1
|
Garrido-Sanz D, Keel C. Seed-borne bacteria drive wheat rhizosphere microbiome assembly via niche partitioning and facilitation. Nat Microbiol 2025; 10:1130-1144. [PMID: 40140705 PMCID: PMC12055584 DOI: 10.1038/s41564-025-01973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Microbial communities play a crucial role in supporting plant health and productivity. Reproducible, natural plant-associated microbiomes can help disentangle microbial dynamics across time and space. Here, using a sequential propagation strategy, we generated a complex and reproducible wheat rhizosphere microbiome (RhizCom) to study successional dynamics and interactions between the soil and heritable seed-borne rhizosphere microbiomes (SbRB) in a microcosm. Using 16S rRNA sequencing and genome-resolved shotgun metagenomics, we find that SbRB surpassed native soil microbes as the dominant rhizosphere-associated microbiome source. SbRB genomes were enriched in host-associated traits including degradation of key saccharide (niche partitioning) and cross-feeding interactions that supported partner strains (niche facilitation). In vitro co-culture experiments confirmed that helper SbRB strains facilitated the growth of partner bacteria on disaccharides as sole carbon source. These results reveal the importance of seed microbiota dynamics in microbial succession and community assembly, which could inform strategies for crop microbiome manipulation.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Fan X, Ge AH, Qi S, Guan Y, Wang R, Yu N, Wang E. Root exudates and microbial metabolites: signals and nutrients in plant-microbe interactions. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2876-0. [PMID: 40080268 DOI: 10.1007/s11427-024-2876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Plant roots meticulously select and attract particular microbial taxa from the surrounding bulk soil, thereby establishing a specialized and functionally diverse microbial community within the rhizosphere. Rhizosphere metabolites, including root exudates and microbial metabolites, function as both signals and nutrients that govern the assembly of the rhizosphere microbiome, playing crucial roles in mediating communications between plants and microbes. The environment and their feedback loops further influence these intricate interactions. However, whether and how specific metabolites shape plant-microbe interactions and facilitate diverse functions remains obscure. This review summarizes the current progress in plant-microbe communications mediated by chemical compounds and their functions in plant fitness and ecosystem functioning. Additionally, we raise some prospects on future directions for manipulating metabolite-mediated plant-microbe interactions to enhance crop productivity and health. Unveiling the biological roles of specific metabolites produced by plants and microbes will bridge the gap between fundamental research and practical applications.
Collapse
Affiliation(s)
- Xiaoyan Fan
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - An-Hui Ge
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shanshan Qi
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuefeng Guan
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Ran Wang
- College of Life Sciences, Henan Province Engineering Research Center of Crop Synthetic Biology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Zhao Y, Hu J, Wang J, Yao X, Zhang T, Hu B. Comammox Nitrospira act as key bacteria in weakly acidic soil via potential cobalamin sharing. IMETA 2025; 4:e271. [PMID: 40027486 PMCID: PMC11865330 DOI: 10.1002/imt2.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025]
Abstract
The discovery of comammox Nitrospira in low pH environments has reshaped the ammonia oxidation process in acidic settings, providing a plausible explanation for the higher nitrification rates observed in weakly acidic soils. However, the response of comammox Nitrospira to varying pH levels and its ecological role in these environments remains unclear. Here, a survey across soils with varying pH values (ranging from 4.4 to 9.7) was conducted to assess how comammox Nitrospira perform under different pH conditions. Results showed that comammox Nitrospira dominate ammonia oxidation in weakly acidic soils, functioning as a K-strategy species characterized by slow growth and stress tolerance. As a key species in this environment, comammox Nitrospira may promote bacterial cooperation under low pH conditions. Genomic evidence suggested that cobalamin sharing is a potential mechanism, as comammox Nitrospira uniquely encode a metabolic pathway that compensates for cobalamin imbalance in weakly acidic soils, where 86.8% of metagenome-assembled genomes (MAGs) encode cobalamin-dependent genes. Additionally, we used DNA stable-isotope probing (DNA-SIP) to demonstrate its response to pH fluctuations to reflect how it responds to the decrease in pH. Results confirmed that comammox Nitrospira became dominant ammonia oxidizers in the soil after the decrease in pH. We suggested that comammox Nitrospira will become increasingly important in global soils, under the trend of soil acidification. Overall, our work provides insights that how comammox Nitrospira perform in weakly acidic soil and its response to pH changes.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Jiajie Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Jiaqi Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil EngineeringThe University of Hong KongHong Kong SARChina
