1
|
Neumann A, Sammallahti S, Cosin-Tomas M, Reese SE, Suderman M, Alemany S, Almqvist C, Andrusaityte S, Arshad SH, Bakermans-Kranenburg MJ, Beilin L, Breton C, Bustamante M, Czamara D, Dabelea D, Eng C, Eskenazi B, Fuemmeler BF, Gilliland FD, Grazuleviciene R, Håberg SE, Herberth G, Holland N, Hough A, Hu D, Huen K, Hüls A, Jarvelin MR, Jin J, Julvez J, Koletzko BV, Koppelman GH, Kull I, Lu X, Maitre L, Mason D, Melén E, Merid SK, Molloy PL, Mori TA, Mulder RH, Page CM, Richmond RC, Röder S, Ross JP, Schellhas L, Sebert S, Sheppard D, Snieder H, Starling AP, Stein DJ, Tindula G, van IJzendoorn MH, Vonk J, Walton E, Witonsky J, Xu CJ, Yang IV, Yousefi PD, Zar HJ, Zenclussen AC, Zhang H, Tiemeier H, London SJ, Felix JF, Cecil C. Epigenetic timing effects on child developmental outcomes: a longitudinal meta-regression of findings from the Pregnancy And Childhood Epigenetics Consortium. Genome Med 2025; 17:39. [PMID: 40229801 PMCID: PMC11995515 DOI: 10.1186/s13073-025-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND DNA methylation (DNAm) is a developmentally dynamic epigenetic process; yet, most epigenome-wide association studies (EWAS) have examined DNAm at only one timepoint or without systematic comparisons between timepoints. Thus, it is unclear whether DNAm alterations during certain developmental periods are more informative than others for health outcomes, how persistent epigenetic signals are across time, and whether epigenetic timing effects differ by outcome. METHODS We applied longitudinal meta-regression models to published meta-analyses from the PACE consortium that examined DNAm at two timepoints-prospectively at birth and cross-sectionally in childhood-in relation to the same child outcome (ADHD symptoms, general psychopathology, sleep duration, BMI, asthma). These models allowed systematic comparisons of effect sizes and statistical significance between timepoints. Furthermore, we tested correlations between DNAm regression coefficients to assess the consistency of epigenetic signals across time and outcomes. Finally, we performed robustness checks, estimated between-study heterogeneity, and tested pathway enrichment. RESULTS Our findings reveal three new insights: (i) across outcomes, DNAm effect sizes are consistently larger in childhood cross-sectional analyses compared to prospective analyses at birth; (ii) higher effect sizes do not necessarily translate into more significant findings, as associations also become noisier in childhood for most outcomes (showing larger standard errors in cross-sectional vs prospective analyses); and (iii) DNAm signals are highly time-specific, while also showing evidence of shared associations across health outcomes (ADHD symptoms, general psychopathology, and asthma). Notably, these observations could not be explained by sample size differences and only partly to differential study-heterogeneity. DNAm sites changing associations were enriched for neural pathways. CONCLUSIONS Our results highlight developmentally-specific associations between DNAm and child health outcomes, when assessing DNAm at birth vs childhood. This implies that EWAS results from one timepoint are unlikely to generalize to another. Longitudinal studies with repeated epigenetic assessments are direly needed to shed light on the dynamic relationship between DNAm, development and health, as well as to enable the creation of more reliable and generalizable epigenetic biomarkers. More broadly, this study underscores the importance of considering the time-varying nature of DNAm in epigenetic research and supports the potential existence of epigenetic "timing effects" on child health.
