1
|
Thoma AE, Lekberg Y, Nagy DU, Sheng M, Welk E, Rosche C. Progress and future directions of biogeographical comparisons of plant-fungal interactions in invasion contexts. THE NEW PHYTOLOGIST 2025. [PMID: 40400222 DOI: 10.1111/nph.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/21/2025] [Indexed: 05/23/2025]
Abstract
Plant invasions are biogeographical phenomena that may involve shifts in belowground plant-fungal interactions, such as the release from fungal pathogens or more beneficial interactions with mutualists in nonnative ranges. However, native and nonnative ranges are not uniform but environmentally heterogeneous, and plant-fungal interactions are strongly shaped by spatio-environmental context. Intense discussion at the 45th New Phytologist Symposium revealed that we lack information on how well spatio-environmental variation within ranges has been considered in samplings and analyses of studies comparing plant-fungal interactions between ranges. Through a systematic review, we assessed the sampling quality of recent biogeographical studies. We found that the majority relied on a limited population sampling within each range, often covering only a small fraction of the species' spatial distribution and macroclimatic niche. Additionally, low similarity between the sampled climatic gradients in the native and nonnative ranges might have introduced false-positive differences across ranges. These sampling deficiencies may undermine the robustness and representativeness of range comparisons, thereby restricting our ability to accurately assess the role of plant-fungal interactions in invasion success. We recommend that future research incorporate broader and more comparable spatio-environmental variation in both ranges, and we provide practical guidelines for improving sampling designs.
Collapse
Affiliation(s)
- Arpad E Thoma
- Institute Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Dávid U Nagy
- Institute Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Min Sheng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Erik Welk
- Institute Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Christoph Rosche
- Institute Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Zhu B, Wei C, Zhou H, Chen W, Siemann E, Lu X. Traits estimated when grown alone may underestimate the competitive advantage and invasiveness of exotic species. THE NEW PHYTOLOGIST 2025; 245:2202-2213. [PMID: 39351648 DOI: 10.1111/nph.20160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/08/2024] [Indexed: 02/07/2025]
Abstract
Functional differences between native and exotic species, estimated when species are grown alone or in mixtures, are often used to predict the invasion risk of exotic species. However, it remains elusive whether the functional differences estimated by the two methods and their ability to predict species invasiveness (e.g. high abundance) are consistent. We compiled data from two common garden experiments, in which specific leaf area, height, and aboveground biomass of 64 common native and exotic invasive species in China were estimated when grown individually (pot) or in mixtures (field). Exotic species accumulated higher aboveground biomass than natives, but only when grown in field mixtures. Moreover, aboveground biomass and functional distinctiveness estimated in mixtures were more predictive of species persistence and relative abundance in the field mixtures in the second year than those estimated when grown alone. These findings suggest that assessing species traits while grown alone may underestimate the competitive advantage for some exotic species, highlighting the importance of trait-by-environment interactions in shaping species invasion. Therefore, we propose that integrating multi-site or multi-year field surveys and manipulative experiments is required to best identify the key trait(s) and environment(s) that interactively shape species invasion and community dynamics.