- School of Public HealthThe University of Hong KongHong Kong SARChina
- Center for Environmental Engineering ResearchThe University of Hong KongHong Kong SARChina
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental SafetyHangzhouChina
| |
Collapse
|
4
|
van der Loos LM, Steinhagen S, Stock W, Weinberger F, D’hondt S, Willems A, De Clerck O. Low functional change despite high taxonomic turnover characterizes the Ulva microbiome across a 2000-km salinity gradient. SCIENCE ADVANCES 2025; 11:eadr6070. [PMID: 39823339 PMCID: PMC11740975 DOI: 10.1126/sciadv.adr6070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
The green seaweed Ulva relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. Ulva-associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear. We analyzed 91 Ulva samples across a 2000-kilometer Atlantic-Baltic Sea salinity gradient using metagenomic sequencing. Metabolic reconstruction of 639 metagenome-assembled genomes revealed widespread potential for carbon, nitrogen, sulfur, and vitamin metabolism. Although the R2 value for salinity explained 70% of taxonomic variation, it accounted only for 17% of functional variation. The limited variation was attributed to typical high-salinity bacteria exhibiting enrichment in genes for thiamine, pyridoxal, and betaine biosynthesis, which likely contribute to stress mitigation and osmotic homeostasis in response to salinity variations. Our results emphasize the importance of functional profiling to understand the seaweed holobiont and its collective response to environmental change.
Collapse
Affiliation(s)
- Luna M. van der Loos
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sophie Steinhagen
- Department of Marine Sciences-Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Willem Stock
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Sofie D’hondt
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Feng Y, Kong L, Zheng R, Wu X, Zhou J, Xu X, Liu S. Adjusted bacterial cooperation in anammox community to adapt to high ammonium in wastewater treatment plant. WATER RESEARCH X 2024; 25:100258. [PMID: 39381622 PMCID: PMC11460484 DOI: 10.1016/j.wroa.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Bacterial cooperation is very important for anammox bacteria which perform low-carbon and energy-efficient nitrogen removal, yet its variation to adapt to high NH4 +-N concentration in actual wastewater treatment plants (WWTPs) remains unclear. Here, we found wide and varied cross-feedings of anammox bacteria and symbiotic bacteria in the two series connected full-scale reactors with different NH4 +-N concentrations (297.95 ± 54.84 and 76.03 ± 34.01 mg/L) treating sludge digester liquor. The uptake of vitamin B6 as highly effective antioxidants secreted by the symbiotic bacteria was beneficial for anammox bacteria to resist the high NH4 +-N concentration and varied dissolved oxygen (DO). When NH4 +-N concentration in influent (1785.46 ± 228.5 mg/L) increased, anammox bacteria tended to reduce the amino acids supply to symbiotic bacteria to save metabolic costs. A total of 26.1% bacterial generalists switched to specialists to increase the stability and functional heterogeneity of the microbial community at high NH4 +-N conditions. V/A-type ATPase for anammox bacteria to adapt to the change of NH4 +-N was highly important to strive against cellular alkalization caused by free ammonia. This study expands the understanding of the adjusted bacterial cooperation within anammox consortia at high NH4 +-N conditions, providing new insights into bacterial adaptation to adverse environments from a sociomicrobiology perspective.
Collapse
Affiliation(s)
- Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Sciences and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing, 100871, China
| |
Collapse
|
6
|
Tenorio-Salgado S, Villalpando-Aguilar JL, Hernandez-Guerrero R, Poot-Hernández AC, Perez-Rueda E. Exploring the enzymatic repertoires of Bacteria and Archaea and their associations with metabolic maps. Braz J Microbiol 2024; 55:3147-3157. [PMID: 39052173 PMCID: PMC11711735 DOI: 10.1007/s42770-024-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
The evolution, survival, and adaptation of microbes are consequences of gene duplication, acquisition, and divergence in response to environmental challenges. In this context, enzymes play a central role in the evolution of organisms, because they are fundamental in cell metabolism. Here, we analyzed the enzymatic repertoire in 6,467 microbial genomes, including their abundances, and their associations with metabolic maps. We found that the enzymes follow a power-law distribution, in relation to the genome sizes. Therefore, we evaluated the total proportion enzymatic classes in relation to the genomes, identifying a descending-order proportion: transferases (EC:2.-), hydrolases (EC:3.-), oxidoreductases (EC:1.-), ligases (EC:6.-), lyases (EC:4.-), isomerases (EC:5.-), and translocases (EC:7-.). In addition, we identified a preferential use of enzymatic classes in metabolism pathways for xenobiotics, cofactors and vitamins, carbohydrates, amino acids, glycans, and energy. Therefore, this analysis provides clues about the functional constraints associated with the enzymatic repertoire of functions in Bacteria and Archaea.
