWs adapt to environmental change.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lihui Lyu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiasui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Luyao Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Subo Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Van Heurck B, Cardenas DV, Hylén A, Jankowska E, Cole DB, Montserrat F, Kreuzburg M, Romaniello SJ, Meysman FJR. Microbial Community Structure in Contrasting Hawaiian Coastal Sediments. MICROBIAL ECOLOGY 2025; 88:51. [PMID: 40407873 PMCID: PMC12102127 DOI: 10.1007/s00248-025-02548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
Microbe-mineral interactions play a fundamental role in marine sediments and global biogeochemical cycles. Here, we investigated the sediment microbial communities in two contrasting field sites on Big Island, Hawaii (USA), that differ in their bay morphology and sediment grain size distributions: Papakōlea Beach (exposed, finer sediment) and Richardson Ocean Park (sheltered, coarser sediment). We selected three stations within each bay and characterized the mineral and chemical composition of the sediment and porewater, and used 16S rRNA amplicon sequencing of the V4V5 hypervariable region to investigate the naturally occurring microbial communities. Microbial community structure differed significantly between the two bays, rather than within each bay, whereby microbial diversity was markedly lower at Papakōlea compared to Richardson. We correlated environmental variables to microbial community structure in order to identify the key drivers of community differences between and within the two bays. Our study suggests that differing physico-chemical properties of the sediment and porewater, resulting from the contrasting bay morphologies and geophysical drivers, are the main factors influencing microbial community structure in these two bays. Papakōlea Beach is a naturally occurring "green sand" beach, due to its high olivine content. This site was selected in the broader context of a field campaign investigating olivine as a source mineral for ocean alkalinity enhancement (OAE), a carbon dioxide removal technology. Our results highlight the complexity of marine sediment environments, with implications for the monitoring, reporting and verification of future field trials involving olivine addition for ocean alkalinity enhancement.
Collapse
Affiliation(s)
- Benjamin Van Heurck
- Geobiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Diana Vasquez Cardenas
- Geobiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Astrid Hylén
- Geobiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Emilia Jankowska
- Vesta, PBC, San Francisco, CA, USA
- Hourglass Climate, NPO, Montclair, NJ, USA
| | - Devon B Cole
- Vesta, PBC, San Francisco, CA, USA
- Hourglass Climate, NPO, Montclair, NJ, USA
| | - Francesc Montserrat
- Vesta, PBC, San Francisco, CA, USA
- ARK Rewilding Nederland, Winselingseweg 95, 6541 AH, Nijmegen, The Netherlands
| | - Matthias Kreuzburg
- Geobiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Marine Chemistry, Trace Gas Biogeochemistry, Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany
| | | | - Filip J R Meysman
- Geobiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
5
|
Ji D, Zhang J, Li F, Li W, Bi L, Li W, Fu Y, Wang Y. Divergent Driving Mechanisms Shape the Temporal Dynamics of Benthic Prokaryotic and Eukaryotic Microbial Communities in Coastal Subtidal Zones. Microorganisms 2025; 13:1050. [PMID: 40431222 PMCID: PMC12114215 DOI: 10.3390/microorganisms13051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Benthic microbial communities are a vital component of coastal subtidal zones, playing an essential role in nutrient cycling and energy flow, and are fundamental to maintaining the stability and functioning of marine ecosystems. However, the response of benthic prokaryotic and eukaryotic microbial communities to environmental changes remains poorly understood. Herein, we conducted a nearly semimonthly annual sampling survey to investigate the temporal patterns and underlying mechanisms of benthic prokaryotic and eukaryotic microbial communities in the subtidal sediments of Sanshan Island, situated in the eastern Laizhou Bay of the Bohai Sea, China. The results showed that the temporal variations in benthic microbial communities followed a distinct seasonal pattern, with turnover playing a more dominant role in community succession. Nonetheless, contrasting temporal variations were observed in the alpha diversity of benthic prokaryotic and eukaryotic microbial communities, as well as in the dominant taxa across different microbial communities. Water temperature, dissolved oxygen, electrical conductivity, salinity, total nitrogen (TN), NH4+, and PO43- were identified as the predominant environmental drivers. The assembly of benthic microbial communities was driven by different ecological processes, in which stochastic processes mainly shaped the benthic prokaryotic communities, while deterministic processes dominated the assembly of benthic eukaryotic microbial communities. Interactions within benthic microbial communities were primarily characterized by mutualistic or cooperative relationships, but the ability of prokaryotic and eukaryotic microbial communities to maintain stability under environmental disturbances showed notable differences. These results shed light on the temporal dynamics and potential driving mechanisms of benthic prokaryotic and eukaryotic microbial communities under environmental disturbances, highlighting the distinct roles of prokaryotic and eukaryotic communities in coastal subtidal zones and providing valuable insights for the management and conservation of coastal subtidal marine ecosystems.
Collapse
Affiliation(s)
- Daode Ji
- School of Ocean, Yantai University, Yantai 264005, China; (D.J.); (J.Z.)
| | - Jianfeng Zhang
- School of Ocean, Yantai University, Yantai 264005, China; (D.J.); (J.Z.)
| | - Fan Li
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Yantai 264006, China;
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Sanshan Island Street, Yantai 261418, China;
| | - Luping Bi
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenlu Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China; (W.L.); (Y.F.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Yingjun Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China; (W.L.); (Y.F.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Yunfeng Wang
- School of Ocean, Yantai University, Yantai 264005, China; (D.J.); (J.Z.)
| |
Collapse
|
6
|
Wang R, Yang S, Zhao W. Microbial Community Responses and Nitrogen Cycling in the Nitrogen-Polluted Urban Shi River Revealed by Metagenomics. Microorganisms 2025; 13:1007. [PMID: 40431180 PMCID: PMC12114610 DOI: 10.3390/microorganisms13051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Nitrogen pollution in urban rivers, exacerbated by rapid urbanization, poses a growing threat to water quality. Microbial communities are essential in mediating nitrogen cycling and mitigating pollution in these ecosystems. This study integrated three-year (2021-2023) water quality monitoring with metagenomic sequencing to investigate microbial community dynamics, nitrogen cycling processes, and their responses to nitrogen pollution in the Shi River, Qinhuangdao, China. Nitrogen pollution was predominantly derived from industrial discharges from enterprises in the Shi River Reservoir upstream (e.g., coolant and chemical effluents), agricultural runoff, untreated domestic sewage (particularly from catering and waste in Pantao Valley), and livestock farming effluents. Total nitrogen (TN) concentrations ranged from 2.22 to 6.44 mg/L, exceeding China's Class V water standard (2.0 mg/L, GB 3838-2002), with the highest level at the urbanized W4 site (6.44 mg/L). Nitrate nitrogen (NO3-N) accounted for 60-80% of TN. Metagenomic analysis revealed Fragilaria, Microcystis, and Flavobacterium thriving (up to 15% relative abundance) under nitrogen stress, with nitrogen metabolism genes (narG, nifH, nirK) enriched at polluted sites (W2, W4), narG reaching 26% at W1. Dissolved oxygen positively correlated with nitrate reductase gene abundance, while ammonia nitrogen inhibited it. Burkholderiales and Limnohabitans dominated denitrification, offering insights into sustainable urban river management.
Collapse
Affiliation(s)
| | | | - Wei Zhao
- College of Heilongjiang River and Lake Chief, Heilongjiang University, Harbin 150080, China; (R.W.); (S.Y.)
| |
Collapse
|
7
|
Pan S, Zhang W, Yan F, Ding Y, Hellweger FL, Shang J, Yan Y, Yu F, Li Y. Keystone microbial taxa identified by deep learning reveal mechanisms of phosphorus stoichiometric homeostasis in submerged macrophytes under different hydrodynamic states. WATER RESEARCH 2025; 282:123721. [PMID: 40311292 DOI: 10.1016/j.watres.2025.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Phosphorus (P) pollution in aquatic ecosystems triggers eutrophication, disrupting ecological processes. Although phytoremediation using submerged macrophytes is promising, its efficacy depends on plant-microbe interactions and stoichiometric homeostasis. A significant knowledge gap exists regarding the assembly and impact of key microbial communities on stoichiometric homeostasis under fluctuating environmental conditions, hindering the optimization of phytoremediation strategies. Given that hydrodynamic fluctuations are a primary source of environmental variability in aquatic systems, this study explored the intricate relationships among stoichiometric homeostasis, microbial community structure, and ecosystem stability, with a specific focus on their impact on rhizosphere P metabolism in Vallisneria natans and Myriophyllum spicatum under different hydrodynamic states. A Deep Learning-based Keystoneness Taxa Identification (DLKTI) framework was developed to identify key microbial taxa. Microbial community stability analysis preceded key taxa determination to enhance result reliability and ecological relevance based on the premise that distinct states provide a more dependable baseline for attributing observed changes to specific perturbations rather than to inherent fluctuations. These findings indicate that the key taxa identified by the DLKTI framework adequately characterized the overall ecological features of the microbial community (average ρ = 0.39, p<0.05). Moreover, including microbial pools and diversity indices of the screened key microbial taxa improved the explanatory power for submerged macrophyte traits (5% and 6%, respectively) and rhizosphere oxidative stress responses (25% and 4%, respectively). Partial least squares path modeling demonstrated the crucial role of stoichiometric homeostasis for P in ecosystem functioning (path coefficient of inhibition of phytoplankton growth = 0.58, p<0.001). The findings elucidating plant-microbe interaction patterns under different hydrodynamic states allow for the development of targeted interventions to enhance rhizosphere P metabolism, thereby increasing the efficiency of phytoremediation for eutrophication management and aquatic ecosystem restoration.