Collapse
Affiliation(s)
- Biao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Lab, Wuhan, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunqiang Wei
- Guangxi Institute of Botany, Chinese Academy of Science, Guilin, 540016, China
| | - Hao Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Lab, Wuhan, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Lab, Wuhan, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, 77005, USA
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Lab, Wuhan, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Miller AC, Lewis Ivey ML. The Disease Triangle of Chestnut: A Review of Host, Pathogen, and Environmental Interactions of Chestnuts Cultivated in the Eastern United States. PLANT DISEASE 2025; 109:245-256. [PMID: 38853336 DOI: 10.1094/pdis-11-23-2355-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chestnuts, the edible seeds of the genus Castanea, are a perennial food crop closely tied to the global migration of humans throughout history and have recently been gaining popularity in agriculture and forest restoration in eastern North America. Cultivation of chestnuts yields nutritionally balanced food while fostering economic development, food security, and environmental health. However, diseases and insect pests threaten successful ecological restoration and food production. In this review we explore conditions affecting chestnuts in the eastern United States through the lens of the disease triangle. A "host" in the disease triangle is not merely a single tree but a tree including its constituent population of fungal endophytes. Chestnut trees are rich with microbial life, and the sustainability of chestnuts in forest and cultivated settings may lie in understanding and manipulating microbial communities to improve plant health and control destructive diseases. To benefit from the ecological and economic potential of chestnuts on the landscape, it may be necessary to select locally adapted chestnut trees, regardless of pedigree, that are resilient against cosmopolitan pathogens. With transport of plants and pathogens throughout the globe, and with landscape-level environmental changes over the last century, chestnut trees in the eastern United States are in a unique disease landscape compared with their ancestors. Diseases of economic concern from fungi and fungal-like organisms include chestnut blight (Cryphonectria parasitica) and ink disease (Phytophthora cinnamomi) on American and European chestnuts, oak wilt (Bretziella fagacearum) on all chestnut species, and the emerging diseases of brown rot (Gnomoniopsis smithogilvyi) and chestnut anthracnose (Colletotrichum henanense). The eastern United States has experienced profound environmental changes over the twentieth century and into the early twenty-first century. These changes happen to coincide with the demise of the American chestnut in the eastern forest, efforts to re-establish chestnut as a forest species, and the rise in cultivation of multiple chestnut species and hybrids as a culinary crop. Chestnut trees growing in the early twenty-first century face different environmental circumstances than the American chestnuts of precolonial times, including changes in forest composition, rainfall changes and acidification, industrialized agriculture's increased chemical inputs, rising global temperatures, and increased levels of carbon dioxide in the atmosphere. We conclude that chestnut tree species for both forestry and agriculture should be considered based on current fitness, adaptability, and economic and ecological value considering continued dynamics in host and pathogen distributions and anthropogenically driven climatic and edaphic conditions.
Collapse
Affiliation(s)
- Amy C Miller
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences-Wooster, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Melanie L Lewis Ivey
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences-Wooster, The Ohio State University, Wooster, OH 44691, U.S.A
| |
Collapse
|
4
|
Rosche C, Broennimann O, Novikov A, Mrázová V, Boiko GV, Danihelka J, Gastner MT, Guisan A, Kožić K, Lehnert M, Müller‐Schärer H, Nagy DU, Remelgado R, Ronikier M, Selke JA, Shiyan NM, Suchan T, Thoma AE, Zdvořák P, Mráz P. Herbarium specimens reveal a cryptic invasion of polyploid Centaurea stoebe in Europe. THE NEW PHYTOLOGIST 2025; 245:392-405. [PMID: 39439296 PMCID: PMC11617643 DOI: 10.1111/nph.20212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e. cryptic invasions) of one cytotype into regions where only the other cytotype is native. We critically revised herbarium specimens of diploid and tetraploid Centaurea stoebe, collected across Europe between 1790 and 2023. Based on their distribution in natural and relict habitats and phylogeographic data, we estimated the native ranges of both cytotypes. Diploids are native across their entire European range, whereas tetraploids are native only to South-Eastern Europe and have recently expanded their range toward Central Europe. The proportion of tetraploids has exponentially increased over time in their expanded but not in their native range. This cryptic invasion predominantly occurred in ruderal habitats and enlarged the climatic niche of tetraploids toward a more oceanic climate. We conclude that spatio-temporally explicit assessments of range shifts, habitat preferences and niche evolution can improve our understanding of cryptic invasions. We also emphasize the value of herbarium specimens for accurate estimation of species´ native ranges, with fundamental implications for the design of research studies and the assessment of biodiversity trends.