Collapse
Affiliation(s)
- Silvia Tenorio-Salgado
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico km. 4.5, 97118, Merida, Yucatan, Mexico
| | - José Luis Villalpando-Aguilar
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México
- Facultad Ciencias de la Salud, Universidad Vizcaya de las Américas, Prolongación Allende, Campeche, 24035, Campeche, Mexico
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
7
|
Schulz-Mirbach H, Wichmann P, Satanowski A, Meusel H, Wu T, Nattermann M, Burgener S, Paczia N, Bar-Even A, Erb TJ. New-to-nature CO 2-dependent acetyl-CoA assimilation enabled by an engineered B 12-dependent acyl-CoA mutase. Nat Commun 2024; 15:10235. [PMID: 39592584 PMCID: PMC11599936 DOI: 10.1038/s41467-024-53762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Acetyl-CoA is a key metabolic intermediate and the product of various natural and synthetic one-carbon (C1) assimilation pathways. While an efficient conversion of acetyl-CoA into other central metabolites, such as pyruvate, is imperative for high biomass yields, available aerobic pathways typically release previously fixed carbon in the form of CO2. To overcome this loss of carbon, we develop a new-to-nature pathway, the Lcm module, in this study. The Lcm module provides a direct link between acetyl-CoA and pyruvate, is shorter than any other oxygen-tolerant route and notably fixes CO2, instead of releasing it. The Lcm module relies on the new-to-nature activity of a coenzyme B12-dependent mutase for the conversion of 3-hydroxypropionyl-CoA into lactyl-CoA. We demonstrate Lcm activity of the scaffold enzyme 2-hydroxyisobutyryl-CoA mutase from Bacillus massiliosenegalensis, and further improve catalytic efficiency 10-fold by combining in vivo targeted hypermutation and adaptive evolution in an engineered Escherichia coli selection strain. Finally, in a proof-of-principle, we demonstrate the complete Lcm module in vitro. Overall, our work demonstrates a synthetic CO2-incorporating acetyl-CoA assimilation route that expands the metabolic solution space of central carbon metabolism, providing options for synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Helena Schulz-Mirbach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Philipp Wichmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Ari Satanowski
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany.
| | - Helen Meusel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Tong Wu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Maren Nattermann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Simon Burgener
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, Marburg, Germany.
| |
Collapse
|
8
|
Edelmann M, Couperus S, Rodríguez-Robles E, Rivollier J, Roberts T, Panke S, Marlière P. Evolving Escherichia coli to use a tRNA with a non-canonical fold as an adaptor of the genetic code. Nucleic Acids Res 2024; 52:12650-12668. [PMID: 39315692 PMCID: PMC11551756 DOI: 10.1093/nar/gkae806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
All known bacterial tRNAs adopt the canonical cloverleaf 2D and L-shaped 3D structures. We aimed to explore whether alternative tRNA structures could be introduced in bacterial translation. To this end, we crafted a vitamin-based genetic system to evolve Escherichia coli toward activity of structurally non-canonical tRNAs. The system reliably couples (escape frequency <10-12) growth with the activities of a novel orthogonal histidine suppressor tRNA (HisTUAC) and of the cognate ARS (HisS) via suppression of a GTA valine codon in the mRNA of an enzyme in thiamine biosynthesis (ThiN). Suppression results in the introduction of an essential histidine and thereby confers thiamine prototrophy. We then replaced HisTUAC in the system with non-canonical suppressor tRNAs and selected for growth. A strain evolved to utilize mini HisT, a tRNA lacking the D-arm, and we identified the responsible mutation in an RNase gene (pnp) involved in tRNA degradation. This indicated that HisS, the ribosome, and EF-Tu accept mini HisT ab initio, which we confirmed genetically and through in vitro translation experiments. Our results reveal a previously unknown flexibility of the bacterial translation machinery for the accepted fold of the adaptor of the genetic code and demonstrate the power of the vitamin-based suppression system.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genetic Code
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- Nucleic Acid Conformation
- Protein Biosynthesis
- Thiamine/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/chemistry
- Mutation
- Histidine/metabolism
- Histidine/genetics
- RNA, Transfer, His/metabolism
- RNA, Transfer, His/genetics
- RNA, Transfer, His/chemistry
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA Folding
