1
|
Tang H, Liu Z, Hu B, Zhu L. Hierarchical activation of resistance genes under tetracyclines selective pressure in complex microbial community. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138399. [PMID: 40300515 DOI: 10.1016/j.jhazmat.2025.138399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
The pervasive use of antibiotics exerts selective pressure in both natural and anthropogenic environments, driving the propagation and evolution of antibiotic resistance genes (ARGs) in microbial communities. Understanding the succession of resistome under varying antibiotic stresses is crucial for mitigating the spread of ARGs. This study investigates the succession of resistome under exposure to four structurally different tetracyclines (TC) across concentrations ranging from environmental to clinical levels. A clear hierarchical activation of ARGs was observed, starting with the upregulation of multidrug and TC-specific efflux pump genes, followed by those involved in TC inactivation and ribosomal protection. By identifying the specific thresholds of transcriptional onset times and critical TC concentration ranges that triggered ARG abundance increases, it was found that all ARGs as a whole did not significantly increase when TC concentrations were maintained below 10-5 of the initial minimum inhibitory concentration (MIC0) within 2 h. Similarly, high-risk TC resistance genes do not proliferate when TC concentrations were kept below 10-3 × MIC0 within 24 h. These findings provide quantifiable benchmarks for concentration-time thresholds that can inform the establishment of environmental discharge limits and guide the implementation of targeted treatment technologies to mitigate ARG dissemination.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Ching C, Sutradhar I, Zaman MH. Understanding the impacts of temperature and precipitation on antimicrobial resistance in wastewater: theory, modeling, observation, and limitations. mSphere 2025; 10:e0094724. [PMID: 40042266 PMCID: PMC11934317 DOI: 10.1128/msphere.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Changing climate may contribute to increased antimicrobial resistance (AMR), particularly in wastewater which acts as a reservoir for resistant bacteria. Here, we determined how applying climate dependencies to our previously published model, rooted in theory, impacts computational simulations of AMR in wastewater. We found AMR levels were reduced at lower temperatures but increased with lower precipitation. The impact of precipitation on AMR was more pronounced at higher temperatures compared to lower temperatures. To validate our model, we investigated associations between total AMR gene abundance in wastewater from the Global Sewage Surveillance project and mean temperature and rainfall values extracted from European Centre for Medium-Range Weather Forcasts Reanalysis v5 (ERA5) reanalysis. We observed similar trends between the simulations and observations. Observations and simulations from our study can inform experiments to determine causal relationships as well as help identify other key drivers. We also discuss study challenges given the complex nature of AMR in the environment.
Collapse
Affiliation(s)
- Carly Ching
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Indorica Sutradhar
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Center on Forced Displacement, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Blake KS, Xue YP, Gillespie VJ, Fishbein SRS, Tolia NH, Wencewicz TA, Dantas G. The tetracycline resistome is shaped by selection for specific resistance mechanisms by each antibiotic generation. Nat Commun 2025; 16:1452. [PMID: 39920134 PMCID: PMC11806011 DOI: 10.1038/s41467-025-56425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
The history of clinical resistance to tetracycline antibiotics is characterized by cycles whereby the deployment of a new generation of drug molecules is quickly followed by the discovery of a new mechanism of resistance. This suggests mechanism-specific selection by each tetracycline generation; however, the evolutionary dynamics of this remain unclear. Here, we evaluate 24 recombinant Escherichia coli strains expressing tetracycline resistance genes from each mechanism (efflux pumps, ribosomal protection proteins, and enzymatic inactivation) in the context of each tetracycline generation. We employ a high-throughput barcode sequencing protocol that can discriminate between strains in mixed culture and quantify their relative abundances. We find that each mechanism is preferentially selected for by specific antibiotic generations, leading to their expansion. Remarkably, the minimum inhibitory concentration associated with individual genes is secondary to resistance mechanism for inter-mechanism relative fitness, but it does explain intra-mechanism relative fitness. These patterns match the history of clinical deployment of tetracycline drugs and resistance discovery in pathogens.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent J Gillespie