Collapse
Affiliation(s)
- Christoph Rosche
- Institute of GeobotanyMartin Luther University Halle‐WittenbergHalle06108Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Olivier Broennimann
- Department of Ecology and EvolutionUniversity of LausanneLausanne1015Switzerland
- Institute of Earth Surface DynamicsUniversity of LausanneLausanne1015Switzerland
| | - Andriy Novikov
- State Museum of Natural History, National Academy of Sciences of UkraineLviv79008Ukraine
| | - Viera Mrázová
- Department of BotanyCharles UniversityPrague12801Czech Republic
| | - Ganna V. Boiko
- M.G. Kholodny Institute of Botany, National Academy of Sciences of UkraineKyiv01601Ukraine
| | - Jiří Danihelka
- Department of Botany and ZoologyMasaryk UniversityBrno60200Czech Republic
- Institute of Botany, Czech Academy of SciencesPrůhonice25243Czech Republic
| | - Michael T. Gastner
- Information and Communication Technology ClusterSingapore Institute of TechnologySingapore828608Singapore
| | - Antoine Guisan
- Department of Ecology and EvolutionUniversity of LausanneLausanne1015Switzerland
- Institute of Earth Surface DynamicsUniversity of LausanneLausanne1015Switzerland
| | - Kevin Kožić
- Institute of GeobotanyMartin Luther University Halle‐WittenbergHalle06108Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Marcus Lehnert
- Institute of GeobotanyMartin Luther University Halle‐WittenbergHalle06108Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Heinz Müller‐Schärer
- Department of BiologyUniversity of FribourgFribourg1700Switzerland
- College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Dávid U. Nagy
- Institute of GeobotanyMartin Luther University Halle‐WittenbergHalle06108Germany
| | - Ruben Remelgado
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Michał Ronikier
- W. Szafer Institute of Botany, Polish Academy of SciencesKraków31‐512Poland
| | - Julian A. Selke
- Institute of GeobotanyMartin Luther University Halle‐WittenbergHalle06108Germany
- Faculty of Informatics and Data ScienceUniversity of RegensburgRegensburg93040Germany
| | - Natalia M. Shiyan
- M.G. Kholodny Institute of Botany, National Academy of Sciences of UkraineKyiv01601Ukraine
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of SciencesKraków31‐512Poland
| | - Arpad E. Thoma
- Institute of GeobotanyMartin Luther University Halle‐WittenbergHalle06108Germany
| | - Pavel Zdvořák
- Herbarium collectionsCharles UniversityPrague12801Czech Republic
| | - Patrik Mráz
- Department of BotanyCharles UniversityPrague12801Czech Republic
- Herbarium collectionsCharles UniversityPrague12801Czech Republic
| |
Collapse
|
5
|
Alam A, Gabriel-Neumann E. Arbuscular mycorrhizal fungi travel the world with harvested underground crops. MYCORRHIZA 2024; 35:4. [PMID: 39680257 DOI: 10.1007/s00572-024-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
In recent years, the dispersal of potentially invasive plants, animals, and pathogens via international trading routes for fresh agricultural goods has been the subject of intensive research and risk assessment. Comparatively little is known about the potential impact of global food trade on the spreading of symbiotic soil microorganisms, such as arbuscular mycorrhizal (AM) fungi. The present study thus assessed whether internationally traded underground crop harvest products carry AM fungal propagules. Twenty batches of tubers, corms or bulbs originating from eight different countries were sampled and used to inoculate Sorghum bicolor (L.) Moench plants grown in a heat-sterilized, sandy dune soil from the United Arab Emirates (UAE). Results revealed that most of the underground crop harvest products contained AM fungal propagules able to establish AM symbioses in a pot experiment under greenhouse conditions. Though it is likely that most AM fungal propagules attached to harvest products will ultimately be eliminated in the waste or sewage stream, it is well possible that a certain portion would find its way into agricultural or natural ecosystems, e.g., via organic waste disposal or use of kitchen greywater for irrigation. Given the large volumes of underground crops traded worldwide, their impact on AM fungal dispersal and distribution deserves further investigation and assessment of associated risks of adulteration of soil microbial communities.