Collapse
Affiliation(s)
- Shenyang Pan
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Wenlong Zhang
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China.
| | - Feng Yan
- Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Yanan Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin 10623, Germany
| | - Jiahui Shang
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Yan
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Yu
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Li
- State Key Laboratory of Water Cycle and Water Security in River Basin, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
8
|
Huang J, Zheng X, Yu T, Ali M, Wiese J, Hu S, Huang L, Huang Y. Diverse lifestyles and adaptive evolution of uncultured UBA5794 actinobacteria, a sister order of "Candidatus actinomarinales". ENVIRONMENTAL MICROBIOME 2025; 20:39. [PMID: 40253436 PMCID: PMC12008989 DOI: 10.1186/s40793-025-00701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Uncultured UBA5794 actinobacteria are frequently found in marine and inland water environments by using metagenomic approaches. However, knowledge about these actinobacteria is limited, hindering their isolation and cultivation, and they are always confused with "Candidatus Actinomarinales" based on 16S rRNA gene classification. Here, to conduct genomic characterization of them, we obtained three high-quality UBA5794 metagenome-assembled genomes (MAGs) from a hydrothermal sediment on the Carlsberg Ridge (CR) and retrieved 131 high-quality UBA5794 genomes from public datasets. Phylogenomic analysis confirms UBA5794 as an independent order within the class Acidimicrobiia. Genome-based metabolic predictions reveal that flexible metabolism and diversified energy acquisition, as well as heavy metal(loid) detoxification capacity, are crucial for the ability of UBA5794 to thrive in diverse environments. Moreover, there is separation between sponge-associated and free-living UBA5794 groups in phylogeny and functional potential, which can be attributed to the symbiotic nature of the sponge-associated group and the extensive horizontal gene transfer (HGT) events observed in these bacteria. Ancestral state reconstruction suggests that the UBA5794 clade may have originated from a free-living environment and then some members gradually migrated to the sponge host. Overall, our study sheds light on the ecological adaptation and evolutionary history of the ubiquitous but poorly understood UBA5794 actinobacteria.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- RU Marine Ecology, RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Yu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mohsin Ali
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jutta Wiese
- RU Marine Ecology, RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Songnian Hu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ying Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Liong A, Leão PN. Fatty acyl-AMP ligases in bacterial natural product biosynthesis. Nat Prod Rep 2025; 42:739-753. [PMID: 39968878 PMCID: PMC11837247 DOI: 10.1039/d4np00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Indexed: 02/20/2025]
Abstract
Covering: covering up to 2024Fatty Acyl-AMP Ligases (FAALs) belong to the family of adenylate-forming enzymes and activate fatty acyl substrates through adenylation. FAALs were discovered as key players in various natural product biosynthetic pathways, particularly in the assembly of polyketides and non-ribosomal peptides. These enzymes exhibit a conserved structural architecture that distinguishes them from their close relatives, the Fatty Acyl-CoA Ligases. FAALs display the starter unit in the biosynthesis of diverse natural products where they shuttle fatty acyl substrates into secondary metabolism for further chain elongation and/or modification. In this review, we cover the discovery, distribution and structure of FAALs as well as their role in natural product biosynthesis. In addition, we provide an overview about their genomic and biosynthetic contexts and summarize approaches used to analyze FAAL activity, predict their substrate specificity and to discover new compounds whose biosyntheses involve these enzymes.
Collapse
Affiliation(s)
- Anne Liong
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Pedro N Leão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| |
Collapse
|
10
|
Sun C, Liu H, Teng J, Feng W, Wang D, Wang X, Zhao J, Wang Q. Impact of Microplastic Exposure on Sand Crab Scopimera globosa Behavior: Implications for Microplastic Transport and Sulfur Cycling through Bioturbation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7039-7053. [PMID: 40167463 DOI: 10.1021/acs.est.5c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The accumulation of microplastics (MPs) in estuarine regions and their ecological consequences have become global environmental concerns. Estuarine sediments function as major sinks for MPs and hotspots for critical biogeochemical processes, which are significantly influenced by benthic bioturbation. However, the impacts of MPs on the behavior of highly mobile benthic organisms and the ecological effects of bioturbation activities remain poorly understood. This study utilized laboratory simulation experiments, AI-based behavioral tracking, and metagenomic sequencing to systematically examine the effects of sand crab bioturbation on MPs migration, sediment physicochemical properties and sulfur cycling processes. Results demonstrated that sand crab bioturbation substantially enhanced the vertical migration of MPs, with fluxes to surface layers and the overlying water increasing by 27-fold compared to undisturbed conditions. Exposure to PE-MPs reduced sand crabs' surface foraging intensity and induced behavioral abnormalities. The crabs actively avoided MPs, exhibiting a preference for burrowing and residing in deeper sediment layers. This behavioral shift significantly altered microbial community distributions, with an increase of Pseudomonadota abundance and a decline of sulfate-reducing bacteria Thermodesulfobacteriota abundance. Furthermore, bioturbation accelerated sulfate oxidation in deeper sediments while inhibited dissimilatory sulfate reduction. This study is the first to identify the role of bioturbation in promoting the upward migration of MPs in sediments. Altered sand crab bioturbation will impact sediment biogeochemistry, estuarine function, and coastal resilience.
Collapse
Affiliation(s)
- Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Weiwei Feng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| |
Collapse
|
11
|
Chen N, Wang L, Zhao Z, Zhu M, Li Y. Impacts of aquaculture on nitrogen cycling and microbial community dynamics in coastal tidal flats. ENVIRONMENTAL RESEARCH 2025; 270:120973. [PMID: 39880110 DOI: 10.1016/j.envres.2025.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
The expansion of aquaculture areas has encroached upon vast areas of coastal wetlands and introduced excessive nitrogen inputs, disrupting microbial communities and contributing to various environmental issues. However, investigations on how aquaculture affects microbial communities and nitrogen metabolism mechanisms in coastal tidal flats remain scarce. Hence, we explored the composition, diversity, and assembly processes of nitrogen-cycling (N-cycling) microbial communities in tidal flats in Jiangsu using metagenomic assembly methods. Our study further delved into the seasonal variations of these microbial characteristics to better explore the effects of seasonal changes in aquaculture areas on microbial community. Nitrogen metabolism-related processes and functional genes were identified through the KEGG and NCyc databases. The results revealed significant seasonal variation in the relative abundance and composition of microbial communities. Higher diversity was observed in winter, while the co-occurrence network of microbial communities was more complex in summer. Pseudomonadota emerged as the most abundant phylum in the N-cycling community. Furthermore, pH and NO3-N were identified as the primary factors influencing bacterial community composition, whereas NO2-N was more strongly associated with the N-cycling community. Regarding the nitrogen metabolism processes, nitrogen mineralization and nitrification were predominant in the tidal flat regions. NO2-N and NO3-N exhibited significant effects on several N-cycling functional genes (e.g., nirB, hao, and narG). Finally, neutral and null modeling analyses indicated that bacterial communities were predominantly shaped by stochastic processes, whereas N-cycling communities were largely driven by deterministic processes. These findings highlighted the significant role that aquaculture pollution plays in shaping the N-cycling communities in tidal flats. This underscored the importance of understanding microbial community dynamics and nitrogen metabolism in tidal flats to improve environmental management in coastal aquaculture areas.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Linqiong Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China.
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Mengjie Zhu
- College of Environment, Hohai University, Nanjing, 210024, China
| | - Yi Li
- College of Environment, Hohai University, Nanjing, 210024, China
| |
Collapse
|
12
|
Lu Z, Zeng J, Wang L, Zhu D, Cheng X, Huang D, Zhang J, Yuan L. The influence of turbulence caused by hydraulic structures on the community assembly of epilithic biofilms in rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124645. [PMID: 40037241 DOI: 10.1016/j.jenvman.2025.124645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
The assembly mechanisms of riverine biofilm communities in river systems represent a central question in aquatic microbial ecology. However, the influence of turbulence on the assembly of generalists and specialists within biofilms remains poorly understood. This study aimed to address this gap by examining a river with multiple spur dikes, using high-throughput sequencing, ecological network analysis, and partial least squares path modeling to explore the assembly process and community structure of biofilms. The results revealed that turbulence intensity (0.029 m/s) and kinetic energy (0.0018 m2/s2) were significantly higher at the heads of spur dikes compared to the tails. Notably, hydrodynamic parameters explained 6.50% of biofilm community variance, highlighting their underappreciated role as deterministic drivers of microbial assembly. Habitat specialists exhibited heightened sensitivity to hydrodynamic fluctuations, occupying central positions in co-occurrence networks. Additionally, turbulence intensity and kinetic energy emerged as the primary drivers of community assembly, influencing critical ecological processes such as homogeneous selection, drift and dispersal limitation. At the head of spur dikes, a high turbulence region, the weakened impact of homogeneous selection, combined with an increase in dispersal limitation, created conditions that particularly favored habitat generalists. Conversely, low turbulence dike tails supported specialist proliferation via strengthened deterministic selection and nutrient-driven niche partitioning. Furthermore, the partial least squares path modeling confirmed that turbulence dominates the assembly process of microbial specialists and generalists. This study revealed the pivotal role of turbulence in shaping biofilm assembly and driving the spatial differentiation of generalists and specialists, offering fresh insights into the complex interplay between hydrodynamics and microbial ecology in rivers impacted by hydraulic structures. These findings significantly enhance the understanding of biofilm assembly mechanisms and their broader implications for effective river ecosystem management.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Jiaxing Zeng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Longwei Wang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Dong Huang
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, 510641, China
| | - Jin Zhang
- Yangtze Institute for Conservation and Development, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 210098, Nanjing, China
| | - Lirong Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Song Z, Zhang T, Liang Y, Mcminn A, Wang M, Jiao N, Luo T. Seasonal Variations of Community Structure and Functional Genes of Synechococcus in the Subtropical Coastal Waters: Insights from FACS and High-Throughput Sequencing. Microorganisms 2025; 13:764. [PMID: 40284601 PMCID: PMC12029665 DOI: 10.3390/microorganisms13040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Synechococcus plays a pivotal role in the marine biogeochemical cycle. Advances in isolation techniques and high-throughput sequencing have expanded our understanding of the diversity of the Synechococcus community. However, their genomic diversity, functional dynamics and seasonal variations in the coastal waters are still not well known. Here, seawater samples were collected seasonally (March, June, August, December) from three stations in the coastal waters of Xiamen. Using fluorescence-activated cell sorting (FACS), we isolated 1000 Synechococcus cells per sample and performed ITS amplicon sequencing and metagenomic sequencing to analyze the seasonal variations in community structure and functional genes of Synechococcus. Firstly, we conducted a comparative analysis of in situ data and FACS data from three sampling sites in August. FACS samples revealed low-abundance Synechococcus strains underdetected by in situ samples. In addition, 24 clades representing Synechococcus subclusters S5.1, S5.2, and S5.3 were detected from three in situ samples and twelve FACS samples, suggesting the high diversity of Synechococcus in the coastal waters of Xiamen. Furthermore, the Synechococcus community displayed pronounced seasonal variations, and temperature significantly influenced the variations in Synechococcus community composition. Additionally, Synechococcus populations exhibit seasonal functional dynamics, with enhanced metabolic activity in summer characterized by higher numbers of functional genes associated with metabolic pathways compared to winter samples. Altogether, this study underscored the significance of FACS and high-throughput sequencing to reveal the diversity and functional dynamics of Synechococcus.
Collapse
Affiliation(s)
- Zhenzhen Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| | - Ting Zhang
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Institute of Evolution and Marine Biodiversity, MoE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew Mcminn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Institute of Evolution and Marine Biodiversity, MoE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.S.); (A.M.); (M.W.)