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Dong Y, Zhang X, Wang X, Xie C, Liu J, Cheng Y, Yue Y, You X, Li Y. Modified biochar affects CO 2 and N 2O emissions from coastal saline soil by altering soil pH and elemental stoichiometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176283. [PMID: 39278479 DOI: 10.1016/j.scitotenv.2024.176283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The application of biochar in degraded farmland improves soil productivity while achieving the recycling of agricultural waste. The collapse of the physical structure of coastal saline soils will greatly reduce the carbon sequestration potential of biochar. Phosphorus- and magnesium-modified biochar greatly improve the stability of biochar, which endows them with the potential to greatly improve the organic carbon pool of coastal saline soil. However, changes in the properties of modified biochar increase the uncertainty of microbial driven CO2 and N2O release by affecting soil chemistry properties. In this study, through laboratory soil microcosmic experiment, we investigated the effects of magnesium-modified biochar (BCMg) and phosphorus-modified biochar (BCP) on CO2 and N2O releases from coastal saline soils, and further uncovered their potential mechanisms. Compared with unapplied biochar (CK) and unmodified biochar (BC) treatment, BCMg reduced both the releases of CO2 and N2O, and BCP decreased N2O release but enhanced CO2 release. pH is the medium through which BCMg affects the release of CO2 and N2O. Specifically, BCMg increased soil pH above 8.5, which reduced the metabolic activity of the microbial community, and the abundance of bacteria directly or indirectly involved in N2O production, thereby decreasing the releases of CO2 and N2O. The amendment of BCP changed soil elemental stoichiometry causing microbial N-limitation. Increasing CO2 release and decreasing N2O release were strategies for microorganisms to cope with N-limitation. These findings suggested that BCMg is superior to BCP in mitigating greenhouse gas emissions, providing a basis for the application of modified biochar to improve the carbon pool and reduce greenhouse gas emissions of coastal saline soil.
Collapse
Affiliation(s)
- Yang Dong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yanmin Yue
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
5
|
Kong F, Qi Z, Tong H, Ren N, You S. Case study on the relationship between transmission of antibiotic resistance genes and microbial community under freeze-thaw cycle on cold-region dairy farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175989. [PMID: 39233087 DOI: 10.1016/j.scitotenv.2024.175989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Freeze-thaw cycle (FTC) is a naturally occurring phenomenon in high-latitude terrestrial ecosystems, which may exert influence on distribution and evolution of microbial community in the soil. The relationship between transmission of antibiotic resistance genes (ARGs) and microbial community was investigated upon the case study on the soil of cold-region dairy farm under seasonal FTC. The results demonstrated that 37 ARGs underwent decrease in the abundance of blaTEM from 80.4 % for frozen soil to 71.7 % for thawed soil, and that sul2 from 8.8 % for frozen soil to 6.5 % for thawed soil, respectively. Antibiotic deactivation was identified to be closely related to the highest relative abundance of blaTEM, and the spread of sulfonamide resistance genes (SRGs) occurred mainly via target modification. Firmicutes in frozen soil were responsible for dominating the abundance of ARGs by suppressing the native bacteria under starvation effect in cold regions, and then underwent horizontal gene transfer (HGT) among native bacteria through mobile genetic elements (MGEs). The TRB-C (32.6-49.1 %) and tnpA-06 (0.27-7.5 %) were significantly increased in frozen soil, while Int3 (0.67-10.6 %) and tnpA-04 (11.1-19.4 %) were up-regulated in thawed soil. Moreover, the ARGs in frozen soil primarily underwent HGT through MGEs, i.e. TRB-C and tnpA-06, with increased number of Firmicutes serving as carrier. The case study not only demonstrated relationship between transmission of ARGs and microbial community in the soil under practically relevant FTC condition, but also emphasized the importance for formulating better strategies for preventing FTC-induced ARGs in dairy farm in cold regions.