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/metabolism
- Codon/genetics
Collapse
Affiliation(s)
- Martin P Edelmann
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Sietse Couperus
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Emilio Rodríguez-Robles
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Julie Rivollier
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 75002 Paris, France
| | - Tania M Roberts
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 75002 Paris, France
| |
Collapse
|
9
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
10
|
Ruan Z, Chen K, Cao W, Meng L, Yang B, Xu M, Xing Y, Li P, Freilich S, Chen C, Gao Y, Jiang J, Xu X. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 2024; 15:4694. [PMID: 38824157 PMCID: PMC11144243 DOI: 10.1038/s41467-024-49098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Weimiao Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Lei Meng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Chen Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
11
|
Hallberg ZF, Nicolas AM, Alvarez-Aponte ZI, Mok KC, Sieradzki ET, Pett-Ridge J, Banfield JF, Carlson HK, Firestone MK, Taga ME. Soil microbial community response to corrinoids is shaped by a natural reservoir of vitamin B 12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580003. [PMID: 38405713 PMCID: PMC10888822 DOI: 10.1101/2024.02.12.580003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Soil microbial communities perform critical ecosystem services through the collective metabolic activities of numerous individual organisms. Most microbes use corrinoids, a structurally diverse family of cofactors related to vitamin B12. Corrinoid structure influences the growth of individual microbes, yet how these growth responses scale to the community level remains unknown. Analysis of metagenome-assembled genomes suggests corrinoids are supplied to the community by members of the archaeal and bacterial phyla Thermoproteota, Actinobacteria, and Proteobacteria. Corrinoids were found largely adhered to the soil matrix in a grassland soil, at levels exceeding those required by cultured bacteria. Enrichment cultures and soil microcosms seeded with different corrinoids showed distinct shifts in bacterial community composition, supporting the hypothesis that corrinoid structure can shape communities. Environmental context influenced both community and taxon-specific responses to specific corrinoids. These results implicate corrinoids as key determinants of soil microbiome structure and suggest that environmental micronutrient reservoirs promote community stability.
Collapse
Affiliation(s)
- Zachary F. Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Alexa M. Nicolas
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Zoila I. Alvarez-Aponte
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Kenny C. Mok
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Ella T. Sieradzki
- Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Livermore, CA, 94550 USA
- Innovative Genomics Institute, Berkeley, CA, 94720 USA
| | - Jillian F. Banfield
- Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, 94720 USA
- Innovative Genomics Institute, Berkeley, CA, 94720 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
- Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Hans K. Carlson
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Mary K. Firestone
- Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, 94720 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Michiko E. Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
12
|
Mitrea L, Teleky BE, Nemes SA, Plamada D, Varvara RA, Pascuta MS, Ciont C, Cocean AM, Medeleanu M, Nistor A, Rotar AM, Pop CR, Vodnar DC. Succinic acid - A run-through of the latest perspectives of production from renewable biomass. Heliyon 2024; 10:e25551. [PMID: 38327454 PMCID: PMC10848017 DOI: 10.1016/j.heliyon.2024.e25551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Succinic acid (SA) production is continuously rising, as its applications in diverse end-product generation are getting broader and more expansive. SA is an eco-friendly bulk product that acts as a valuable intermediate in different processes and might substitute other petrochemical-based products due to the inner capacity of microbes to biosynthesize it. Moreover, large amounts of SA can be obtained through biotechnological ways starting from renewable resources, imprinting at the same time the concept of a circular economy. In this context, the target of the present review paper is to bring an overview of SA market demands, production, biotechnological approaches, new strategies of production, and last but not least, the possible limitations and the latest perspectives in terms of natural biosynthesis of SA.