- Institute of Evolution and Marine Biodiversity, MoE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Nianzhi Jiao
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| | - Tingwei Luo
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361102, China; (T.Z.); (N.J.)
| |
Collapse
|
14
|
Chu J, Ye Y, Wu YH. A glimpse of microbial potential in metal metabolism in the Clarion-Clipperton Fracture Zone in the eastern Pacific Ocean based on metagenomic analysis. Mar Genomics 2025; 79:101159. [PMID: 39536492 DOI: 10.1016/j.margen.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The polymetallic nodules distributed in the abyssal ocean floor are full of economic value, rich in manganese, iron, copper and rare-earth elements. Little is currently known about the diversity and the metabolic potential of microorganisms inhabiting the Clarion-Clipperton Fracture Zone (CCFZ) in eastern Pacific Ocean. In this study, the surface sediments (0-8 cm), which were divided into eight parts at 1 cm intervals were collected from the CCFZ. The microbial diversity and the metabolic potential of metal were examined by metagenomic sequencing and binning. The metal redox genes and metal transporter genes also showed a certain trend at different depths, the highest in the surface layer, about the same at 0-6 cm, and greater changes after >6 cm. 58 high- and medium metagenome-assembled genomes (MAGs) were recovered and assigned to 14 bacterial phyla and 1 archaeal phylum after dereplication. Alphaproteobacteria mainly carried out the oxidation of Fe/Mn and the reduction of Hg, Gammaproteobacteria mainly for the oxidation of Mn/Cu and the reduction of Cr/Hg and Methylomirabilota mainly for the oxidation of Mn and the reduction of As/Cr/Hg. Among the five Thermoproteota MAGs identified, only one had genes annotated for Mn oxidation, suggesting a limited but potentially significant role in this process at the bottom layer. By identifying the microbial diversity and the metabolic potential of metal in different depth, our study strengthens the understanding of metal metabolism in CCFZ and provides the foundation for further analyses of metal metabolism in such ecosystems.
Collapse
Affiliation(s)
- Jiayi Chu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Yonglian Ye
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
15
|
Cao S, Yin P, Liu C, Hu X, Liu Y, Zhao Y, Guan X, Li Y. Deciphering denitrification drivers in a high‑nitrogen estuary: Insights from stable isotope analysis and microbial molecular techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178987. [PMID: 40022970 DOI: 10.1016/j.scitotenv.2025.178987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Coastal estuaries are increasingly impacted by anthropogenic nitrogen inputs, disrupting nitrogen cycling and posing significant threats to ecosystem health. This study investigates nitrogen sources and transformation processes in the Jiulong River Estuary (JRE), a highly eutrophic subtropical estuary in Southeast China. By analyzing and comparing samples from groundwater, surface water, and sediment, this study reveals distinct nitrogen transformation dynamics across interconnected environmental compartments. A comprehensive framework integrating stable isotope analysis, sediment incubation experiments, and microbial molecular techniques was employed to characterize nitrogen dynamics both regionally and at the sediment-water interface within diverse wetland types. Manure and sewage were identified as the primary nitrogen sources. Salinity emerged as a key regulator of nitrogen transformations, with freshwater wetlands exhibiting the highest denitrification potential, followed by mudflats, aquaculture ponds, and mangroves. Abiotic factors, including hydrological conditions and wetland types, were found to predominantly drive nitrogen transformations, while biotic factors, such as microbial community composition and functional gene abundances, played a secondary but interconnected role under the influence of abiotic drivers. These findings offer valuable insights into nitrogen cycling in estuarine ecosystems and propose a robust framework for mitigating nitrogen pollution and managing eutrophication in coastal regions.
Collapse
Affiliation(s)
- Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ping Yin
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China.
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiujian Hu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China.
| |
Collapse
|
16
|
Li J, Lu Y, Chen X, Wang L, Cao Z, Lei H, Zhang Z, Wang P, Sun B. Seasonal variation of microbial community and diversity in the Taiwan Strait sediments. ENVIRONMENTAL RESEARCH 2025; 268:120809. [PMID: 39798660 DOI: 10.1016/j.envres.2025.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Human activities and ocean currents in the Taiwan Strait exhibit significant seasonal variation, yet the response of marine microbes to ocean changes under anthropogenic and climatic stress remains unclear. Using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics and functional variations of microbial communities in sediment samples. Our findings revealed distinct seasonal patterns in microbial diversity and composition. Proteobacteria, Desulfobacterota, and Crenarchaeota dominated at the phylum level, while Candidatus Nitrosopumilus, Woeseia, and Subgroup 10 were prevalent at the genus level. Iron concentrations, heavy metals and C/N ratio were primary factors influencing microbial communities during specific seasons, whereas sulfur content, temperature fluctuations, and heavy metals shaped the entire microbial structure and diversity. Core microbial groups, including Desulfobulbus, Subgroup 10, Unidentified Latescibacterota, and Sumerlaea, played essential roles in regulating community structure and functional transitions. Marker species, such as Aliidiomarina sanyensis, Spirulina platensis, Croceimarina litoralis and Sulfuriflexus mobilis, acted as seasonal indicators. Bacteria exhibited survival strategy akin to higher organisms, encompassing process of synthesis, growth, dormancy, and disease resistance throughout the seasonal cycle. Core microbial groups and marker species in specific seasons can serve as indicators for monitoring and assessing the health of the Taiwan Strait ecosystem.
Collapse
Affiliation(s)
- Jialong Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Xueting Chen
- Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China and the Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University, Xiamen 361005, China
| | - Lianghui Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhiwei Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haojie Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhenjun Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Bin Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
17
|
Sheng Y, Zeng X, Zhao L, Li Y. Editorial: Microbial involvement in biogeochemical cycling and contaminant transformations at land-water ecotones. Front Microbiol 2024; 15:1525521. [PMID: 39703713 PMCID: PMC11655481 DOI: 10.3389/fmicb.2024.1525521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Affiliation(s)
- Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Linduo Zhao
- Prairie Research Institute-Illinois Sustainable Technology Centre/Illinois State Water Survey, University of Illinois at Urbana Champaign, Champaign, IL, United States
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
18
|
Peng K, Yan L, Xie X, Deng Y, Gan Y, Zhang Y. Hydrogeochemical dynamics under saltwater-freshwater mixing in a mangrove wetland over tidal cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176827. [PMID: 39389137 DOI: 10.1016/j.scitotenv.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Seawater and groundwater interactions shape the hydrogeochemical profile of mangrove aquifers, revealing how biogeochemical processes adapt to saline-freshwater mixing via the fluctuating patterns of key hydrochemical indicators and primary biogenic elements. This study, utilizing a multi-level monitoring profile spanning the entire submerged aquifer within a mangrove wetland, analyzed the spatiotemporal dynamics of DO, ORP, pH, alkalinity and biogenic elements (C, N, S). The results revealed that among the basic hydrochemical parameters, total alkalinity showed the most stable spatiotemporal distribution and was positively correlated with salinity. pH demonstrated a significant negative correlation with salinity, whereas the correlations of ORP and DO with salinity were not substantial. The discharge of terrestrial freshwater into the mangrove wetland is marked by hydrogeochemical reactions favoring the input of Mg2+ and DIC, with potential iron mineral precipitation within the aquifer. Spatial distribution of biogenic elements in the groundwater showed no apparent pattern across sampling periods. DOC concentrations ranged from 0.3 to 1.3 mmol/L. Three components of dissolved organic matter were identified using three-dimensional fluorescence spectroscopy, with high molecular weight components (C1 + C2) accounting for an average of 47 to 73 %. Both elevated DOC concentrations and high molecular weight component ratios were primarily found in shallow layers of dense mangrove areas, decreasing with depth. Concentrations of ammonia, nitrite, and nitrate varied dynamically, reflecting active biochemical processes in the shallow to mid-layers of the aquifer. Furthermore, sulfate and sulfide concentrations, ranging from 0 to 26 mmol/L and 0.4 to 576.8 μmol/L, respectively, underscore the interplay of biogeochemical reactions, especially sulfate reduction. These findings highlight valuable insights into the complex biogeochemical processes within mangrove aquifers and provide theoretical guidance for protecting the ecological health of mangrove wetlands.
Collapse
Affiliation(s)
- Kang Peng
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, China
| | - Lu Yan
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Yamin Deng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiqun Gan
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yanpeng Zhang
- Wuhan Center of China Geological Survey, Wuhan, China
| |
Collapse
|
19
|
Wan Y, Zhao F, Filker S, Hatmanti A, Zhao R, Xu K. Parasitic taxa are key to the vertical stratification and community variation of pelagic ciliates from the surface to the abyssopelagic zone. ENVIRONMENTAL MICROBIOME 2024; 19:85. [PMID: 39501349 PMCID: PMC11539804 DOI: 10.1186/s40793-024-00630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND An increase in upper-ocean thermal stratification is being observed worldwide due to global warming. However, how ocean stratification affects the vertical profile of plankton communities remains unclear. Understanding this is crucial for assessing the broader implications of ocean stratification. Pelagic ciliates cover multiple functional groups, and thus can serve as a model for studying the vertical distribution and functional strategies of plankton in stratified oceans. We hypothesize that pelagic ciliate communities exhibit vertical stratification caused by shifts in functional strategies, from free-living groups in the photic zone to parasitic groups in deeper waters. RESULTS 306 samples from the surface to the abyssopelagic zone were collected from 31 stations in the western Pacific and analyzed with environmental DNA (the V4 region of 18 S rDNA) metabarcoding of pelagic ciliates. We found a distinct vertical stratification of the entire ciliate communities, with a boundary at a depth of 200 m. Significant distance-decay patterns were found in the photic layers of 5 m to the deep chlorophyll maximum and in the 2,000 m, 3000 m and bottom layers, while no significant pattern occurred in the mesopelagic layers of 200 m - 1,000 m. Below 200 m, parasitic Oligohymenophorea and Colpodea became more prevalent. A linear model showed that parasitic taxa were the main groups causing community variation along the water column. With increasing depth below 200 m, the ASV and sequence proportions of parasitic taxa increased. Statistical analyses indicated that water temperature shaped the photic communities, while parasitic taxa had a significant influence on the aphotic communities below 200 m. CONCLUSIONS This study provides new insights into oceanic vertical distribution, connectivity and stratification from a biological perspective. The observed shift of functional strategies from free-living to parasitic groups at a 200 m transition layer improves our understanding of ocean ecosystems in the context of global warming.