Collapse
Affiliation(s)
- Fanzi Kong
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China.
| | - Hailong Tong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
6
|
Walker AS, Clardy J. Primed for Discovery. Biochemistry 2024; 63:2705-2713. [PMID: 39497571 PMCID: PMC11542185 DOI: 10.1021/acs.biochem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/09/2024]
Abstract
Antibiotics are essential components of current medical practice, but their effectiveness is being eroded by the increasing emergence of antimicrobial-resistant infections. At the same time, the rate of antibiotic discovery has slowed, and our future ability to treat infections is threatened. Among Christopher T. Walsh's many contributions to science was his early recognition of this threat and the potential of biosynthesis─genes and mechanisms─to contribute solutions. Here, we revisit a 2006 review by Walsh and co-workers that highlighted a major challenge in antibiotic natural product discovery: the daunting odds for identifying new naturally occurring antibiotics. The review described strategies to mitigate the odds challenge. These strategies have been used extensively by the natural product discovery community in the years since and have resulted in some promising discoveries. Despite these advances, the rarity of novel antibiotic natural products remains a barrier to discovery. We compare the challenge of discovering natural product antibiotics to the process of identifying new prime numbers, which are also challenging to find and an essential, if underappreciated, element of modern life. We propose that inclusion of filters for functional compounds early in the discovery pipeline is key to natural product antibiotic discovery, review some recent advances that enable this, and discuss some remaining challenges that need to be addressed to make antibiotic discovery sustainable in the future.
Collapse
Affiliation(s)
- Allison S. Walker
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Zhao W, Zheng S, Ye C, Li J, Yu X. Nonlinear impacts of temperature on antibiotic resistance in Escherichia coli. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100475. [PMID: 39280591 PMCID: PMC11402153 DOI: 10.1016/j.ese.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
The increase in bacterial antibiotic resistance poses a significant threat to the effectiveness of antibiotics, and there is growing evidence suggesting that global warming may speed up this process. However, the direct influence of temperature on the development of antibiotic resistance and the underlying mechanisms is not yet fully understood. Here we show that antibiotic resistance exhibits a nonlinear response to elevated temperatures under the combined stress of temperatures and antibiotics. We find that the effectiveness of gatifloxacin against Escherichia coli significantly diminishes at 42 °C, while resistance increases 256-fold at 27 °C. Additionally, the increased transcription levels of genes such as marA, ygfA, and ibpB with rising temperatures, along with gene mutations at different sites, explain the observed variability in resistance patterns. These findings highlight the complexity of antibiotic resistance evolution and the urgent need for comprehensive studies to understand and mitigate the effects of global warming on antibiotic resistance.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Jianguo Li
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| |
Collapse
|
8
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
9
|
Su M, Hoang KL, Penley M, Davis MH, Gresham JD, Morran LT, Read TD. Host and antibiotic jointly select for greater virulence in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610628. [PMID: 39257827 PMCID: PMC11383984 DOI: 10.1101/2024.08.31.610628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Widespread antibiotic usage has resulted in the rapid evolution of drug-resistant bacterial pathogens and poses significant threats to public health. Resolving how pathogens respond to antibiotics under different contexts is critical for understanding disease emergence and evolution going forward. The impact of antibiotics has been demonstrated most directly through in vitro pathogen passaging experiments. Independent from antibiotic selection, interactions with hosts have also altered the evolutionary trajectories and fitness landscapes of pathogens, shaping infectious disease outcomes. However, it is unclear how interactions between hosts and antibiotics impact the evolution of pathogen virulence. Here, we evolved and re-sequenced Staphylococcus aureus, a major bacterial pathogen, varying exposure to host and antibiotics to tease apart the contributions of these selective pressures on pathogen adaptation. After 12 passages, S. aureus evolving in Caenorhabditis elegans nematodes exposed to a sub-minimum inhibitory concentration of antibiotic (oxacillin) became highly virulent, regardless of whether the ancestral pathogen was methicillin-resistant (MRSA) or methicillin-sensitive (MSSA). Host and antibiotic exposure selected for reduced drug susceptibility in MSSA lineages while increasing MRSA total growth outside hosts. We identified mutations in genes involved in complex regulatory networks linking virulence and metabolism, including codY , agr , and gdpP , suggesting that rapid adaptation to infect hosts may have pleiotropic effects. In particular, MSSA populations under selection from host and antibiotic accumulated mutations in the global regulator gene codY , which controls biofilm formation in S. aureus. These populations had indeed evolved more robust biofilms-a trait linked to both virulence and antibiotic resistance-suggesting evolution of one trait can confer multiple adaptive benefits. Despite evolving in similar environments, MRSA and MSSA populations proceeded on divergent evolutionary paths, with MSSA populations exhibiting more similarities across replicate populations. Our results underscore the importance of considering multiple and concurrent selective pressures as drivers of pervasive pathogen traits.
