1
|
Kaltenpoth M, Flórez LV, Vigneron A, Dirksen P, Engl T. Origin and function of beneficial bacterial symbioses in insects. Nat Rev Microbiol 2025:10.1038/s41579-025-01164-z. [PMID: 40148601 DOI: 10.1038/s41579-025-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts' metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host-symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
| | - Laura V Flórez
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aurélien Vigneron
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Wu T, Rodrigues AA, Fayle TM, Henry LM. Defensive Symbiont Genotype Distributions Are Linked to Parasitoid Attack Networks. Ecol Lett 2025; 28:e70082. [PMID: 39964074 PMCID: PMC11834374 DOI: 10.1111/ele.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Facultative symbionts are widespread in arthropods and can provide important services such as protection from natural enemies. Yet what shapes associations with defensive symbionts in nature remains unclear. Two hypotheses suggest that interactions with either antagonists or host plants explain the prevalence of symbionts through shared selective pressures or vectors of symbiont transmission. Here we investigate the factors determining similarities in the Hamiltonella defensa symbiosis shared amongst field-collected aphid species. After accounting for host species relatedness, we find that Hamiltonella's genotype distribution aligns with sharing the same parasitoids, rather than host plants, highlighting parasitoids and hosts as key selective agents shaping the symbiosis across aphid species. Our data indicates parasitoid host specificity drives the prevalence of specific aphid-Hamiltonella associations, suggesting defensive symbioses are maintained by the selective pressure imposed by dominant parasitoids and their aphid hosts. These findings underscore the importance of interactions with natural enemies in explaining patterns of defensive symbiosis in nature.
Collapse
Affiliation(s)
- Taoping Wu
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Anoushka A. Rodrigues
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Tom M. Fayle
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| | - Lee M. Henry
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
3
|
García-Lozano M, Salem H. Microbial bases of herbivory in beetles. Trends Microbiol 2025; 33:151-163. [PMID: 39327210 DOI: 10.1016/j.tim.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
The ecological radiation of herbivorous beetles is among the most successful in the animal kingdom. It coincided with the rise and diversification of flowering plants, requiring beetles to adapt to a nutritionally imbalanced diet enriched in complex polysaccharides and toxic secondary metabolites. In this review, we explore how beetles overcame these challenges by coopting microbial genes, enzymes, and metabolites, through both horizontal gene transfer (HGT) and symbiosis. Recent efforts revealed the functional convergence governing both processes and the unique ways in which microbes continue to shape beetle digestion, development, and defense. The development of genetic and experimental tools across a diverse set of study systems has provided valuable mechanistic insights into how microbes spurred metabolic innovation and facilitated an herbivorous transition in beetles.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
4
|
García-Lozano M, Henzler C, Porras MÁG, Pons I, Berasategui A, Lanz C, Budde H, Oguchi K, Matsuura Y, Pauchet Y, Goffredi S, Fukatsu T, Windsor D, Salem H. Paleocene origin of a streamlined digestive symbiosis in leaf beetles. Curr Biol 2024; 34:1621-1634.e9. [PMID: 38377997 DOI: 10.1016/j.cub.2024.01.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christine Henzler
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Aileen Berasategui
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam 1081 HV, the Netherlands
| | - Christa Lanz
- Genome Center, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Heike Budde
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Kohei Oguchi
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; Misaki Marine Biological Station, The University of Tokyo, Miura 238-0225, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Takema Fukatsu
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama.