Collapse
Affiliation(s)
- Yuanyuan Wan
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sabine Filker
- Department of Molecular Ecology, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Ariani Hatmanti
- Research Center for Oceanography, The National Research and Innovation Agency, Jakarta, 14430, Indonesia
| | - Rongjie Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Yang X, Li Y, Pu J, Huang Y, Luan T, Xu M. Effects of cable bacteria on vertical redox profile formation and phenanthrene biodegradation in intertidal sediment responded to tide. WATER RESEARCH 2024; 265:122283. [PMID: 39173361 DOI: 10.1016/j.watres.2024.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Periodic oxygen permeation is critical for pollutant removal within intertidal sediments. However, tidal effects on the vertical redox profile associated with cable bacterial activity is not well understood. In this study, we simulated and quantified the effects of tidal flooding, exposing, and their periodic alternation on vertical redox reactions and phenanthrene removal driven by cable bacteria in the riverbank sediment. Results show that electrogenic sulfur oxidation (e-SOx) mediated by cable bacteria during exposing process drove the vertical permeation of oxidation potential characterized by a decrease in Fe(II) and sulfide concentrations. The sulfate produced was observed in deep sediment (5-10 mm) and served as an electron acceptor for anaerobic oxidation, thereby triggering the functional succession of microbial community. About 78.2 % and 80.8 % of phenanthrene was degraded in deep sediment where cable bacteria grew well under exposing and tidal conditions. Anaerobic processes during tidal flood were also found to be important for the survival of cable bacteria. Higher cable bacteria abundance (up to 1.5 %) was observed under tidal conditions compared to that under continuous exposing conditions and flooding conditions. This might be attributed to lower oxidation stress and sulfide replenishment via sulfate reduction while flooding. Under tidal conditions, the cable bacteria interacted with sulfate reduction bacteria (e.g. Desulfobacca spp. and Desulfatiglans spp.) and maintained the dynamic balance of HS- and SO42- in sediment profiles. This HS--SO42- cycle could serve as a "redox connector" that continuously delivers oxidation potential to deep sediments, resulting in the removal of organic pollutants. The findings provide preliminary evidence of the self-purification mechanisms within intertidal sediments and suggest a potential strategy for sediment remediation.
Collapse
Affiliation(s)
- Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Pu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
21
|
Liang J, Yan M, Zhu Z, Lu L, Ding J, Zhou Q, Gao X, Tang N, Li S, Li X, Zeng G. The role of microorganisms in phosphorus cycling at river-lake confluences: Insights from a study on microbial community dynamics. WATER RESEARCH 2024; 268:122556. [PMID: 39378748 DOI: 10.1016/j.watres.2024.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/08/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
River-lake confluences are key zones in the river-lake network, essential for managing contaminant transport and transformation. However, the role of biogeochemical transformations, particularly in phosphorus (P) dynamics, has been underexplored. As a result, this study looks into the dynamics of microbial communities and how important microbes are to the cycling of P. It was revealed that microorganisms contribute differently to phosphorus cycling in different hydraulic regions. Regions with higher-velocity and finer sediment showed increased microbial diversity and enhanced capabilities for organic phosphorus (OP) mineralization and inorganic phosphorus (IP) solubilization due to lower bio-available P (bio-P) concentrations. In areas characterized by flow deflection (FD), flow stagnation (FST), and flow separation (FSE), distinct P fraction distributions were observed: Total phosphorus (TP) and bio-P were found to be more abundant in the FST and FD regions, but residual phosphorus (Res-P) and calcium phosphorus (Ca-P) were more prevalent in the FSE region. Sediment characteristics, including P species like aluminum-phosphorus (Al-P), OP, iron-associate phosphorus (BD-P), and sediment mid-diameter (D50), significantly influence microbial community composition. These results improve our comprehension of the distribution of microbial community distribution and its role in the phosphorus cycle at river-lake confluence, providing useful provide valuable information for managing river-lake confluences and protecting aquatic ecosystems.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China.
| | - Min Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Junjie Ding
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Qinxue Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 41082, PR China
| |
Collapse
|
22
|
Li W, Zhen Y, Yang Y, Wang D, He H. Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea. J Microbiol 2024; 62:845-858. [PMID: 39212864 DOI: 10.1007/s12275-024-00166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 102 to 2.17 × 106 copies per gram of sediment and from 6.6 × 101 to 7.65 × 104 copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.
Collapse
Affiliation(s)
- Wenhui Li
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Yu Zhen
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, People's Republic of China.
| | - Yuhong Yang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Daling Wang
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| |
Collapse
|
23
|
Fan Y, Zhou Z, Liu F, Qian L, Yu X, Huang F, Hu R, Su H, Gu H, Yan Q, He Z, Wang C. The vertical partitioning between denitrification and dissimilatory nitrate reduction to ammonium of coastal mangrove sediment microbiomes. WATER RESEARCH 2024; 262:122113. [PMID: 39032335 DOI: 10.1016/j.watres.2024.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining 15N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH4+. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.
Collapse
Affiliation(s)
- Yijun Fan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengyuan Zhou
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Qian
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoli Yu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangjuan Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Zhao Z, Qin W, Li L, Zhao H, Ju F. Discovery of Candidatus Nitrosomaritimum as a New Genus of Ammonia-Oxidizing Archaea Widespread in Anoxic Saltmarsh Intertidal Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16040-16054. [PMID: 39115222 DOI: 10.1021/acs.est.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are widely distributed in marine and terrestrial habitats, contributing significantly to global nitrogen and carbon cycles. However, their genomic diversity, ecological niches, and metabolic potentials in the anoxic intertidal aquifers remain poorly understood. Here, we discovered and named a novel AOA genus, Candidatus Nitrosomaritimum, from the intertidal aquifers of Yancheng Wetland, showing close metagenomic abundance to the previously acknowledged dominant Nitrosopumilus AOA. Further construction of ammonia monooxygenase-based phylogeny demonstrated the widespread distribution of Nitrosomaritimum AOA in global estuarine-coastal niches and marine sediment. Niche differentiation among sublineages of this new genus in anoxic intertidal aquifers is driven by salinity and dissolved oxygen gradients. Comparative genomics revealed that Candidatus Nitrosomaritimum has the genetic capacity to utilize urea and possesses high-affinity phosphate transporter systems (phnCDE) for surviving phosphorus-limited conditions. Additionally, it contains putative nosZ genes encoding nitrous-oxide (N2O) reductase for reducing N2O to nitrogen gas. Furthermore, we gained first genomic insights into the archaeal phylum Hydrothermarchaeota populations residing in intertidal aquifers and revealed their potential hydroxylamine-detoxification mutualism with AOA through utilizing the AOA-released extracellular hydroxylamine using hydroxylamine oxidoreductase. Together, this study unravels the overlooked role of priorly unknown but abundant AOA lineages of the newly discovered genus Candidatus Nitrosomaritimum in biological nitrogen transformation and their potential for nitrogen pollution mitigation in coastal environments.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomes, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Heping Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
25
|
Chris DI, Juliana NO, Wokeh OK, Mohamad Nor A, Lananan F, Seong Wei L. Comparative ecotoxicological study on the current status of artisanal crude oil contaminated mangrove swamps in Rivers State, Southern Nigeria. Heliyon 2024; 10:e34588. [PMID: 39130431 PMCID: PMC11315088 DOI: 10.1016/j.heliyon.2024.e34588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
The rise in illegal crude oil theft and refining in the southern Niger Delta region of Nigeria, especially in Rivers State, has led to significant environmental damage to aquatic ecosystems. A study was carried out to assess the impact of crude oil bunkering on aquatic environments and fish samples from Oproama, Sama-Naguakiri, and Abalama over six months. Findings revealed that Oproama had the highest levels of biological oxygen demand (3.60 ± 0.79 mg/L), electrical conductivity (34.07 ± 3.62 μS/cm), total dissolved solids (28.17 ± 3.77 mg/L), and temperature (29.50 ± 0.74 °C). In contrast, Sama-Naguakiri recorded the highest pH (6.72 ± 0.14) and dissolved oxygen (3.35 ± 0.11 mg/L). Though minor variances were noted between Sama-Naguakiri and Abalama, a significant difference (P < 0.05) was observed between these areas and Oproama. Importantly, all measured values adhered to WHO/FAO standards. Analysis of potentially harmful metals in sediment and water indicated notable distinctions among the three sites, with Sama-Naguakiri exhibiting the highest levels of Zn (114.5 ± 1.5 mg/kg), Cu (237.8 ± 0.9 mg/kg), Pb (3.6 ± 1.2 mg/kg), and Cd (1.1 ± 0.4 mg/kg). Conversely, Abalama showed the lowest zinc (105.2 ± 1.5 mg/kg) and lead (2.4 ± 0.5 mg/kg) concentrations, while Oproama displayed the lowest copper level (0.8 ± 0.3 mg/kg). The concentrations of heavy metals in the water, sediment, and fish surpassed the permissible limits established by NESREA, the EPA, and WHO, except for arsenic. The presence of heavy metals in this region could pose significant ecological and health hazards, underscoring the urgency for immediate remedial measures to safeguard the environment and this fish-dependent community.
Collapse
Affiliation(s)
- Davies Ibienebo Chris
- Department of Fisheries, University of Port Harcourt, Port Harcourt, East-West Road, Choba, Rivers State, P.M.B. 5323, Nigeria
| | - Nwosu Obiageli Juliana
- Department of Fisheries, University of Port Harcourt, Port Harcourt, East-West Road, Choba, Rivers State, P.M.B. 5323, Nigeria
| | - Okechukwu Kenneth Wokeh
- Department of Animal and Environmental Biology, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria
| | - Azra Mohamad Nor
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry (Earth Sciences and Maritime), National Research and Innovation Agency (BRIN), Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus, 21300, Terengganu, Malaysia
| | - Lee Seong Wei
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus, 21300, Terengganu, Malaysia
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| |
Collapse
|
26
|
Zhang T, Gui Q, Gao Y, Wang Z, Kong M, Xu S. Seasonal hydrological dynamics affected the diversity and assembly process of the antibiotic resistome in a canal network. ENVIRONMENTAL RESEARCH 2024; 252:118841. [PMID: 38582418 DOI: 10.1016/j.envres.2024.118841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
The significant threat of antibiotic resistance genes (ARGs) to aquatic environments health has been widely acknowledged. To date, several studies have focused on the distribution and diversity of ARGs in a single river while their profiles in complex river networks are largely known. Here, the spatiotemporal dynamics of ARG profiles in a canal network were examined using high-throughput quantitative PCR, and the underlying assembly processes and its main environmental influencing factors were elucidated using multiple statistical analyses. The results demonstrated significant seasonal dynamics with greater richness and relative abundance of ARGs observed during the dry season compared to the wet season. ARG profiles exhibited a pronounced distance-decay pattern in the dry season, whereas no such pattern was evident in the wet season. Null model analysis indicated that deterministic processes, in contrast to stochastic processes, had a significant impact on shaping the ARG profiles. Furthermore, it was found that Firmicutes and pH emerged as the foremost factors influencing these profiles. This study enhanced our comprehension of the variations in ARG profiles within canal networks, which may contribute to the design of efficient management approaches aimed at restraining the propagation of ARGs.
Collapse
Affiliation(s)
- Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Qiyao Gui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210024, China
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhiyuan Wang
- The National Key Laboratory of Water Disaster Prevention, Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Sai Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
27
|
Chen Y, Niu L, Li Y, Wang Y, Shen J, Zhang W, Wang L. Distribution characteristics and microbial synergistic degradation potential of polyethylene and polypropylene in freshwater estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134328. [PMID: 38643575 DOI: 10.1016/j.jhazmat.2024.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.