Collapse
|
10
|
Schmidlin K, Apodaca S, Newell D, Sastokas A, Kinsler G, Geiler-Samerotte K. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. eLife 2024; 13:RP94144. [PMID: 39255191 PMCID: PMC11386965 DOI: 10.7554/elife.94144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Kara Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Sam Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Daphne Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Alexander Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Grant Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Kerry Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
11
|
Yin LZ, Luo XQ, Li JL, Liu Z, Duan L, Deng QQ, Chen C, Tang S, Li WJ, Wang P. Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134728. [PMID: 38805824 DOI: 10.1016/j.jhazmat.2024.134728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM.
Collapse
Affiliation(s)
- Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zetao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510655, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Schmidlin, Apodaca, Newell, Sastokas, Kinsler, Geiler-Samerotte. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562616. [PMID: 37905147 PMCID: PMC10614906 DOI: 10.1101/2023.10.17.562616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into 6 classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| |
Collapse
|
13
|
Bullivant A, Lozano-Huntelman N, Tabibian K, Leung V, Armstrong D, Dudley H, Savage VM, Rodríguez-Verdugo A, Yeh PJ. Evolution Under Thermal Stress Affects Escherichia coli's Resistance to Antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582334. [PMID: 38464198 PMCID: PMC10925296 DOI: 10.1101/2024.02.27.582334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Exposure to both antibiotics and temperature changes can induce similar physiological responses in bacteria. Thus, changes in growth temperature may affect antibiotic resistance. Previous studies have found that evolution under antibiotic stress causes shifts in the optimal growth temperature of bacteria. However, little is known about how evolution under thermal stress affects antibiotic resistance. We examined 100+ heat-evolved strains of Escherichia coli that evolved under thermal stress. We asked whether evolution under thermal stress affects optimal growth temperature, if there are any correlations between evolving in high temperatures and antibiotic resistance, and if these strains' antibiotic efficacy changes depending on the local environment's temperature. We found that: (1) surprisingly, most of the heat-evolved strains displayed a decrease in optimal growth temperature and overall growth relative to the ancestor strain, (2) there were complex patterns of changes in antibiotic resistance when comparing the heat-evolved strains to the ancestor strain, and (3) there were few significant correlations among changes in antibiotic resistance, optimal growth temperature, and overall growth.
Collapse
Affiliation(s)
- Austin Bullivant
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Kevin Tabibian
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Vivien Leung
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Dylan Armstrong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Henry Dudley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Van M. Savage
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | | | - Pamela J Yeh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
14
|
Jiang G, Liu C, Xiong W, Shen Q, Wei Z. Protist predation selects for the soil resistome. THE ISME JOURNAL 2024; 18:wrad007. [PMID: 38365252 PMCID: PMC10811726 DOI: 10.1093/ismejo/wrad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 02/18/2024]
Abstract
A key aspect of "One Health" is to comprehend how antibiotic resistomes evolve naturally. In this issue, Nguyen and colleagues pioneered an in situ investigation on the impact of protist predations on the soil microbial community and its antibiotic resistance genes (ARGs). They found that bacterivorous protists consistently increased the abundance of ARGs, such as tetracycline resistant genes. Indeed, antibiotic production is a common strategy for bacteria to evade protist predation. The rise of ARGs can be explained by the balance between antibiotic producers and resisters shaped by predatory selection. This work suggests that ARG enrichment due to biotic interactions may be less worrisome than previously thought. Unless, these ARGs are carried by or disseminated among pathogens. Therefore, it is essential to monitor the occurrence, dissemination and pathogenic hosts of ARGs, enhancing our capacity to combat antibiotic resistance.