Collapse
Affiliation(s)
- Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemes
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Diana Plamada
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Mihaela-Stefana Pascuta
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Calina Ciont
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Ana-Maria Cocean
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Madalina Medeleanu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Alina Nistor
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Ancuta-Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Carmen-Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Hallberg ZF, Nicolas AM, Alvarez-Aponte ZI, Mok KC, Sieradzki ET, Pett-Ridge J, Banfield JF, Carlson HK, Firestone MK, Taga ME. Soil microbial community response to corrinoids is shaped by a natural reservoir of vitamin B12. THE ISME JOURNAL 2024; 18:wrae094. [PMID: 38832716 PMCID: PMC11287211 DOI: 10.1093/ismejo/wrae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Soil microbial communities perform critical ecosystem services through the collective metabolic activities of numerous individual organisms. Most microbes use corrinoids, a structurally diverse family of cofactors related to vitamin B12. Corrinoid structure influences the growth of individual microbes, yet how these growth responses scale to the community level remains unknown. Analysis of metagenome-assembled genomes suggests that corrinoids are supplied to the community by members of the archaeal and bacterial phyla Thermoproteota, Actinobacteria, and Proteobacteria. Corrinoids were found largely adhered to the soil matrix in a grassland soil, at levels exceeding those required by cultured bacteria. Enrichment cultures and soil microcosms seeded with different corrinoids showed distinct shifts in bacterial community composition, supporting the hypothesis that corrinoid structure can shape communities. Environmental context influenced both community- and taxon-specific responses to specific corrinoids. These results implicate corrinoids as key determinants of soil microbiome structure and suggest that environmental micronutrient reservoirs promote community stability.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Alexa M Nicolas
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Zoila I Alvarez-Aponte
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Ella T Sieradzki
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Jennifer Pett-Ridge
- Physical & Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, United States
| | - Jillian F Banfield
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, United States
- Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hans K Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mary K Firestone
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, United States
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
14
|
Lee SM, Thapa Magar R, Jung MK, Kong HG, Song JY, Kwon JH, Choi M, Lee HJ, Lee SY, Khan R, Kim JF, Lee SW. Rhizobacterial syntrophy between a helper and a beneficiary promotes tomato plant health. THE ISME JOURNAL 2024; 18:wrae120. [PMID: 38952008 PMCID: PMC11253211 DOI: 10.1093/ismejo/wrae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Microbial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remain poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through the subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Roniya Thapa Magar
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Min Kyeong Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hyun Gi Kong
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ju Yeon Song
- Department of Systems Biology and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Hwan Kwon
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Minseo Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Seung Yeup Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Raees Khan
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
- Department of Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Jihyun F Kim
- Department of Systems Biology and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Microbiome Initiative, Yonsei University, Seoul 03722, Republic of Korea
| | - Seon-Woo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Republic of Korea
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
15
|
Xu X, Li C, Cao W, Yan L, Cao L, Han Q, Gao M, Chen Y, Shen Z, Jiang J, Chen C. Bacterial growth and environmental adaptation via thiamine biosynthesis and thiamine-mediated metabolic interactions. THE ISME JOURNAL 2024; 18:wrae157. [PMID: 39129674 PMCID: PMC11346370 DOI: 10.1093/ismejo/wrae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 08/13/2024]
Abstract
Understanding the ancestral transition from anaerobic to aerobic lifestyles is essential for comprehending life's early evolution. However, the biological adaptations occurring during this crucial transition remain largely unexplored. Thiamine is an important cofactor involved in central carbon metabolism and aerobic respiration. Here, we explored the phylogenetic and global distribution of thiamine-auxotrophic and thiamine-prototrophic bacteria based on the thiamine biosynthetic pathway in 154 838 bacterial genomes. We observed strong coincidences of the origin of thiamine-synthetic bacteria with the "Great Oxygenation Event," indicating that thiamine biosynthesis in bacteria emerged as an adaptation to aerobic respiration. Furthermore, we demonstrated that thiamine-mediated metabolic interactions are fundamental factors influencing the assembly and diversity of bacterial communities by a global survey across 4245 soil samples. Through our newly established stable isotope probing-metabolic modeling method, we uncovered the active utilization of thiamine-mediated metabolic interactions by bacterial communities in response to changing environments, thus revealing an environmental adaptation strategy employed by bacteria at the community level. Our study demonstrates the widespread thiamine-mediated metabolic interactions in bacterial communities and their crucial roles in setting the stage for an evolutionary transition from anaerobic to aerobic lifestyles and subsequent environmental adaptation. These findings provide new insights into early bacterial evolution and their subsequent growth and adaptations to environments.