Collapse
Affiliation(s)
- Yamei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yingjie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiayan Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
28
|
Wang Y, Zou Q. Deciphering Microbial Adaptation in the Rhizosphere: Insights into Niche Preference, Functional Profiles, and Cross-Kingdom Co-occurrences. MICROBIAL ECOLOGY 2024; 87:74. [PMID: 38771320 PMCID: PMC11108897 DOI: 10.1007/s00248-024-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.
Collapse
Affiliation(s)
- Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
29
|
Shah S, Damare SR, Mascarenhas-Pereira MBL, Patil J, Parab S, Nair S, Ghosh A. An insight into the prokaryotic diversity from a polymetallic nodule-rich region in the Central Indian Ocean Basin using next generation sequencing approach. Front Microbiol 2024; 15:1295149. [PMID: 38567074 PMCID: PMC10985493 DOI: 10.3389/fmicb.2024.1295149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Deep sea is a vast, dark, and difficult-to-access terrain and is now looked upon as a unique niche harboring diverse microorganism. We used a metataxonomic approach to decipher the microbial diversity present in the water column (surface to near bottom), water overlaying the sediments, and the deep-sea sediments (up to 35 cm) from the Indian Contract Region (ICR) in the Central Indian Ocean Basin (CIOB). Samples were collected from #IRZ (Impact Reference Zone), #PRZ (Potential Reference Zone), and #BC20 (Control site, outside potential mining area) with an average water depth of 5,200 m. 16S rRNA (V3-V4 region) amplicon sequencing on the MiSeq platform resulted in 942,851 ASVs across 65 water and sediment samples. Higher prokaryotic diversity was observed below 200 m in the water column to the seafloor. Proteobacteria was the most dominant bacterial phylum among all the water samples while Firmicutes, Actinobacteria and, Bacteroidota dominated the sediments. Sediment (below 10 cm) was co-dominated by Firmicutes. Thermoplasmata was the dominant archaeal group in the water column while Crenarchaeota was in the sediments. BC20 was less diverse than IRZ and PRZ. Deep Sea microorganisms could play a vital role in the mineralization processes, nutrient cycling, and also different biogeochemical cycles.
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
- School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigão, India
| | - Samir R. Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | | - Jayesh Patil
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sneha Parab
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sushil Nair
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | |
Collapse
|
30
|
Wei H, Liu C, Cui X, Shen Z, Wang J. Distribution characteristics of microorganisms in sediments of Dagu River and their biological indicator function for evaluating eco-environmental quality of rural river. ENVIRONMENTAL RESEARCH 2024; 245:118032. [PMID: 38159669 DOI: 10.1016/j.envres.2023.118032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The microorganisms in sediments play a crucial role in biogeochemical cycle processes, and numerous studies have shown that microbial community is closely related to environmental factors. However, the usability of sediment microorganisms to evaluate the eco-environment quality of rural rivers has not been adequately explored. This study investigated the distribution characteristics and response of sediment microorganisms to environmental parameters and benthic organisms. Based on the environmental parameters and benthic community indices, the 12 stations were divided into high-polluted group A, moderate-polluted group B and low-polluted group C. Station DG01 and DG02 in group A had the highest level of As and Ni pollution and nutrient concentration, and DG09 in group A had the lowest benthic diversity. Correspondingly, group A had the lowest abundance of Proteobacteria, which has a higher requirement for the environment than Planctomycetes. Group B had the highest sulfide level (97.45 mg/kg), and bacteria (Thiobacillus, Sulfurisoma and Sulfuritalea) with genes involved in sulfur cycling were more enriched in this group. Group C had the lowest level of total nitrogen (243.36 mg/kg), and Rhodanobacteraceae in Xanthomonadales might be a key bioindicator for low nitrogen. In addition, Chlorophyta was found to be more susceptible to heavy metals, and moreover co-occurrence networks showed that microeukaryotes were more sensitive to heavy metal pollution compared to benthic animals and prokaryotes. Therefore, this study suggested that benthic microorganisms especially microeukaryotes could be used as good indicators for evaluating the eco-environmental quality of rural rivers.
Collapse
Affiliation(s)
- Hongqing Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Cong Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xumeng Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhonghua Shen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Shandong Bureau Test Center of China General Administration of Metallurgical Geology, Jinan, 250013, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
31
|
Guo Z, Lu W, Minpeng S, Liyuan S, Zhenlin L, Wenjing C, Xiaoyong L, Bo Z, Jeong Ha K, Zhaoyang J. Seasonal dynamics response mechanism of benthic microbial community to artificial reef habitats. ENVIRONMENTAL RESEARCH 2024; 243:117867. [PMID: 38070848 DOI: 10.1016/j.envres.2023.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Artificial reefs (ARs) have been globally deployed to enhance and restore coastal resource and ecosystems. Microorganisms play an essential role in marine ecosystems, while the knowledge regarding the impact of ARs on microecology is still limited, particularly data concerning the response of benthic microbial community to AR habitats. In this study, the seasonal dynamics of benthic microbial community in AR and adjacent non-artificial reef (NAR) areas surrounding Xiaoshi Island were investigated with high-throughput sequencing technology. The results revealed that the diversity and structure of microbial community between AR and NAR both displayed pronounced seasonal dynamics. There was a greater influence of season factors on microbial communities than that of habitat type. The microbial communities in AR and NAR habitats were characterized by a limited number of abundant taxa (ranging from 5 to 12 ASVs) with high relative abundance (8.35-25.53%) and numerous rare taxa (from 5994 to 12412 ASVs) with low relative abundance (11.91%-24.91%). Proteobacteria, Bacteroidota and Desulfobacterota were the common predominant phyla, with the relative abundances ranging from 50.94% to 76.76%. A total of 52 biomarkers were discovered, with 15, 4, 6, and 27 biomarkers identified in spring, summer, autumn and winter, respectively. Co-occurrence network analysis indicated that AR displayed a more complex interaction pattern and higher susceptibility to external disturbances. Furthermore, the neutral model and βNTI analyses revealed that the assembly of microbial communities in both AR and NAR is significantly influenced by stochastic processes. This study could provide valuable insights into the impact of ARs construction on the benthic ecosystems and would greatly facilitate the development and implementation of the future AR projects.
Collapse
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Wang Lu
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Song Minpeng
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Sun Liyuan
- Shandong Fisheries Development and Resources Conservation Center, Yantai, 264003, China
| | - Liang Zhenlin
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Chen Wenjing
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Liu Xiaoyong
- Shandong Haizhibao Ocean Science and Technology Co., Ltd, Weihai, 264300, China
| | - Zhang Bo
- Shandong Haizhibao Ocean Science and Technology Co., Ltd, Weihai, 264300, China
| | - Kim Jeong Ha
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jiang Zhaoyang
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China.
| |
Collapse
|
32
|
Hutchinson TF, Kessler AJ, Wong WW, Hall P, Leung PM, Jirapanjawat T, Greening C, Glud RN, Cook PLM. Microorganisms oxidize glucose through distinct pathways in permeable and cohesive sediments. THE ISME JOURNAL 2024; 18:wrae001. [PMID: 38365261 PMCID: PMC10939381 DOI: 10.1093/ismejo/wrae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
In marine sediments, microbial degradation of organic matter under anoxic conditions is generally thought to proceed through fermentation to volatile fatty acids, which are then oxidized to CO2 coupled to the reduction of terminal electron acceptors (e.g. nitrate, iron, manganese, and sulfate). It has been suggested that, in environments with a highly variable oxygen regime, fermentation mediated by facultative anaerobic bacteria (uncoupled to external terminal electron acceptors) becomes the dominant process. Here, we present the first direct evidence for this fermentation using a novel differentially labeled glucose isotopologue assay that distinguishes between CO2 produced from respiration and fermentation. Using this approach, we measured the relative contribution of respiration and fermentation of glucose in a range of permeable (sandy) and cohesive (muddy) sediments, as well as four bacterial isolates. Under anoxia, microbial communities adapted to high-energy sandy or bioturbated sites mediate fermentation via the Embden-Meyerhof-Parnas pathway, in a manner uncoupled from anaerobic respiration. Prolonged anoxic incubation suggests that this uncoupling lasts up to 160 h. In contrast, microbial communities in anoxic muddy sediments (smaller median grain size) generally completely oxidized 13C glucose to 13CO2, consistent with the classical redox cascade model. We also unexpectedly observed that fermentation occurred under oxic conditions in permeable sediments. These observations were further confirmed using pure cultures of four bacteria isolated from permeable sediments. Our results suggest that microbial communities adapted to variable oxygen regimes metabolize glucose (and likely other organic molecules) through fermentation uncoupled to respiration during transient anoxic conditions.
Collapse
Affiliation(s)
- Tess F Hutchinson
- Water Studies, School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Adam J Kessler
- School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia
| | - Wei Wen Wong
- Water Studies, School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Puspitaningsih Hall
- Water Studies, School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Thanavit Jirapanjawat
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ronnie N Glud
- University of Southern Denmark, HADAL, Nordcee and DIAS, Odense M 5230, Denmark
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Perran L M Cook
- Water Studies, School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
33
|
Che Y, Lin C, Li S, Liu J, Zhu L, Yu S, Wang N, Li H, Bao M, Zhou Y, Si T, Bao R. Influences of hydrodynamics on microbial community assembly and organic carbon composition of resuspended sediments in shallow marginal seas. WATER RESEARCH 2024; 248:120882. [PMID: 38006834 DOI: 10.1016/j.watres.2023.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Hydrodynamic processes play a crucial role in driving the transmission of sediments, likely harboring diverse microbes and heterogeneous organic carbon (OC) in the ocean. Here we conducted continuous micro-erosion experiments on surface sediments retrieved from shallow marginal seas, and analyzed the microbial community structures, OC content, and isotope compositions (δ13C and Δ14C) of resuspended sediments to investigate the effects of hydrodynamics on microbial assembly and OC composition in marginal seas. Our results showed that gene abundance and major microbial compositions in resuspended sediments changed with varying benthic shear stresses, which evolved towards diversification after continuous hydrodynamic erosion. Aerobic bacteria were more likely to be eroded out from sediments under lower shear stresses compared with anaerobic bacteria. Our study provides evidence that hydrodynamic disturbances shape the assembly of microbial communities with different metabolic functions, especially for bacteria, which may spatially influence the microbial-mediated biogeochemical transformation in marginal seas. Isotopic results revealed that more terrestrial OC was resuspended under initial erosion, while more marine OC was eroded out with increasing shear stresses, suggesting that hydrodynamics may control the redistribution of different sourced OC and contribute to the dispersion and degradation of terrestrial OC during transport process. Our findings further suggest that the nature of resuspended OC may influence the assembly of sediment-attached microbes due to their metabolic preference for carbon sources, as evidenced by correlations between OC compositions and microbial diversity and abundance. We thus suggest that hydrodynamic disturbance is an extrinsic physical driver of OC redistribution and microbial reassembly, whereas OC may be an intrinsic factor influencing microbial colonization, helping to interpret the spatial heterogeneity of microbes and OC compositions observed in marginal sea sediments. Our study underscores the significant roles of hydrodynamic-driven sediment resuspension in shaping diverse microbial communities and redistributing OC in aquatic systems, and highlights the importance of this process in biogeochemical cycles and ecological environment evolution in shallow marginal sea systems.