Collapse
Affiliation(s)
- Ayesha Alam
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
- Aspire Research Institute for Food Security in the Drylands, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Elke Gabriel-Neumann
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
- Aspire Research Institute for Food Security in the Drylands, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Berlow M, Mesa M, Creek M, Duarte JG, Carpenter E, Phinizy B, Andonian K, Dlugosch KM. Plant G × Microbial E: Plant Genotype Interaction with Soil Bacterial Community Shapes Rhizosphere Composition During Invasion. MICROBIAL ECOLOGY 2024; 87:113. [PMID: 39259393 PMCID: PMC11390927 DOI: 10.1007/s00248-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Miles Mesa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Mikayla Creek
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse G Duarte
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elizabeth Carpenter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Phinizy
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
7
|
Tao Z, Zhang K, Callaway RM, Siemann E, Liu Y, Huang W. Native Plant Diversity Generates Microbial Legacies That Either Promote or Suppress Non-Natives, Depending on Drought History. Ecol Lett 2024; 27:e14504. [PMID: 39354910 DOI: 10.1111/ele.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024]
Abstract
Diverse native plant communities resist non-native plants more than species-poor communities, in part through resource competition. The role of soil biota in diversity-invasibility relationships is poorly understood, although non-native plants interact with soil biota during invasions. We tested the responses of non-native plants to soil biota generated by different native plant diversities. We applied well-watered and drought treatments in both conditioning and response phases to explore the effects of 'historical' and 'contemporary' environmental stresses. When generated in well-watered soils, the microbial legacies from higher native diversity inhibited non-native growth in well-watered conditions. In contrast, when generated in drought-treated soils, the microbial legacies from higher native diversity facilitated non-native growth in well-watered conditions. Contemporary drought eliminated microbial legacy effects on non-native growth. We provide a new understanding of mechanisms behind diversity-invasibility relationships and demonstrate that temporal variation in environmental stress shapes relationships among native plant diversity, soil biota and non-native plants.
Collapse
Affiliation(s)
- Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Yanjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
Nagy DU, Thoma AE, Al-Gharaibeh M, Callaway RM, Flory SL, Frazee LJ, Hartmann M, Hensen I, Jandová K, Khasa DP, Lekberg Y, Pal RW, Samartza I, Shah MA, Sheng M, Slate M, Stein C, Tsunoda T, Rosche C. Among-population variation in drought responses is consistent across life stages but not between native and non-native ranges. THE NEW PHYTOLOGIST 2024; 243:922-935. [PMID: 38859570 DOI: 10.1111/nph.19895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.
Collapse
Affiliation(s)
- Dávid U Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Arpad E Thoma
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Mohammad Al-Gharaibeh
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren J Frazee
- Department of Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - Isabell Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, CZ-12801, Czech Republic
| | - Damase P Khasa
- Centre for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Quebec, QC, G1V0A6, Canada
| | - Ylva Lekberg
- MPG Ranch Missoula, Florence, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Robert W Pal
- Department of Biological Sciences, Montana Technological University, Butte, MT, 59701, USA
| | - Ioulietta Samartza
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, 57001, Greece
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Min Sheng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mandy Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Claudia Stein
- Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, 36124, USA
| | - Tomonori Tsunoda
- Bioscience and Biotechnology, Fukui Prefectural University, Fukui, 910-1195, Japan
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
9
|
Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Uncovering the secret weapons of an invasive plant: The endophytic microbes of Anthemis cotula. Heliyon 2024; 10:e29778. [PMID: 38694109 PMCID: PMC11058297 DOI: 10.1016/j.heliyon.2024.e29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Understanding plant-microbe interaction can be useful in identifying the microbial drivers of plant invasions. It is in this context that we explored the diversity of endophytic microbes from leaves of Anthemis cotula, an annual plant that is highly invasive in Kashmir Himalaya. We also tried to establish the role of endophytes in the invasiveness of this alien species. We collected and processed leaf samples from three populations at three different sites. A total of 902 endophytic isolates belonging to 4 bacterial and 2 fungal phyla were recovered that belonged to 27 bacterial and 14 fungal genera. Firmicutes (29.1%), Proteobacteria (24.1%), Ascomycota (22.8%) and Actinobacteria (19%) were dominant across all samples. Plant growth promoting traits, such as Ammonia production, Indole Acetic Acid (IAA) production, Phosphate solubilization and biocontrol activity of these endophytes were also studied and most of the isolates (74.68%) were positive for ammonia production. IAA production, phosphate solubilization and biocontrol activity was present in 39.24%, 36.70% and 20.26% isolates, respectively. Furthermore, Botrytis cinerea, a pathogen of A. cotula in its native range, though present in Kashmir Himalaya does not affect A. cotula probably due to the presence of leaf endophytic microbial antagonists. Our results highlight that the beneficial plant growth promoting interactions and enemy suppression by leaf endophytes of A. cotula, may be contributing to its survival and invasion in the Kashmir Himalaya.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | | |
Collapse
|
10
|
Chamard J, Faticov M, Blanchet FG, Chagnon PL, Laforest-Lapointe I. Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Commun Biol 2024; 7:360. [PMID: 38519711 PMCID: PMC10960049 DOI: 10.1038/s42003-024-06042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.