Collapse
Affiliation(s)
- Alexander Neumann
- Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Sara Sammallahti
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Sarah E Reese
- Clinical Research Practice, Westat, Rockville, MD, USA
| | - Matthew Suderman
- Bristol Medical School, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Syed H Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Lawrence Beilin
- Medical School, Royal Perth Hospital Unit, the University of Western Australia, Perth, Australia
| | - Carrie Breton
- Population and Public Health Sciences, Environmental Health, University of Southern California, Los Angeles, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Darina Czamara
- Department Genes and Environment, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Celeste Eng
- Department of Medicine, Pulmonary, Critical Care, Allergy and Sleep, University of California, San Francisco, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, USA
| | - Bernard F Fuemmeler
- Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, USA
| | - Frank D Gilliland
- Depatment of Population and Public Health Sciences, Keck Schools of Medicine, University of Southern California, Los Angeles, USA
| | | | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, Children'S Environmental Health Laboratory, University of California, Berkeley, USA
| | - Amy Hough
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Donglei Hu
- Department of Medicine, Division of General Internal Medicine, University of California, San Francisco, USA
| | - Karen Huen
- Division of Environmental Health Sciences, School of Public Health, Children'S Environmental Health Laboratory, University of California, Berkeley, USA
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Marjo-Riitta Jarvelin
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Jianping Jin
- Public Health Practice, WESTAT, Research Triangle Park, Raleigh, NC, USA
| | - Jordi Julvez
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Berthold V Koletzko
- Department of Paediatrics, Division of Metabolic and Nutritional Medicine, Hauner Children's Hospital, LMU - Ludwig Maximilians Universitaet Muenchen, Munich, Germany
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children'S Hospital and GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Xueling Lu
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Léa Maitre
- Environment and Health over the Lifecourse Program, Isglobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Dan Mason
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Erik Melén
- Department for Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Simon K Merid
- Department for Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, the University of Western Australia, Perth, Australia
| | - Rosa H Mulder
- Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christian M Page
- Department of Physical Health and Ageing, Division for Physical and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rebecca C Richmond
- Bristol Medical School, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jason P Ross
- Human Health, Health and Biosecurity, CSIRO, Canberra, Australia
| | - Laura Schellhas
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Sylvain Sebert
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Dean Sheppard
- Department of Medicine, Critical Care, Allergy and Sleep, University of California, PulmonarySan Francisco, San Francisco, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Gwen Tindula
- Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, USA
| | - Marinus H van IJzendoorn
- Research Department of Clinical, Education and Health Psychology, Faculty of Brain Sciences, UCL, London, UK
- Faculty of Medicine, Nursing and Health, Psychiatry Monash Health, Monash University, Melbourne, Australia
- Faculty of Psychology and Humanities, Universidad San Sebastián, Valdivia, Chile
| | - Judith Vonk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Jonathan Witonsky
- Department of Pediatrics, Allergy, Immunology and BMT, University of California, San Francisco, San Francisco, CA, USA
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (Ciim), Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hanover, Germany
- Helmholtz Centre for Infection Research (HZI), TWINCORE, Hannover Medical School (MHH), Hanover, Germany
| | - Ivana V Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paul D Yousefi
- Bristol Medical School, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Heather J Zar
- SAMRC Unit on Child Health, Dept of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hongmei Zhang
- Epidemiology, Biostatistics, School of Public Health, And Environmental Health, University of Memphis, Memphis, USA
| | - Henning Tiemeier
- Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Social and Behavioral Science, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Stephanie J London
- Immunity Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, USA
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Charlotte Cecil
- Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Wang Y, Zhao Y, Hu L, Zhang X. The Multidimensional Dynamic Feedback Model: A Comprehensive Framework for Understanding and Managing Attention-Deficit/Hyperactivity Disorder. CHILDREN (BASEL, SWITZERLAND) 2025; 12:303. [PMID: 40150585 PMCID: PMC11941234 DOI: 10.3390/children12030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by persistent inattention, hyperactivity, and impulsivity. These symptoms can significantly impact academic performance, social interactions, and daily activities, often creating cycles that worsen long-term challenges. This review introduces the Multidimensional Dynamic Feedback Model (MDFM), which aids in understanding ADHD's development and guiding intervention strategies. The model emphasizes the dynamic interactions among genetic, environmental, cognitive, and behavioral factors. The MDFM consists of three key aspects: (1) the interplay between genetic and environmental factors in shaping ADHD's biological basis, (2) the role of cognitive and neural processes in driving core symptoms, and (3) the influence of behavioral feedback loops that reinforce negative behaviors and hinder adaptation. The model highlights the importance of personalized interventions and effective feedback systems, including early prevention, supportive family and school environments, and the impact of social and cultural backgrounds on treatment outcomes. As a comprehensive framework, the MDFM offers a holistic perspective for clinicians, aiming to enhance long-term outcomes and promote the health and well-being of individuals with ADHD across the lifespan. By addressing implementation challenges, the model seeks to improve ADHD prevention and management, ultimately supporting individuals and their communities.