Collapse
Affiliation(s)
- Yangli Che
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chaoran Lin
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Shen Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jiao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Longhai Zhu
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Shilei Yu
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Nan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Guangzhou Marine Geological Survey, Guangzhou, China
| | - Tonghao Si
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
34
|
Jing M, Yang W, Ding X, Rao L, Zhang Q, Zhu J. Environmental heterogeneity associated with boat activity shapes bacteria and microeukaryotic communities with discrepant response patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166943. [PMID: 37690748 DOI: 10.1016/j.scitotenv.2023.166943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
With the development of global tourism, tourist boats, a significant form of anthropogenic disturbance, are having an increasingly serious impact on the structure and function of aquatic ecosystems. In this study, the effects of different intensities of tourist boat activities on the microbial communities of West lake, were investigated by high-throughput sequencing. The results showed significant differences in the composition of bacterioplankton and microeukaryotic communities between the high-intensity boat activity (HIBA) area and low-intensity boat activity (LIBA) area. Variation partitioning analysis showed that environmental factors contributed the most to microbial community variation, and the effect of boat activities on microbial communities mainly occurred through coupling with environmental factors. The contribution of boat activity to microbial community changes occupies the second place, the first being environmental factors. Co-occurrence network analyses showed that microbial communities in the HIBA area had more nodes and edges, higher connectivity and lower modularity than in the LIBA area, suggesting a more complex and stable network. Networks of associations between potential keystone taxa and environmental factors reveal the way in which boat activity affects microbial communities. The bacterial community responded strongly to environmental factors associated with boat activities, whereas the microeukaryotic community was more likely to be regulated by interspecific interactions. This also suggests that when faced with disturbances from the boat activity, microeukaryotes might exert a stronger direct resistance effect compared to bacterioplankton. These findings imply that bacterioplankton and microeukaryotes demonstrate distinct response patterns in the presence of disturbance caused by boat activity. Our research expand our understanding of the effects of boat activities on aquatic ecosystems and provide further insights into the assessment of anthropogenic disturbances in aquatic ecosystems.
Collapse
Affiliation(s)
- MingFei Jing
- School of Marine Science, Ningbo University, Ningbo 315800, China
| | - Wen Yang
- School of Marine Science, Ningbo University, Ningbo 315800, China
| | - Xiuying Ding
- Hangzhou West Lake Administration, Hangzhou 310002, China
| | - Lihua Rao
- Hangzhou West Lake Administration, Hangzhou 310002, China
| | - Quanxiang Zhang
- School of Marine Science, Ningbo University, Ningbo 315800, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
35
|
Xue Y, Chen H, Xiao P, Jin L, Logares R, Yang J. Core taxa drive microeukaryotic community stability of a deep subtropical reservoir after complete mixing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:769-782. [PMID: 37688478 PMCID: PMC10667671 DOI: 10.1111/1758-2229.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
Microeukaryotes are key for predicting the change of ecosystem processes in the face of a disturbance. However, their vertical responses to multiple interconnected factors caused by water mixing remain unknown. Here, we conducted a 12-month high-frequency study to compare the impacts of mixing disturbances on microeukaryotic community structure and stability over different depths in a stratified reservoir. We demonstrate that core and satellite microeukaryotic compositions and interactions in surface waters were not resistant to water mixing, but significantly recovered. This was because the water temperature rebounded to the pre-mixing level. Core microeukaryotes maintained community stability in surface waters with high recovery capacity after water mixing. In contrast, the changes in water temperature, chlorophyll-a, and nutrients resulted in steep and prolonged variations in the bottom core and satellite microeukaryotic compositions and interactions. Under low environmental fluctuation, the recovery of microbial communities did not affect nutrient cycling in surface waters. Under high environmental fluctuation, core and satellite microeukaryotic compositions in bottom waters were significantly correlated with the multi-nutrient cycling index. Our findings shed light on different mechanisms of plankton community resilience in reservoir ecosystems to a major disturbance over depths, highlighting the role of bottom microeukaryotes in nutrient cycling.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| |
Collapse
|
36
|
Chen X, Zhang X, Yu H, Han M, Sun J, Liu G, Ji Y, Zhai C, Zhu L, Shao H, Liang Y, McMinn A, Wang M. Spatio-temporal variation of bacterial community structure in two intertidal sediment types of Jiaozhou Bay. ENVIRONMENTAL RESEARCH 2023; 237:116743. [PMID: 37500038 DOI: 10.1016/j.envres.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The intertidal sediment environment is dynamic and the biofilm bacterial community within it must constantly adapt, but an understanding of the differences in the biofilm bacterial community within sediments of different types is still relatively limited. The semi-enclosed Jiaozhou Bay has a temperate monsoon climate, with strong currents at the mouth of the bay. In this study, the structure of the bacterial community in Jiaozhou Bay sediment biofilms are described using high-throughput 16 S rRNA gene sequencing and the effects of temporal change and different sediment environment types are discussed. Alpha diversity was significantly higher in sandy samples than in muddy samples. Sandy sediments with increased heterogeneity promote bacterial aggregation. Beta diversity analysis showed significant differences between sediment types and between stations. Proteobacteria and Acidobacteria were significantly more abundant at ZQ, while Campilobacterota was significantly more abundant at LC. The relative abundances of Bacteroidetes, Campilobacterota, Firmicutes, and Chloroflexi were significantly higher in the muddy samples, while Actinobacteria and Proteobacteria were higher in the sandy samples. There were different phylum-level biomarkers between sediment types at different stations. There were also different patterns of functional enrichment in biogeochemical cycles between sediment types and stations with the former having more gene families that differed significantly, highlighting their greater role in determining bacterial function. Bacterial amplicon sequence variant variation between months was less than KEGG ortholog variation between months, presumably the temporal change had an impact on shaping the intertidal sediment bacterial community, although this was less clear at the gene family level. Random forest prediction yielded a combination of 43 family-level features that responded well to temporal change, reflecting the influence of temporal change on sediment biofilm bacteria.
Collapse
Affiliation(s)
- Xuechao Chen
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Meiaoxue Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Jianhua Sun
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Gang Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Yan Ji
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Chuan Zhai
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Liyan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia.
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China; Haide College, Ocean University of China, Qingdao, 266003, China; The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
37
|
Niu Y, An Z, Gao D, Chen F, Zhou J, Liu B, Qi L, Wu L, Lin Z, Yin G, Liang X, Dong H, Liu M, Hou L, Zheng Y. Tidal dynamics regulates potential coupling of carbon‑nitrogen‑sulfur cycling microbes in intertidal flats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165663. [PMID: 37474052 DOI: 10.1016/j.scitotenv.2023.165663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Tide-driven hydrodynamic process causes significant geochemical gradients that influence biogeochemical cycling and ecological functioning of estuarine and coastal ecosystems. However, the effects of tidal dynamics on microbial communities, particularly at the functional gene level, remain unclear even though microorganisms play critical roles in biogeochemical carbon (C), nitrogen (N) and sulfur (S) cycling. Here, we used 16S rRNA gene amplicon sequencing and microarray-based approach to reveal the stratification of microorganisms related to C, N and S cycles along vertical redox gradients in intertidal wetlands. Alpha-diversity of bacteria and archaea was generally higher at the deep groundwater-sediment interface. Microbial compositions were markedly altered along the sediment profile, and these shifts were largely due to changes in nutrient availability and redox potential. Furthermore, functional genes exhibited redox partitioning between interfaces and transition layer, with abundant genes involved in C decomposition, methanogenesis, heterotrophic denitrification, sulfite reduction and sulfide oxidation existed in the middle anoxic zone. The influence of tidal dynamics on sediment function was highly associated with redox state, sediment texture, and substrates availability, leading to distinct distribution pattern of metabolic coupling of microbes involved in energy flux and elemental cycling in intertidal wetlands. These results indicate that tidal cycles are critical in determining microbial community and functional structure, and they provide new insights into sediment microbe-mediated biogeochemical cycling in intertidal habitats.
Collapse
Affiliation(s)
- Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China.