| |
Collapse
|
5
|
Wierz JC, Gimmel ML, Huthmacher S, Engl T, Kaltenpoth M. Evolutionary history of tyrosine-supplementing endosymbionts in pollen-feeding beetles. THE ISME JOURNAL 2024; 18:wrae080. [PMID: 38861456 PMCID: PMC11191362 DOI: 10.1093/ismejo/wrae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Many insects feeding on nutritionally challenging diets like plant sap, leaves, or wood engage in ancient associations with bacterial symbionts that supplement limiting nutrients or produce digestive or detoxifying enzymes. However, the distribution, function, and evolutionary dynamics of microbial symbionts in insects exploiting other plant tissues or relying on a predacious diet remain poorly understood. Here, we investigated the evolutionary history and function of the intracellular gamma-proteobacterial symbiont "Candidatus Dasytiphilus stammeri" in soft-winged flower beetles (Coleoptera, Melyridae, Dasytinae) that transition from saprophagy or carnivory to palynivory (pollen-feeding) between larval and adult stage. Reconstructing the distribution of the symbiont within the Dasytinae phylogeny unraveled not only a long-term coevolution, originating from a single acquisition event with subsequent host-symbiont codiversification, but also several independent symbiont losses. The analysis of 20 different symbiont genomes revealed that their genomes are severely eroded. However, the universally retained shikimate pathway indicates that the core metabolic contribution to their hosts is the provisioning of tyrosine for cuticle sclerotization and melanization. Despite the high degree of similarity in gene content and order across symbiont strains, the capacity to synthesize additional essential amino acids and vitamins and to recycle urea is retained in some but not all symbionts, suggesting ecological differences among host lineages. This report of tyrosine-provisioning symbionts in insects with saprophagous or carnivorous larvae and pollen-feeding adults expands our understanding of tyrosine supplementation as an important symbiont-provided benefit across a broad range of insects with diverse feeding ecologies.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Matthew L Gimmel
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, Santa Barbara, CA 93105, United States
| | - Selina Huthmacher
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
6
|
Shankregowda AM, Siriyappagouder P, Kuizenga M, Bal TMP, Abdelhafiz Y, Eizaguirre C, Fernandes JMO, Kiron V, Raeymaekers JAM. Host habitat rather than evolutionary history explains gut microbiome diversity in sympatric stickleback species. Front Microbiol 2023; 14:1232358. [PMID: 37901806 PMCID: PMC10601471 DOI: 10.3389/fmicb.2023.1232358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Host-associated microbiota can influence host phenotypic variation, fitness and potential to adapt to local environmental conditions. In turn, both host evolutionary history and the abiotic and biotic environment can influence the diversity and composition of microbiota. Yet, to what extent environmental and host-specific factors drive microbial diversity remains largely unknown, limiting our understanding of host-microbiome interactions in natural populations. Here, we compared the intestinal microbiota between two phylogenetically related fishes, the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) in a common landscape. Using amplicon sequencing of the V3-V4 region of the bacterial 16S rRNA gene, we characterised the α and β diversity of the microbial communities in these two fish species from both brackish water and freshwater habitats. Across eight locations, α diversity was higher in the nine-spined stickleback, suggesting a broader niche use in this host species. Habitat was a strong determinant of β diversity in both host species, while host species only explained a small fraction of the variation in gut microbial composition. Strong habitat-specific effects overruled effects of geographic distance and historical freshwater colonisation, suggesting that the gut microbiome correlates primarily with local environmental conditions. Interestingly, the effect of habitat divergence on gut microbial communities was stronger in three-spined stickleback than in nine-spined stickleback, possibly mirroring the stronger level of adaptive divergence in this host species. Overall, our results show that microbial communities reflect habitat divergence rather than colonisation history or dispersal limitation of host species.