Collapse
Affiliation(s)
- Joey Chamard
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Faticov
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département des sciences de la santé communautaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Chagnon
- Agriculture and Agri-food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
11
|
Sun X, Sun Y, Cao X, Zhai X, Callaway RM, Wan J, Flory SL, Huang W, Ding J. Trade-offs in non-native plant herbivore defences enhance performance. Ecol Lett 2023; 26:1584-1596. [PMID: 37387416 DOI: 10.1111/ele.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Non-native plants are typically released from specialist enemies but continue to be attacked by generalists, albeit at lower intensities. This reduced herbivory may lead to less investment in constitutive defences and greater investment in induced defences, potentially reducing defence costs. We compared herbivory on 27 non-native and 59 native species in the field and conducted bioassays and chemical analyses on 12 pairs of non-native and native congeners. Non-natives suffered less damage and had weaker constitutive defences, but stronger induced defences than natives. For non-natives, the strength of constitutive defences was correlated with the intensity of herbivory experienced, whereas induced defences showed the reverse. Investment in induced defences correlated positively with growth, suggesting a novel mechanism for the evolution of increased competitive ability. To our knowledge, these are the first linkages reported among trade-offs in plant defences related to the intensity of herbivory, allocation to constitutive versus induced defences, and growth.
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yumei Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xueyao Cao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xincong Zhai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jinlong Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Chen L, Wang M, Shi Y, Ma P, Xiao Y, Yu H, Ding J. Soil phosphorus form affects the advantages that arbuscular mycorrhizal fungi confer on the invasive plant species, Solidago canadensis, over its congener. Front Microbiol 2023; 14:1160631. [PMID: 37125154 PMCID: PMC10140316 DOI: 10.3389/fmicb.2023.1160631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Interactions between plants and arbuscular mycorrhizal fungi (AMF) are strongly affected by soil phosphorus (P) availability. However, how P forms impact rhizosphere AMF diversity, community composition, and the co-occurrence network associated with native and invasive plants, and whether these changes in turn influence the invasiveness of alien species remain unclear. In this work, we performed a greenhouse experiment with the invasive species Solidago canadensis and its native congener S. decurrens to investigate how different forms of P altered the AMF community and evaluate how these changes were linked with the growth advantage of S. canadensis relative to S. decurrens. Plants were subjected to five different P treatments: no P addition (control), simple inorganic P (sodium dihydrogen phosphate, NaP), complex inorganic P (hydroxyapatite, CaP), simple organic P (adenosine monophosphate, AMP) and complex organic P (myo-inositol hexakisphosphate, PA). Overall, invasive S. canadensis grew larger than native S. decurrens across all P treatments, and this growth advantage was strengthened when these species were grown in CaP and AMP treatments. The two Solidago species harbored divergent AMF communities, and soil P treatments significantly shifted AMF community composition. In particular, the differences in AMF diversity, community composition, topological features and keystone taxa of the co-occurrence networks between S. canadensis and S. decurrens were amplified when the dominant form of soil P was altered. Despite significant correlations between AMF alpha diversity, community structure, co-occurrence network composition and plant performance, we found that alpha diversity and keystone taxa of the AMF co-occurrence networks were the primary factors influencing plant growth and the growth advantage of invasive S. canadensis between soil P treatments. These results suggest that AMF could confer invasive plants with greater advantages over native congeners, depending on the forms of P in the soil, and emphasize the important roles of multiple AMF traits in plant invasion.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengqi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pinpin Ma
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yali Xiao
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|