| |
Collapse
|
38
|
Botti A, Musmeci E, Negroni A, Capuozzo R, Fava F, Biagi E, Zanaroli G. Site-specific response of sediment microbial community to supplementation of polyhydroxyalkanoates as biostimulants for PCB reductive dechlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165485. [PMID: 37442469 DOI: 10.1016/j.scitotenv.2023.165485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The use of biodegradable plastics is constantly raising, increasing the likeliness for these polymers to end up in the environment. Environmental applications foreseeing the intentional release of biodegradable plastics have been also recently proposed, e.g., for polyhydroxyalkanoates (PHAs) acting as slow hydrogen releasing compounds to stimulate microbial reductive dehalogenation processes. However, the effects of their release into the environment on the ecosystems still need to be thoroughly explored. In this work, the use of PHAs to enhance the microbial reductive dechlorination of polychlorobiphenyls (PCBs) and their impact on the metabolic and compositional features of the resident microbial community have been investigated in laboratory microcosms of a polluted marine sediment from Mar Piccolo (Taranto, Italy), and compared with recent findings on a different contaminated marine sediment from Pialassa della Baiona (Ravenna, Italy). A decreased biostimulation efficiency of PHAs on PCBs reductive dechlorination was observed in the sediment from Mar Piccolo, with respect to the sediment from Pialassa della Baiona, suggesting that the sediments' physical-chemical characteristics and/or the biodiversity and composition of its microbial community might play a key role in determining the outcome of this biostimulation strategy. Regardless of the sediment origin, PHAs were found to have a specific and pervasive effect on the sediment microbial community, reducing its biodiversity, defining a newly arranged microbial core of primary degraders and consequently affecting, in a site-specific way, the abundance of subdominant bacteria, possibly cross-feeders. Such potential to dramatically change the structure of autochthonous microbial communities should be carefully considered, since it might have secondary effects, e.g., on the natural biogeochemical cycles.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Rosaria Capuozzo
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
39
|
Su Y, Xu MY, Cui Y, Chen RZ, Xie LX, Zhang JX, Chen YQ, Ding T. Bacterial quorum sensing orchestrates longitudinal interactions to shape microbiota assembly. MICROBIOME 2023; 11:241. [PMID: 37926838 PMCID: PMC10626739 DOI: 10.1186/s40168-023-01699-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The mechanism of microbiota assembly is one of the main problems in microbiome research, which is also the primary theoretical basis for precise manipulation of microbial communities. Bacterial quorum sensing (QS), as the most common means for bacteria to exchange information and interactions, is characterized by universality, specificity, and regulatory power, which therefore may influence the assembly processes of human microbiota. However, the regulating role of QS in microbiota assembly is rarely reported. In this study, we developed an optimized in vitro oral biofilm microbiota assembling (OBMA) model to simulate the time-series assembly of oral biofilm microbiota (OBM), by which to excavate the QS network and its regulating power in the process. RESULTS By using the optimized OBMA model, we were able to restore the assembly process of OBM and generate time-series OBM metagenomes of each day. We discovered a total of 2291 QS protein homologues related to 21 QS pathways. Most of these pathways were newly reported and sequentially enriched during OBM assembling. These QS pathways formed a comprehensive longitudinal QS network that included successively enriched QS hubs, such as Streptococcus, Veillonella-Megasphaera group, and Prevotella-Fusobacteria group, for information delivery. Bidirectional cross-talk among the QS hubs was found to play critical role in the directional turnover of microbiota structure, which in turn, influenced the assembly process. Subsequent QS-interfering experiments accurately predicted and experimentally verified the directional shaping power of the longitudinal QS network in the assembly process. As a result, the QS-interfered OBM exhibited delayed and fragile maturity with prolonged membership of Streptococcus and impeded membership of Prevotella and Fusobacterium. CONCLUSION Our results revealed an unprecedented longitudinal QS network during OBM assembly and experimentally verified its power in predicting and manipulating the assembling process. Our work provides a new perspective to uncover underlying mechanism in natural complex microbiota assembling and a theoretical basis for ultimately precisely manipulating human microbiota through intervention in the QS network. Video Abstract.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Ying Xu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Immunology and Pathogenic Biology, Zhaoqing Medical College, Zhaoqing, 526020, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Run-Zhi Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Li-Xiang Xie
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Jing-Xiang Zhang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yong-Qiu Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
40
|
Yu Y, Yu Z, Jiang J, Wu L, Feng H. Assessing the impacts of fine sediment removal on endogenous pollution release and microbial community structure in the shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165410. [PMID: 37423283 DOI: 10.1016/j.scitotenv.2023.165410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Resuspension is a crucial process for releasing endogenous pollution from shallow lakes into the overlying water. Fine particle sediment, which has a higher contamination risk and longer residence time, is the primary target for controlling endogenous pollution. To this end, a study coupling aqueous biogeochemistry, electrochemistry, and DNA sequencing was conducted to investigate the remediation effect and microbial mechanism of sediment elution in shallow eutrophic water. The results indicated that sediment elution can effectively remove some fine particles in situ. Furthermore, sediment elution can inhibit the release of ammonium nitrogen and total dissolved phosphorous into the overlying water from sediment resuspension in the early stage, resulting in reductions of 41.44 %-50.45 % and 67.81 %-72.41 %, respectively. Additionally, sediment elution greatly decreased the concentration of nitrogen and phosphorus pollutants in pore water. The microbial community structure was also substantially altered, with an increase in the relative abundance of aerobic and facultative aerobic microorganisms. Redundancy analysis, PICRUSt function prediction, and the correlation analysis revealed that loss on ignition was the primary factor responsible for driving changes in microbial community structure and function in sediment. Overall, the findings provide novel insights into treating endogenous pollution in shallow eutrophication water.
Collapse
Affiliation(s)
- Ying Yu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Nutrient Cycling Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Zengliang Yu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jingang Jiang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lifang Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Huiyun Feng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
41
|
Zou K, Zhu Y, Jiang Y, Ma S, Li M, Zhao W, Wang J. Distinct stochastic processes drive bacterial community assembly and co-occurrence patterns with common antibiotic resistance genes in two highly urbanised coastal ecosystems of the Pearl River Estuary. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132161. [PMID: 37523960 DOI: 10.1016/j.jhazmat.2023.132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
To comprehensively elucidate the ecology of the bacterial community and antibiotic resistance genes (ARGs) in urbanised coastal ecosystems, this study investigated the variations of bacterial community and five common types of ARGs, the impacting factors and assembly of bacterial community, as well as their co-occurrence relationships in two ecosystems of the Pearl River Estuary (PRE). The bacterial community composition and structure of the nearshore ecosystem (NSE) and the eight mouths of the PRE (EPR) markedly differed, with 38 phyla shared between these two ecosystems. The abundances of 10 ARGs and bacterial community diversity were significantly higher in the EPR than NSE. Moreover, 67.82% and 27.82% of the variation in the bacterial community was explained by spatial (44.42%/8.63%) and environmental (23.40%/19.19%) variables in the NSE and EPR, respectively. Significant distance-decay patterns were observed, and distinct stochastic processes (undominated processes or dispersal limitation) dominated bacterial community assembly in the NSE and EPR. Furthermore, co-occurrence patterns showed significant positive correlations between 48/182 ASVs belonging to 6/15 bacterial phyla and 8/11 ARGs in the NSE/EPR, with six common dominant hosts. These results clarify the drivers and mechanism shaping the bacterial community, providing further proof for potential ARG bacterial hosts in urbanised estuarine ecosystems.
Collapse
Affiliation(s)
- Keshu Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China.
| | - Yiyi Zhu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Yun Jiang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Shanshan Ma
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Min Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, China; Scientific Observation and Research Field Station of Pearl River Estuary Ecosystem, Guangzhou 510300, Guangdong Province, China
| | - Wencheng Zhao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
42
|
Magnuson E, Altshuler I, Freyria NJ, Leveille RJ, Whyte LG. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. MICROBIOME 2023; 11:203. [PMID: 37697305 PMCID: PMC10494364 DOI: 10.1186/s40168-023-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (~ 7 °C), hypersaline (7-8% salinity), anoxic (~ 0.04 ppm O2), and highly reducing (~ - 430 mV) brines rich in sulfate (2.2 g.L-1) and sulfide (9.5 ppm), making Gypsum Hill an analog to putative sulfate-rich briny habitats on extraterrestrial bodies such as Mars. RESULTS Genome-resolved metagenomics and metatranscriptomics were utilized to describe an active microbial community containing novel metagenome-assembled genomes and dominated by sulfur-cycling Desulfobacterota and Gammaproteobacteria. Sulfate reduction was dominated by hydrogen-oxidizing chemolithoautotrophic Desulfovibrionaceae sp. and was identified in phyla not typically associated with sulfate reduction in novel lineages of Spirochaetota and Bacteroidota. Highly abundant and active sulfur-reducing Desulfuromusa sp. highly transcribed non-coding RNAs associated with transcriptional regulation, showing potential evidence of putative metabolic flexibility in response to substrate availability. Despite low oxygen availability, sulfide oxidation was primarily attributed to aerobic chemolithoautotrophic Halothiobacillaceae. Low abundance and transcription of photoautotrophs indicated sulfur-based chemolithoautotrophy drives primary productivity even during periods of constant illumination. CONCLUSIONS We identified a rare surficial chemolithoautotrophic, sulfur-cycling microbial community active in a unique anoxic, cold, hypersaline Arctic spring. We detected Mars-relevant metabolisms including hydrogenotrophic sulfate reduction, sulfur reduction, and sulfide oxidation, which indicate the potential for microbial life in analogous S-rich brines on past and present Mars. Video Abstract.
Collapse
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Ianina Altshuler
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nastasia J. Freyria
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Richard J. Leveille
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC Canada
- Geosciences Department, John Abbott College, Ste-Anne-de-Bellevue, QC Canada
| | - Lyle G. Whyte
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| |
Collapse
|
43
|
Nauer PA, Kessler AJ, Hall P, Popa ME, ten Hietbrink S, Hutchinson T, Wong WW, Attard K, Glud RN, Greening C, Cook PLM. Pulses of labile carbon cause transient decoupling of fermentation and respiration in permeable sediments. LIMNOLOGY AND OCEANOGRAPHY 2023; 68:2141-2152. [PMID: 38516532 PMCID: PMC10952694 DOI: 10.1002/lno.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/07/2022] [Accepted: 07/15/2023] [Indexed: 03/23/2024]
Abstract
Dihydrogen (H2) is an important intermediate in anaerobic microbial processes, and concentrations are tightly controlled by thermodynamic limits of consumption and production. However, recent studies reported unusual H2 accumulation in permeable marine sediments under anoxic conditions, suggesting decoupling of fermentation and sulfate reduction, the dominant respiratory process in anoxic permeable marine sediments. Yet, the extent, prevalence and potential triggers for such H2 accumulation and decoupling remain unknown. We surveyed H2 concentrations in situ at different settings of permeable sand and found that H2 accumulation was only observed during a coral spawning event on the Great Barrier Reef. A flume experiment with organic matter addition to the water column showed a rapid accumulation of hydrogen within the sediment. Laboratory experiments were used to explore the effect of oxygen exposure, physical disturbance and organic matter inputs on H2 accumulation. Oxygen exposure had little effect on H2 accumulation in permeable sediments suggesting both fermenters and sulfate reducers survive and rapidly resume activity after exposure to oxygen. Mild physical disturbance mimicking sediment resuspension had little effect on H2 accumulation; however, vigorous shaking led to a transient accumulation of H2 and release of dissolved organic carbon suggesting mechanical disturbance and cell destruction led to organic matter release and transient decoupling of fermenters and sulfate reducers. In summary, the highly dynamic nature of permeable sediments and its microbial community allows for rapid but transient decoupling of fermentation and respiration after a C pulse, leading to high H2 levels in the sediment.