Collapse
Affiliation(s)
- Gaofei Jiang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Chen Liu
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Wu Xiong
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
15
|
Zhao Y, Shu M, Zhang L, Zhong C, Liao N, Wu G. Phage-driven coevolution reveals trade-off between antibiotic and phage resistance in Salmonella anatum. ISME COMMUNICATIONS 2024; 4:ycae039. [PMID: 38616926 PMCID: PMC11014889 DOI: 10.1093/ismeco/ycae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Phage therapy faces challenges against multidrug-resistant (MDR) Salmonella due to rapid phage-resistant mutant emergence. Understanding the intricate interplay between antibiotics and phages is essential for shaping Salmonella evolution and advancing phage therapy. In this study, MDR Salmonella anatum (S. anatum) 2089b coevolved with phage JNwz02 for 30 passages (60 days), then the effect of coevolution on the trade-off between phage and antibiotic resistance in bacteria was investigated. Our results demonstrated antagonistic coevolution between bacteria and phages, transitioning from arms race dynamics (ARD) to fluctuating selection dynamics (FSD). The fitness cost of phage resistance, manifested as reduced competitiveness, was observed. Bacteria evolved phage resistance while simultaneously regaining sensitivity to amoxicillin, ampicillin, and gentamicin, influenced by phage selection pressure and bacterial competitiveness. Moreover, the impact of phage selection pressure on the trade-off between antibiotic and phage resistance was more pronounced in the ARD stage than in the FSD stage. Whole genome analysis revealed mutations in the btuB gene in evolved S. anatum strains, with a notably higher mutation frequency in the ARD stage compared to the FSD stage. Subsequent knockout experiments confirmed BtuB as a receptor for phage JNwz02, and the deletion of btuB resulted in reduced bacterial competitiveness. Additionally, the mutations identified in the phage-resistant strains were linked to multiple single nucleotide polymorphisms (SNPs) associated with membrane components. This correlation implies a potential role of these SNPs in reinstating antibiotic susceptibility. These findings significantly advance our understanding of phage-host interactions and the impact of bacterial adaptations on antibiotic resistance.
Collapse
Affiliation(s)
- Yuanyang Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Ling Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Ningbo Liao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Guoping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| |
Collapse
|
16
|
MacGillivray KA, Ng SL, Wiesenfeld S, Guest RL, Jubery T, Silhavy TJ, Ratcliff WC, Hammer BK. Trade-offs constrain adaptive pathways to the type VI secretion system survival. iScience 2023; 26:108332. [PMID: 38025790 PMCID: PMC10679819 DOI: 10.1016/j.isci.2023.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
The Type VI Secretion System (T6SS) is a nano-harpoon used by many bacteria to inject toxins into neighboring cells. While much is understood about mechanisms of T6SS-mediated toxicity, less is known about the ways that competitors can defend themselves against this attack, especially in the absence of their own T6SS. Here we subjected eight replicate populations of Escherichia coli to T6SS attack by Vibrio cholerae. Over ∼500 generations of competition, isolates of the E. coli populations evolved to survive T6SS attack an average of 27-fold better, through two convergently evolved pathways: apaH was mutated in six of the eight replicate populations, while the other two populations each had mutations in both yejM and yjeP. However, the mutations we identified are pleiotropic, reducing cellular growth rates, and increasing susceptibility to antibiotics and elevated pH. These trade-offs help us understand how the T6SS shapes the evolution of bacterial interactions.
Collapse
Affiliation(s)
- Kathryn A. MacGillivray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sophia Wiesenfeld
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randi L. Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Tahrima Jubery
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
Eng AY, Narayanan A, Alster CJ, DeAngelis KM. Thermal adaptation of soil microbial growth traits in response to chronic warming. Appl Environ Microbiol 2023; 89:e0082523. [PMID: 37877729 PMCID: PMC10686086 DOI: 10.1128/aem.00825-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Soils are the largest terrestrial carbon sink and the foundation of our food, fiber, and fuel systems. Healthy soils are carbon sinks, storing more carbon than they release. This reduces the amount of carbon dioxide released into the atmosphere and buffers against climate change. Soil microbes drive biogeochemical cycling and contribute to soil health through organic matter breakdown, plant growth promotion, and nutrient distribution. In this study, we determined how soil microbial growth traits respond to long-term soil warming. We found that bacterial isolates from warmed plots showed evidence of adaptation of optimum growth temperature. This suggests that increased microbial biomass and growth in a warming world could result in greater carbon storage. As temperatures increase, greater microbial activity may help reduce the soil carbon feedback loop. Our results provide insight on how atmospheric carbon cycling and soil health may respond in a warming world.