Collapse
Affiliation(s)
- Yuying Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Yuan Zhao
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Luming Hu
- Department of Psychology, School of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai 519085, China
| | - Xuemin Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Hsu YH, Wu CY, Lee HL, Hsieh RL, Huang YL, Shiue HS, Lin YC, Chen MC, Hsueh YM. Combined effects of global DNA methylation, blood lead and total urinary arsenic levels on developmental delay in preschool children. Environ Health 2025; 24:2. [PMID: 39819460 PMCID: PMC11740333 DOI: 10.1186/s12940-024-01151-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
DNA methylation is a critical step in brain development, 5-Methyl-2'-deoxycytidine (5mdC) is one of the global DNA methylation markers. Arsenic and lead exposures have been associated with neurotoxicity, which may be linked to epigenetic changes. Our research sought to investigate the correlation between 5mdC and developmental delay (DD) among preschoolers. Additionally, we assessed whether 5mdC modified the impacts of blood lead and total urinary arsenic levels on DD. We analyzed the concentrations of 5mdC, blood cadmium and lead, and total urinary arsenic in 174 children with DD and 88 healthy children. Global DNA methylation levels are expressed as the ratio 5mdC/2'-dexyguanosine (dG), called 5mdC (%). In our findings, elevated levels of blood lead and total urinary arsenic were significantly associated with DD risk among preschoolers. Furthermore, high 5mdC (%) was related with reduced risk of DD, with an odds ratio (OR) and 95% confidence interval (CI) of 0.14 (0.06 - 0.32). A notable multiplicative interaction was observed between low 5mdC (%) and elevated blood lead levels to increase OR of DD, with OR and 95% CI was 9.51 (4.18 - 21.64). The findings provide evidence of the combined effects of reduced 5mdC (%) and high blood lead concentrations, increasing the OR of DD.
Collapse
Affiliation(s)
- Yuu-Hueih Hsu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yin Wu
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Su Memorial Hospital, Shin Kong Wu Ho, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chieh Chen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Dall'Aglio L, Johanson SU, Mallard T, Lamballais S, Delaney S, Smoller JW, Muetzel RL, Tiemeier H. Psychiatric neuroimaging at a crossroads: Insights from psychiatric genetics. Dev Cogn Neurosci 2024; 70:101443. [PMID: 39500134 PMCID: PMC11570172 DOI: 10.1016/j.dcn.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024] Open
Abstract
Thanks to methodological advances, large-scale data collections, and longitudinal designs, psychiatric neuroimaging is better equipped than ever to identify the neurobiological underpinnings of youth mental health problems. However, the complexity of such endeavors has become increasingly evident, as the field has been confronted by limited clinical relevance, inconsistent results, and small effect sizes. Some of these challenges parallel those historically encountered by psychiatric genetics. In past genetic research, robust findings were historically undermined by oversimplified biological hypotheses, mistaken assumptions about expectable effect sizes, replication problems, confounding by population structure, and shared biological patterns across disorders. Overcoming these challenges has contributed to current successes in the field. Drawing parallels across psychiatric genetics and neuroimaging, we identify key shared challenges as well as pinpoint relevant insights that could be gained in psychiatric neuroimaging from the transition that occurred from the candidate gene to (post) genome-wide "eras" of psychiatric genetics. Finally, we discuss the prominent developmental component of psychiatric neuroimaging and how that might be informed by epidemiological and omics approaches. The evolution of psychiatric genetic research offers valuable insights that may expedite the resolution of key challenges in psychiatric neuroimaging, thus potentially moving our understanding of psychiatric pathophysiology forward.
Collapse
Affiliation(s)
- Lorenza Dall'Aglio
- Department of Child and Adolescent Psychology and Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Saúl Urbina Johanson
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Travis Mallard
- Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Scott Delaney
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Ryan L Muetzel
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Schuurmans IK, Dunn EC, Lussier AA. DNA methylation as a possible mechanism linking childhood adversity and health: results from a 2-sample mendelian randomization study. Am J Epidemiol 2024; 193:1541-1552. [PMID: 38754872 PMCID: PMC11538561 DOI: 10.1093/aje/kwae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood adversity is an important risk factor for adverse health across the life course. Epigenetic modifications, such as DNA methylation (DNAm), are a hypothesized mechanism linking adversity to disease susceptibility. Yet, few studies have determined whether adversity-related DNAm alterations are causally related to future health outcomes or if their developmental timing plays a role in these relationships. Here, we used 2-sample mendelian randomization to obtain stronger causal inferences about the association between adversity-associated DNAm loci across development (ie, birth, childhood, adolescence, and young adulthood) and 24 mental, physical, and behavioral health outcomes. We identified particularly strong associations between adversity-associated DNAm and attention-deficit/hyperactivity disorder, depression, obsessive-compulsive disorder, suicide attempts, asthma, coronary artery disease, and chronic kidney disease. More of these associations were identified for birth and childhood DNAm, whereas adolescent and young adulthood DNAm were more closely linked to mental health. Childhood DNAm loci also had primarily risk-suppressing relationships with health outcomes, suggesting that DNAm might reflect compensatory or buffering mechanisms against childhood adversity rather than acting solely as an indicator of disease risk. Together, our results suggest adversity-related DNAm alterations are linked to both physical and mental health outcomes, with particularly strong impacts of DNAm differences emerging earlier in development.