Collapse
Affiliation(s)
- Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Can Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimiao Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lulu Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lulu Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Minling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Pfeilmeier S, Werz A, Ote M, Bortfeld-Miller M, Kirner P, Keppler A, Hemmerle L, Gäbelein CG, Petti GC, Wolf S, Pestalozzi CM, Vorholt JA. Leaf microbiome dysbiosis triggered by T2SS-dependent enzyme secretion from opportunistic Xanthomonas pathogens. Nat Microbiol 2024; 9:136-149. [PMID: 38172620 PMCID: PMC10769872 DOI: 10.1038/s41564-023-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
In healthy plants, the innate immune system contributes to maintenance of microbiota homoeostasis, while disease can be associated with microbiome perturbation or dysbiosis, and enrichment of opportunistic plant pathogens like Xanthomonas. It is currently unclear whether the microbiota change occurs independently of the opportunistic pathogens or is caused by the latter. Here we tested if protein export through the type-2 secretion system (T2SS) by Xanthomonas causes microbiome dysbiosis in Arabidopsis thaliana in immunocompromised plants. We found that Xanthomonas strains secrete a cocktail of plant cell wall-degrading enzymes that promote Xanthomonas growth during infection. Disease severity and leaf tissue degradation were increased in A. thaliana mutants lacking the NADPH oxidase RBOHD. Experiments with gnotobiotic plants, synthetic bacterial communities and wild-type or T2SS-mutant Xanthomonas revealed that virulence and leaf microbiome composition are controlled by the T2SS. Overall, a compromised immune system in plants can enrich opportunistic pathogens, which damage leaf tissues and ultimately cause microbiome dysbiosis by facilitating growth of specific commensal bacteria.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Molecular Plant Pathology, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Anja Werz
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Marine Ote
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Pascal Kirner
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Lucas Hemmerle
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Sarah Wolf
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
17
|
Bernstein DB, Akkas B, Price MN, Arkin AP. Evaluating E. coli genome-scale metabolic model accuracy with high-throughput mutant fitness data. Mol Syst Biol 2023; 19:e11566. [PMID: 37888487 DOI: 10.15252/msb.202311566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
The Escherichia coli genome-scale metabolic model (GEM) is an exemplar systems biology model for the simulation of cellular metabolism. Experimental validation of model predictions is essential to pinpoint uncertainty and ensure continued development of accurate models. Here, we quantified the accuracy of four subsequent E. coli GEMs using published mutant fitness data across thousands of genes and 25 different carbon sources. This evaluation demonstrated the utility of the area under a precision-recall curve relative to alternative accuracy metrics. An analysis of errors in the latest (iML1515) model identified several vitamins/cofactors that are likely available to mutants despite being absent from the experimental growth medium and highlighted isoenzyme gene-protein-reaction mapping as a key source of inaccurate predictions. A machine learning approach further identified metabolic fluxes through hydrogen ion exchange and specific central metabolism branch points as important determinants of model accuracy. This work outlines improved practices for the assessment of GEM accuracy with high-throughput mutant fitness data and highlights promising areas for future model refinement in E. coli and beyond.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Batu Akkas
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
18
|
Kost C, Patil KR, Friedman J, Garcia SL, Ralser M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat Microbiol 2023; 8:2244-2252. [PMID: 37996708 DOI: 10.1038/s41564-023-01511-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/11/2023] [Indexed: 11/25/2023]
Abstract
Microbial communities drive global biogeochemical cycles and shape the health of plants and animals-including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions-for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.
Collapse
Affiliation(s)
- Christian Kost
- Osnabrück University, Department of Ecology, School of Biology/Chemistry, Osnabrück, Germany.