Collapse
Affiliation(s)
- Ashley Y. Eng
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Achala Narayanan
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Charlotte J. Alster
- Department of Soil & Physical Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Kristen M. DeAngelis
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
19
|
Gabaldón T. Nothing makes sense in drug resistance except in the light of evolution. Curr Opin Microbiol 2023; 75:102350. [PMID: 37348192 DOI: 10.1016/j.mib.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023]
Abstract
Our ability to fight infectious diseases is being increasingly compromised due to the emergence and spread of pathogens that become resistant to one or several drugs. This phenomenon is ubiquitous among pathogens and has parallels in cancer treatment. Given the urgency of the problem, there is a need for a paradigm shift in drug therapy toward one in which the objective to prevent the evolution of drug resistance is considered alongside the main objective of eliminating the infection or tumor. Here, I stress the importance of considering an evolutionary perspective to achieve this goal, and review recent advances in this direction, including therapies that exploit the fitness trade-offs of resistance.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| |
Collapse
|
20
|
Kumar S, Najar IN, Sharma P, Tamang S, Mondal K, Das S, Sherpa MT, Thakur N. Temperature - A critical abiotic paradigm that governs bacterial heterogeneity in natural ecological system. ENVIRONMENTAL RESEARCH 2023; 234:116547. [PMID: 37422118 DOI: 10.1016/j.envres.2023.116547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
A baseline data has been presented here to prove that among the abiotic factors, temperature is the most critical factor that regulates and governs the bacterial diversity in a natural ecosystem. Present study in Yumesamdong hot springs riverine vicinity (Sikkim), parades a gamut of bacterial communities in it and hosts them from semi-frigid region (- 4-10 °C) to fervid region (50-60 °C) via an intermediate region (25-37 °C) within the same ecosystem. This is an extremely rare intriguing natural ecosystem that has no anthropogenic disturbances nor any artificial regulation of temperature. We scanned the bacterial flora through both the culture-dependent and culture-independent techniques in this naturally complex thermally graded habitat. High-throughput sequencing gave bacterial and archaeal phyla representatives of over 2000 species showcasing their biodiversity. Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi were the predominant phyla. A concave down-curve significance was found in temperature-abundance correlation as the number of microbial taxa decreased when the temperature increased from warm (35 °C) to hot (60 °C). Firmicutes showed significant linear increase from cold to hot environment whereas Proteobacteria followed the opposite trend. No significant correlation was observed for physicochemical parameters against the bacterial diversity. However, only temperature has shown significant positive correlation to the predominant phyla at their respective thermal gradients. The antibiotic resistance patterns correlated with temperature gradient where the prevalence of antibiotic resistance was higher in case of mesophiles than that of psychrophiles and there was no resistance in thermophiles. The antibiotic resistant genes obtained were solely from mesophiles as it conferred high resistance at mesophilic conditions enabling them to adapt and metabolically compete for survival. Our study concludes that the temperature is a major factor that plays a significant contribution in shaping the bacterial community structure in any thermal gradient edifice.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Krishnendu Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102, India
| | - Sayak Das
- Department of Life Science & Bioinformatics, HK School of Life Sciences, Assam University, Silchar, 788011, Assam, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
21
|
Geiler-Samerotte K, Lang GI. Best Practices in Microbial Experimental Evolution. J Mol Evol 2023; 91:237-240. [PMID: 37209159 PMCID: PMC10885815 DOI: 10.1007/s00239-023-10119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Kerry Geiler-Samerotte
- School of Life Sciences and Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287, USA.