Collapse
Affiliation(s)
- Isabel K Schuurmans
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Erin C Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| | - Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| |
Collapse
|
6
|
Waldrop SW, Perng W, Konigsberg IR, Borengasser SJ. The potential utility of cord blood DNA methylation in pediatric clinical practice. Epigenomics 2024; 16:1365-1372. [PMID: 39530586 PMCID: PMC11622741 DOI: 10.1080/17501911.2024.2408217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Our understanding of the origins of noncommunicable diseases has evolved over the years with greater consideration given to the lasting influence exposures and experiences during the preconceptional and prenatal periods can have. Research highlights the associations of parental exposures (e.g., diet, obesity, gestational diabetes, lipid profile, toxic exposures and microbiome) with the infant/fetal methylome and suggest associations with infant, child and/or adolescent chronic health outcomes. Thus, epigenetics and specifically cord blood DNA methylation may have utility as biomarkers for disease risk identification and stratification in pediatrics. However, for cord blood DNA methylation analyses to be leveraged as biomarkers of disease risk in pediatric clinical practice, the results must be replicable, validated and clinically meaningful. Challenges and opportunities to this prospect are herein discussed.
Collapse
Affiliation(s)
- Stephanie W Waldrop
- Section on Nutrition, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO80045, USA
- Division of Clinical Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA70808, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Sarah J Borengasser
- Department of Pediatrics, TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| |
Collapse
|
7
|
Litt JS, Belfort MB, Everson TM, Haneuse S, Tiemeier H. Neonatal multimorbidity and the phenotype of premature aging in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03617-2. [PMID: 39455859 DOI: 10.1038/s41390-024-03617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Multimorbidity is the co-occurrence of multiple chronic health problems, associated with aging, frailty, and poor functioning. Children born preterm experience more multimorbid conditions in early life compared to term-born peers. Though neonatal multimorbidity is linked to poor health-related quality of life, functional outcomes, and peer group participation, gaps in our theoretical understanding and conceptualization remain. Drawing from life course epidemiology and the Developmental Origins of Heath and Disease models, we offer a framework that neonatal multimorbidity reflects maturational vulnerability posed by preterm birth. The impact of such vulnerability on health and development may be further amplified by adverse exposures and interventions within the environment of the neonatal intensive care unit. This can be exacerbated by disadvantaged home or community contexts after discharge. Uncovering the physiologic and social antecedents of multiple morbid conditions in the neonatal period and their biological underpinnings will allow for more accurate risk-prediction, counseling, and care planning for preterm infants and their families. According to this framework, the maturational vulnerability to multimorbidity imparted by preterm birth and its negative effects on health and development are not predetermined or static. Elucidating pathways of early biologic and physical aging will lead to improvements in care and outcomes. IMPACT: Multimorbidity is associated with significant frailty and dysfunction among older adults and is indicative of early physiologic aging. Preterm infants commonly experience multimorbidities in the newborn period, an underrecognized threat to long-term health and development. We offer a novel framework incorporating multimorbidity, early cellular aging, and life course health development to innovate risk-prediction, care-planning, and therapeutics.
Collapse
Affiliation(s)
- Jonathan S Litt
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, USA.
- Department of Pediatrics, Harvard Medical School, Boston, USA.