Collapse
Affiliation(s)
- Philipp A. Nauer
- Water StudiesSchool of Chemistry, Monash UniversityClaytonVictoriaAustralia
| | - Adam J. Kessler
- School of Earth Atmosphere and Environment, Monash UniversityClaytonVictoriaAustralia
| | | | - Maria Elena Popa
- Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht UniversityUtrechtNetherlands
| | - Sophie ten Hietbrink
- Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht UniversityUtrechtNetherlands
| | - Tess Hutchinson
- Water StudiesSchool of Chemistry, Monash UniversityClaytonVictoriaAustralia
| | - Wei Wen Wong
- Water StudiesSchool of Chemistry, Monash UniversityClaytonVictoriaAustralia
| | - Karl Attard
- Nordcee and HADAL, Department of BiologyUniversity of Southern DenmarkOdense MDenmark
- Danish Institute for Advanced Study, University of Southern DenmarkOdense MDenmark
| | - Ronnie N. Glud
- Nordcee and HADAL, Department of BiologyUniversity of Southern DenmarkOdense MDenmark
- Danish Institute for Advanced Study, University of Southern DenmarkOdense MDenmark
- Department of Ocean and Environmental SciencesTokyo University of Marine Science and TechnologyTokyoJapan
| | - Chris Greening
- Department of MicrobiologyBiomedicine Discovery InstituteClaytonVictoriaAustralia
| | - Perran L. M. Cook
- Water StudiesSchool of Chemistry, Monash UniversityClaytonVictoriaAustralia
| |
Collapse
|
44
|
Zhou X, Lennon JT, Lu X, Ruan A. Anthropogenic activities mediate stratification and stability of microbial communities in freshwater sediments. MICROBIOME 2023; 11:191. [PMID: 37626433 PMCID: PMC10464086 DOI: 10.1186/s40168-023-01612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/04/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Freshwater sediment microbes are crucial decomposers that play a key role in regulating biogeochemical cycles and greenhouse gas emissions. They often exhibit a highly ordered structure along depth profiles. This stratification not only reflects redox effects but also provides valuable insights into historical transitions, as sediments serve as important archives for tracing environmental history. The Anthropocene, a candidate geological epoch, has recently garnered significant attention. However, the human impact on sediment zonation under the cover of natural redox niches remains poorly understood. Dam construction stands as one of the most far-reaching anthropogenic modifications of aquatic ecosystems. Here we attempted to identify the ecological imprint of damming on freshwater sediment microbiome. RESULTS We conducted a year-round survey on the sediment profiles of Lake Chaohu, a large shallow lake in China. Through depth-discrete shotgun metagenomics, metataxonomics, and geophysiochemical analyses, we unveiled a unique prokaryotic hierarchy shaped by the interplay of redox regime and historical damming (labeled by the 137Cs peak in AD 1963). Dam-induced initial differentiation was further amplified by nitrogen and methane metabolism, forming an abrupt transition governing nitrate-methane metabolic interaction and gaseous methane sequestration depth. Using a random forest algorithm, we identified damming-sensitive taxa that possess distinctive metabolic strategies, including energy-saving mechanisms, unique motility behavior, and deep-environment preferences. Moreover, null model analysis showed that damming altered microbial community assembly, from a selection-oriented deterministic process above to a more stochastic, dispersal-limited one below. Temporal investigation unveiled the rapid transition zone as an ecotone, characterized by high species richness, low community stability, and emergent stochasticity. Path analysis revealed the observed emergent stochasticity primarily came from the high metabolic flexibility, which potentially contributed to both ecological and statistical neutralities. CONCLUSIONS We delineate a picture in which dam-induced modifications in nutrient availability and sedimentation rates impact microbial metabolic activities and generate great changes in the community structure, assembly, and stability of the freshwater sediment microbiome. These findings reflect profound ecological and biogeochemical ramifications of human-Earth system interactions and help re-examine the mainstream views on the formation of sediment microbial stratification. Video Abstract.
Collapse
Affiliation(s)
- Xiaotian Zhou
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Xiang Lu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China.
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
45
|
Zhao Z, Zhang L, Zhang G, Gao H, Chen X, Li L, Ju F. Hydrodynamic and anthropogenic disturbances co-shape microbiota rhythmicity and community assembly within intertidal groundwater-surface water continuum. WATER RESEARCH 2023; 242:120236. [PMID: 37356162 DOI: 10.1016/j.watres.2023.120236] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Tidal hydrodynamics drive the groundwater-seawater exchange and shifts in microbiota structure in the coastal zone. However, how the coastal water microbiota structure and assembly patterns respond to periodic tidal fluctuations and anthropogenic disturbance remains unexplored in the intertidal groundwater-surface water (GW-SW) continuum, although it affects biogeochemical cycles and coastal water quality therein. Here, through hourly time-series sampling in the saltmarsh tidal creek, rhythmic patterns of microbiota structure in response to daily and monthly tidal fluctuations in intertidal surface water are disentangled for the first time. The similarity in archaeal community structures between groundwater and ebb-tide surface water (R2=0.06, p = 0.2) demonstrated archaeal transport through groundwater discharge, whereas multi-source transport mechanisms led to unique bacterial biota in ebb-tide water. Homogeneous selection (58.6%-69.3%) dominated microbiota assembly in the natural intertidal GW-SW continuum and the presence of 157 rhythmic ASVs identified at ebb tide and 141 at flood tide could be attributed to the difference in environmental selection between groundwater and seawater. For intertidal groundwater in the tidal creek affected by anthropogenically contaminated riverine inputs, higher microbial diversity and shift in community structure were primarily controlled by increased co-contribution of dispersal limitation and drift (jointly 57.8%) and enhanced microbial interactions. Overall, this study fills the knowledge gaps in the tide-driven water microbial dynamics in coastal transition zone and the response of intertidal groundwater microbiota to anthropogenic pollution of overlying waters. It also highlights the potential of microbiome analysis in enhancing coastal water quality monitoring and identifying anthropogenic pollution sources (e.g., pathogenic Vibrio in aquaculture) through the detection of rhythmic microbial variances associated with intertidal groundwater discharge and seawater intrusion.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Guoqing Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Han Gao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xiaogang Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Zhang D, Li X, Wu Y, Xu X, Liu Y, Shi B, Peng Y, Dai D, Sha Z, Zheng J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. MICROBIOME 2023; 11:160. [PMID: 37491386 PMCID: PMC10367259 DOI: 10.1186/s40168-023-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.
Collapse
Affiliation(s)
- Dechao Zhang
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Yanxia Liu
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Benze Shi
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongli Sha
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
47
|
Galván V, Pascutti F, Sandoval NE, Lanfranconi MP, Lozada M, Arabolaza AL, Mac Cormack WP, Alvarez HM, Gramajo HC, Dionisi HM. High wax ester and triacylglycerol biosynthesis potential in coastal sediments of Antarctic and Subantarctic environments. PLoS One 2023; 18:e0288509. [PMID: 37459319 PMCID: PMC10351704 DOI: 10.1371/journal.pone.0288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.
Collapse
Affiliation(s)
- Virginia Galván
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Natalia E. Sandoval
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P. Lanfranconi
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana Lozada
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | - Ana L. Arabolaza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Walter P. Mac Cormack
- Instituto de Nanobiotecnología (NANOBIOTEC-UBA-CONICET), San Martín, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Antártico Argentino (IAA), San Martín, Buenos Aires, Argentina
| | - Héctor M. Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Hugo C. Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Hebe M. Dionisi
- Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
48
|
Tang L, Zhao X, Chen X, Jiang Y, Gudda F, Wang Y, Ling W. Distribution of bound-PAH residues and their correlations with the bacterial community at different depths of soil from an abandoned chemical plant site. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131328. [PMID: 37043862 DOI: 10.1016/j.jhazmat.2023.131328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The situ pollutant residue and microbial characteristics in contaminated environments are crucial for ecological restoration and soil utilization. This work reported the variation of polycyclic aromatic hydrocarbon (PAH) residues and the bacterial community at different depths in an aged-abandoned site. These results unveiled that over 90% of low molecular weight (LMW) and medium molecular weight (MMW), 52.84-76.88% of high molecular weight (HMW) bound-PAH (BP) residues were sequestrated in humin (HM). The stresses of PAH and soil depth enhanced the frequency of bacteria associations, especially positive associations. We enriched and cultured PAH degradation bacteria (PDB) from the sampling site mainly consisting of Pseudomonas and Acinetobacter, which were originally 0.39-0.52% abundant in the sampling site. The abundances of PDB and PAH-degradation genes (PDGs) were higher at shallower depths and increased with high PAH concentration. Simultaneously, Pearson correlation analysis and experimental verification found that the process of PAH binding with SOM limited the further increase of PDB and PDGs in PAH-contaminated sites. These findings may illustrate possible ecological risks of contaminated soils and provide guidance for the isolation and application of PDB.
Collapse
Affiliation(s)
- Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jiang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fredrick Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhao Wang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Guo Z, Li Y, Shao M, Sun T, Lin M, Zhang T, Hu K, Jiang H, Guan X. Succession and environmental response of sediment bacterial communities in the Liao River Estuary at the centenary scale. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105980. [PMID: 37141709 DOI: 10.1016/j.marenvres.2023.105980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/09/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Microbial community succession in turbulent estuarine environments is key to the understanding of microbial community development in estuaries. Centennial-scale sediment core samples collected from the Liao River Estuary (LRE) channel bar and side beaches were studied for geochemistry and 16S rRNA gene-based bacterial analyses. The results showed that bacterial community composition significantly differed between the sediments of the two sides of the channel bar, with Campilobacterota and Bacteroidota being dominant bacterial phyla in the tributary (T1, T2) and mainstream (MS1, MS2) sediment, respectively. Co-occurrence network of the bacterial community at the genus level showed more centralized and compacted topological features in tributary with weaker hydrodynamic, and the keystone taxas were Halioglobus, Luteolibacter, and Lutibacter in the bacterial community. The bacterial network structure had more edges and larger average degree in LRE sediments from the stage of the year 2016-2009 and the stage before 1939, which was possibly related to hydrodynamic conditions and nutrients. Stochastic processes (dispersal limitation) were the key factors driving bacterial community assembly in the LRE sediments. In addition, total organic carbon (TOC), total sulfur (TS), and grain size were the main deterministic factors affecting the change of bacterial community structure. Relative microbial abundance has the potential to indicate geologically historical environmental changes. This study provided a new perspective to reveal the succession and response of bacterial communities under frequent fluctuation environments.
Collapse
Affiliation(s)
- Zining Guo
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Yan Li
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Mengqi Shao
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Tongxin Sun
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Mengping Lin
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Tie Zhang
- Panjin Natural Resources Service Center, Bureau of Natural Resources of Panjin, Panjin, 120010, China
| | - Ke Hu
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
50
|
Ma X, Li Y, Niu L, Shang J, Yang N. Microbial community structure and denitrification responses to cascade low-head dams and their contribution to eutrophication in urban rivers. ENVIRONMENTAL RESEARCH 2023; 221:115242. [PMID: 36634891 DOI: 10.1016/j.envres.2023.115242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Low-head dams are one of the most common hydraulic facilities, yet they often fragment rivers, leading to profound changes in aquatic biodiversity and river eutrophication levels. Systematic assessments of river ecosystem structure and functions, and their contribution to eutrophication, are however lacking, especially for urban rivers where low-head dams prevail. In this study, we address this gap with a field survey on microbial community structure and ecosystem function, in combination with hydrological, environmental and ecological factors. Our findings revealed that microbial communities showed significant differences among the cascade impoundments, which may be due to the environment heterogeneity resulting from the cascade low-head dams. The alternating lentic-lotic flow environment created by the low-head dams caused nutrient accumulation in the cascade impoundments, enhancing environmental sorting and interspecific competition relationships, and thus possibly contributing to the reduction in sediment denitrification function. Decreased denitrification led to excessive accumulation of nutrients, which may have aggravated river eutrophication. In addition, structural equation model analysis showed that flow velocity may be the key controlling factor for river eutrophication. Therefore, in the construction of river flood control and water storage systems, the location, type and water storage capacity of low-head dams should be fully considered to optimize the hydrodynamic conditions of rivers. To summarize, our findings revealed the cumulative effects of cascade low-head dams in an urban river, and provided new insights into the trade-off between construction and decommissioning of low-head dams in urban river systems.
Collapse
Affiliation(s)
- Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|