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
22
|
Huang Q, Liu Z, Guo Y, Li B, Yang Z, Liu X, Ni J, Li X, Zhang X, Zhou N, Yin H, Jiang C, Hao L. Coal-source acid mine drainage reduced the soil multidrug-dominated antibiotic resistome but increased the heavy metal(loid) resistome and energy production-related metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162330. [PMID: 36813198 DOI: 10.1016/j.scitotenv.2023.162330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A recent global scale study found that mining-impacted environments have multi-antibiotic resistance gene (ARG)-dominated resistomes with an abundance similar to urban sewage but much higher than freshwater sediment. These findings raised concern that mining may increase the risk of ARG environmental proliferation. The current study assessed how typical multimetal(loid)-enriched coal-source acid mine drainage (AMD) contamination affects soil resistomes by comparing with background soils unaffected by AMD. Both contaminated and background soils have multidrug-dominated antibiotic resistomes attributed to the acidic environment. AMD-contaminated soils had a lower relative abundance of ARGs (47.45 ± 23.34 ×/Gb) than background soils (85.47 ± 19.71 ×/Gb) but held high-level heavy metal(loid) resistance genes (MRGs, 133.29 ± 29.36 ×/Gb) and transposase- and insertion sequence-dominated mobile genetic elements (MGEs, 188.51 ± 21.81 ×/Gb), which was 56.26 % and 412.12 % higher than background soils, respectively. Procrustes analysis showed that the microbial community and MGEs exerted more influence on driving heavy metal(loid) resistome variation than antibiotic resistome. The microbial community increased energy production-related metabolism to fulfill the increasing energy needs required by acid and heavy metal(loid) resistance. Horizontal gene transfer (HGT) events primarily exchanged energy- and information-related genes to adapt to the harsh AMD environment. These findings provide new insight into the risk of ARG proliferation in mining environments.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenghua Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jianmei Ni
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
23
|
Huang Q, Huang Y, Li B, Li X, Guo Y, Jiang Z, Liu X, Yang Z, Ning Z, Xiao T, Jiang C, Hao L. Metagenomic analysis characterizes resistomes of an acidic, multimetal(loid)-enriched coal source mine drainage treatment system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130898. [PMID: 36731323 DOI: 10.1016/j.jhazmat.2023.130898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal(loid) contaminations caused by mine activities are potential hot spots of antibiotic resistance genes (ARGs) because of heavy metal(loid)-induced co-selection of ARGs and heavy metal(loid) resistance genes (MRGs). This study used high-throughput metagenomic sequencing to analyze the resistome characteristics of a coal source acid mine drainage passive treatment system. The multidrug efflux mechanism dominated the antibiotic resistome, and a highly diverse heavy metal(loid) resistome was dominated by mercury-, iron-, and arsenic--associated resistance. Correlation analysis indicated that mobile gene elements had a greater influence on the dynamic of MRGs than ARGs. Among the metagenome-assembled genomes, six potential pathogens carrying multiple resistance genes resistant to several antibiotics and heavy metal(loid)s were recovered. Pseudomonas spp. contained the highest numbers of resistance genes, with resistance to two types of antibiotics and 12 types of heavy metal(loid)s. Thus, high contents of heavy metal(loid)s drove the co-selection of ARGs and MRGs. The occurrence of potential pathogens containing multiple resistance genes might increase the risk of ARG dissemination in the environment.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Tangfu Xiao
- Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
24
|
Mira P, Lozano‐Huntelman N, Johnson A, Savage VM, Yeh P. Evolution of antibiotic resistance impacts optimal temperature and growth rate in
Escherichia coli
and
Staphylococcus epidermidis. J Appl Microbiol 2022; 133:2655-2667. [DOI: 10.1111/jam.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Portia Mira
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | | | - Adrienne Johnson
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | - Van M. Savage
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Department of Computational Medicine, David Geffen School of Medicine University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| |
Collapse
|
25
|
Chloramphenicol resistance is too hot to handle. Nat Rev Microbiol 2022; 20:381. [PMID: 35474110 DOI: 10.1038/s41579-022-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|