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
19
|
Ramoneda J, Jensen TBN, Price MN, Casamayor EO, Fierer N. Taxonomic and environmental distribution of bacterial amino acid auxotrophies. Nat Commun 2023; 14:7608. [PMID: 37993466 PMCID: PMC10665431 DOI: 10.1038/s41467-023-43435-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Many microorganisms are auxotrophic-unable to synthesize the compounds they require for growth. With this work, we quantify the prevalence of amino acid auxotrophies across a broad diversity of bacteria and habitats. We predicted the amino acid biosynthetic capabilities of 26,277 unique bacterial genomes spanning 12 phyla using a metabolic pathway model validated with empirical data. Amino acid auxotrophy is widespread across bacterial phyla, but we conservatively estimate that the majority of taxa (78.4%) are able to synthesize all amino acids. Our estimates indicate that amino acid auxotrophies are more prevalent among obligate intracellular parasites and in free-living taxa with genomic attributes characteristic of 'streamlined' life history strategies. We predicted the amino acid biosynthetic capabilities of bacterial communities found in 12 unique habitats to investigate environmental associations with auxotrophy, using data compiled from 3813 samples spanning major aquatic, terrestrial, and engineered environments. Auxotrophic taxa were more abundant in host-associated environments (including the human oral cavity and gut) and in fermented food products, with auxotrophic taxa being relatively rare in soil and aquatic systems. Overall, this work contributes to a more complete understanding of amino acid auxotrophy across the bacterial tree of life and the ecological contexts in which auxotrophy can be a successful strategy.
Collapse
Affiliation(s)
- Josep Ramoneda
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
| | - Thomas B N Jensen
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emilio O Casamayor
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
20
|
Su Y, Wang J, Gao W, Wang R, Yang W, Zhang H, Huang L, Guo L. Dynamic metabolites: A bridge between plants and microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165612. [PMID: 37478935 DOI: 10.1016/j.scitotenv.2023.165612] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Plant metabolites have a great influence on soil microbiomes. Although few studies provided insights into plant-microbe interactions, we still know very little about how plants recruit their microbiome. Here, we discuss the dynamic progress that typical metabolites shape microbes by a variety of factors, such as physiographic factors, cultivar factors, phylogeny factors, and environmental stress. Several kinds of metabolites have been reviewed, including plant primary metabolites (PPMs), phytohormones, and plant secondary metabolites (PSMs). The microbes assembled by plant metabolites in return exert beneficial effects on plants, which have been widely applied in agriculture. What's more, we point out existing problems and future research directions, such as unclear mechanisms, few species, simple parts, and ignorance of absolute abundance. This review may inspire readers to study plant-metabolite-microbe interactions in the future.
Collapse
Affiliation(s)
- Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
21
|
Schlechter RO, Kear EJ, Bernach M, Remus DM, Remus-Emsermann MNP. Metabolic resource overlap impacts competition among phyllosphere bacteria. THE ISME JOURNAL 2023; 17:1445-1454. [PMID: 37355740 PMCID: PMC10432529 DOI: 10.1038/s41396-023-01459-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The phyllosphere is densely colonised by microbial communities, despite sparse and heterogeneously distributed resources. The limitation of resources is expected to drive bacterial competition resulting in exclusion or coexistence based on fitness differences and resource overlap between individual colonisers. We studied the impact of resource competition by determining the effects of different bacterial colonisers on the growth of the model epiphyte Pantoea eucalypti 299R (Pe299R). Resource overlap was predicted based on genome-scale metabolic modelling. By combining results of metabolic modelling and pairwise competitions in the Arabidopsis thaliana phyllosphere and in vitro, we found that ten resources sufficed to explain fitness of Pe299R. An effect of both resource overlap and phylogenetic relationships was found on competition outcomes in vitro as well as in the phyllosphere. However, effects of resource competition were much weaker in the phyllosphere when compared to in vitro experiments. When investigating growth dynamics and reproductive success at the single-cell resolution, resource overlap and phylogenetic relationships are only weakly correlated with epiphytic Pe299R reproductive success, indicating that the leaf's spatial heterogeneity mitigates resource competition. Although the correlation is weak, the presence of competitors led to the development of Pe299R subpopulations that experienced different life histories and cell divisions. In some in planta competitions, Pe299R benefitted from the presence of epiphytes despite high resource overlap to the competitor strain suggesting other factors having stronger effects than resource competition. This study provides fundamental insights into how bacterial communities are shaped in heterogeneous environments and a framework to predict competition outcomes.
Collapse
Affiliation(s)
- Rudolf O Schlechter
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8011, New Zealand.