Collapse
Affiliation(s)
| | | | - Marijn Kuizenga
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
7
|
Béchade B, Cabuslay CS, Hu Y, Mendonca CM, Hassanpour B, Lin JY, Su Y, Fiers VJ, Anandarajan D, Lu R, Olson CJ, Duplais C, Rosen GL, Moreau CS, Aristilde L, Wertz JT, Russell JA. Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. THE ISME JOURNAL 2023; 17:1751-1764. [PMID: 37558860 PMCID: PMC10504363 DOI: 10.1038/s41396-023-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont-Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)-and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Christian S Cabuslay
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Caroll M Mendonca
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Bahareh Hassanpour
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Y Lin
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Yangzhou Su
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Valerie J Fiers
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Dharman Anandarajan
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Richard Lu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Chandler J Olson
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Christophe Duplais
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - John T Wertz
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Schultner E, Wallner T, Dofka B, Brülhart J, Heinze J, Freitak D, Pokorny T, Oettler J. Queens control caste allocation in the ant Cardiocondyla obscurior. Proc Biol Sci 2023; 290:20221784. [PMID: 36750190 PMCID: PMC9904955 DOI: 10.1098/rspb.2022.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Social insect queens and workers can engage in conflict over reproductive allocation when they have different fitness optima. Here, we show that queens have control over queen-worker caste allocation in the ant Cardiocondyla obscurior, a species in which workers lack reproductive organs. We describe crystalline deposits that distinguish castes from the egg stage onwards, providing the first report of a discrete trait that can be used to identify ant caste throughout pre-imaginal development. The comparison of queen and worker-destined eggs and larvae revealed size and weight differences in late development, but no discernible differences in traits that may be used in social interactions, including hair morphology and cuticular odours. In line with a lack of caste-specific traits, adult workers treated developing queens and workers indiscriminately. Together with previous studies demonstrating queen control over sex allocation, these results show that queens control reproductive allocation in C. obscurior and suggest that the fitness interests of colony members are aligned to optimize resource allocation in this ant.
Collapse
Affiliation(s)
- Eva Schultner
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Tobias Wallner
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Benjamin Dofka
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jeanne Brülhart
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dalial Freitak
- Institute for Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Tamara Pokorny
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jan Oettler
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Jackson R, Patapiou PA, Golding G, Helanterä H, Economou CK, Chapuisat M, Henry LM. Evidence of phylosymbiosis in Formica ants. Front Microbiol 2023; 14:1044286. [PMID: 37213490 PMCID: PMC10196114 DOI: 10.3389/fmicb.2023.1044286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Insects share intimate relationships with microbes that play important roles in their biology. Yet our understanding of how host-bound microbial communities assemble and perpetuate over evolutionary time is limited. Ants host a wide range of microbes with diverse functions and are an emerging model for studying the evolution of insect microbiomes. Here, we ask whether phylogenetically related ant species have formed distinct and stable microbiomes. Methods To answer this question, we investigated the microbial communities associated with queens of 14 Formica species from five clades, using deep coverage 16S rRNA amplicon sequencing. Results We reveal that Formica species and clades harbor highly defined microbial communities that are dominated by four bacteria genera: Wolbachia, Lactobacillus, Liliensternia, and Spiroplasma. Our analysis reveals that the composition of Formica microbiomes mirrors the phylogeny of the host, i.e., phylosymbiosis, in that related hosts harbor more similar microbial communities. In addition, we find there are significant correlations between microbe co-occurrences. Discussion Our results demonstrate Formica ants carry microbial communities that recapitulate the phylogeny of their hosts. Our data suggests that the co-occurrence of different bacteria genera may at least in part be due to synergistic and antagonistic interactions between microbes. Additional factors potentially contributing to the phylosymbiotic signal are discussed, including host phylogenetic relatedness, host-microbe genetic compatibility, modes of transmission, and similarities in host ecologies (e.g., diets). Overall, our results support the growing body of evidence that microbial community composition closely depends on the phylogeny of their hosts, despite bacteria having diverse modes of transmission and localization within the host.
Collapse
Affiliation(s)
- Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Patapios A. Patapiou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Gemma Golding
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Chloe K. Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lee M. Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Lee M. Henry,
| |
Collapse
|
11
|
Alarcón ME, Polo PG, Akyüz SN, Rafiqi AM. Evolution and ontogeny of bacteriocytes in insects. Front Physiol 2022; 13:1034066. [PMID: 36505058 PMCID: PMC9732443 DOI: 10.3389/fphys.2022.1034066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.
Collapse
|