- Bioprotection Research Core, University of Canterbury, Christchurch, 8011, New Zealand.
| | - Evan J Kear
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Michał Bernach
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8011, New Zealand
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, 8011, New Zealand
| | - Daniela M Remus
- Protein Science and Engineering, Callaghan Innovation, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Mitja N P Remus-Emsermann
- Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8011, New Zealand.
- Bioprotection Research Core, University of Canterbury, Christchurch, 8011, New Zealand.
| |
Collapse
|
22
|
Ryback B, Vorholt JA. Coenzyme biosynthesis in response to precursor availability reveals incorporation of β-alanine from pantothenate in prototrophic bacteria. J Biol Chem 2023; 299:104919. [PMID: 37315792 PMCID: PMC10393543 DOI: 10.1016/j.jbc.2023.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and β-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for β-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.
Collapse
|
23
|
Schäfer M, Pacheco AR, Künzler R, Bortfeld-Miller M, Field CM, Vayena E, Hatzimanikatis V, Vorholt JA. Metabolic interaction models recapitulate leaf microbiota ecology. Science 2023; 381:eadf5121. [PMID: 37410834 DOI: 10.1126/science.adf5121] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Resource allocation affects the structure of microbiomes, including those associated with living hosts. Understanding the degree to which this dependency determines interspecies interactions may advance efforts to control host-microbiome relationships. We combined synthetic community experiments with computational models to predict interaction outcomes between plant-associated bacteria. We mapped the metabolic capabilities of 224 leaf isolates from Arabidopsis thaliana by assessing the growth of each strain on 45 environmentally relevant carbon sources in vitro. We used these data to build curated genome-scale metabolic models for all strains, which we combined to simulate >17,500 interactions. The models recapitulated outcomes observed in planta with >89% accuracy, highlighting the role of carbon utilization and the contributions of niche partitioning and cross-feeding in the assembly of leaf microbiomes.
Collapse
Affiliation(s)
- Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Alan R Pacheco
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Rahel Künzler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
24
|
Pacheco AR, Vorholt JA. Resolving metabolic interaction mechanisms in plant microbiomes. Curr Opin Microbiol 2023; 74:102317. [PMID: 37062173 DOI: 10.1016/j.mib.2023.102317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
Metabolic interactions are fundamental to the assembly and functioning of microbiomes, including those of plants. However, disentangling the molecular basis of these interactions and their specific roles remains a major challenge. Here, we review recent applications of experimental and computational methods toward the elucidation of metabolic interactions in plant-associated microbiomes. We highlight studies that span various scales of taxonomic and environmental complexity, including those that test interaction outcomes in vitro and in planta by deconstructing microbial communities. We also discuss how the continued integration of multiple methods can further reveal the general ecological characteristics of plant microbiomes, as well as provide strategies for applications in areas such as improved plant protection, bioremediation, and sustainable agriculture.
Collapse
Affiliation(s)
- Alan R Pacheco
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
25
|
Machado D, Patil KR. Reply to: Erroneous predictions of auxotrophies by CarveMe. Nat Ecol Evol 2023; 7:196-197. [PMID: 36471121 DOI: 10.1038/s41559-022-01939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Machado
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kiran R Patil
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Yurimoto H, Sakai Y. Interaction between C1-microorganisms and plants: contribution to the global carbon cycle and microbial survival strategies in the phyllosphere. Biosci Biotechnol Biochem 2022; 87:1-6. [PMID: 36367545 DOI: 10.1093/bbb/zbac176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
C1-microorganisms that can utilize C1-compounds, such as methane and methanol, are ubiquitous in nature, and contribute to drive the global carbon cycle between two major greenhouse gases, CO2 and methane. Plants emit C1-compounds from their leaves and provide habitats for C1-microorganisms. Among C1-microorganisms, Methylobacterium spp., representative of methanol-utilizing methylotrophic bacteria, predominantly colonize the phyllosphere and are known to promote plant growth. This review summarizes the interactions between C1-mircroorganisms and plants that affect not only the fixation of C1-compounds produced by plants but also CO2 fixation by plants. We also describe our recent understanding of the survival strategy of C1-microorganisms in the phyllosphere and the application of Methylobacterium spp. to improve rice crop yield.
Collapse
Affiliation(s)
- Hiroya Yurimoto
- D ivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Yasuyoshi Sakai
- D ivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| |
Collapse
|