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA.
| | - Mandy Brown Belfort
- Department of Pediatrics, Harvard Medical School, Boston, USA
- Department of Pediatrics, Brigham and Women's Hospital, Boston, USA
| | - Todd M Everson
- Department of Environmental Health, Emory University, Atlanta, USA
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, USA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA
| |
Collapse
|
8
|
Abrishamcar S, Zhuang BC, Thomas M, Gladish N, MacIsaac JL, Jones MJ, Simons E, Moraes TJ, Mandhane PJ, Brook JR, Subbarao P, Turvey SE, Chen E, Miller GE, Kobor MS, Hüls A. Association between maternal perinatal stress and depression and infant DNA methylation in the first year of life. Transl Psychiatry 2024; 14:445. [PMID: 39438450 PMCID: PMC11496819 DOI: 10.1038/s41398-024-03148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with differences in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with differences in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the 20-item Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured longitudinally at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To quantify the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. These data further support the finding that differential DNAm may play a role in the relationship between maternal mental health and child health.
Collapse
Affiliation(s)
- Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Beryl C Zhuang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
| | - Mara Thomas
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, ON, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Padmaja Subbarao
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Edith Chen
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Gregory E Miller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Edwin S.H. Leong Centre for Healthy Aging, Vancouver, BC, Canada.
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Long H, Liu M, Rao Z, Guan S, Chen X, Huang X, Cao L, Han R. RNA-Seq-Based Transcriptome Analysis of Chinese Cordyceps Aqueous Extracts Protective Effect against Adriamycin-Induced mpc5 Cell Injury. Int J Mol Sci 2024; 25:10352. [PMID: 39408685 PMCID: PMC11476491 DOI: 10.3390/ijms251910352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a systematic transcriptomic analysis. The phytochemicals of WCCs were analyzed via the "phenol-sulfuric acid method", high-performance liquid chromatography (HPLC), and HPLC-mass spectrometry (MS). We analyzed the drug-reaction transcriptome profiles of mpc5 cell after treating them with WCCs. RNA-seq analysis revealed that WCCs alleviated ADM-induced mpc5 cell injury via restoring the expression of certain genes to normal level mainly in the one-carbon pool by the folate pathway, followed by the relaxin, apelin, PI3K-Akt, and nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway, enhancing DNA synthesis and repair, cell proliferation, fibrosis reduction, and immune regulation. Otherwise, WCCs also modulated the proliferation and survival of the mpc5 cell by regulating metabolic pathways, and partially restores the expression of genes related to human disease pathways. These findings provide an innovative understanding of the molecular mechanism of the protective effect of WCCs on ADM-induced mpc5 cell injury at the molecular transcription level, and Mthfd2, Dhfr, Atf4, Creb5, Apln, and Serpine1, etc., may be potential novel targets for treating nephrotic syndrome.
Collapse
Affiliation(s)
- Hailin Long
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Mengzhen Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Shanyue Guan
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Xiaoting Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| |
Collapse
|
10
|
Wang J, Zhu QW, Mai JH, Zhang S, Wang Y, Liang J, Zhou JY. A multi-omics study of brain tissue transcription and DNA methylation revealing the genetic pathogenesis of ADHD. Brief Bioinform 2024; 25:bbae502. [PMID: 39406522 PMCID: PMC11479714 DOI: 10.1093/bib/bbae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disease that often affects a patient's whole life. Research has found that genetics plays an important role in the development of ADHD. However, there is still a lack of knowledge about the tissue-specific causal effects of biological processes beyond gene expression, such as alternative splicing (AS) and DNA methylation (DNAm), on ADHD. In this paper, a multi-omics study was conducted to investigate the causal effects of the transcription and the DNAm on ADHD, by integrating ADHD genome-wide association data with quantitative trait loci data of gene expression, AS, and DNAm across 14 different brain tissues. The causal effects were estimated using four different two-sample Mendelian randomization methods. Finally, we also prioritized the expression of 866 genes showing significant causal effects, including COMMD5, ENSG00000271904, HYAL3, etc., within at least one brain tissue. We prioritized 966 unique genes that have statistically significant causal AS events, within at least one of the 14 different brain tissues. These genes include PPP1R16A, GGT7, TREM2, etc. Furthermore, through mediation analysis, 106 regulatory pathways were inferred where DNAm influences ADHD through gene expression or AS processes. Our research findings provide guidance for future experimental studies on the molecular mechanisms of ADHD development, and also put forward valuable knowledge for the prevention, diagnosis, and treatment of ADHD.
Collapse
Affiliation(s)
- Jingkai Wang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Wen Zhu
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hao Mai
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shun Zhang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuqing Wang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiatong Liang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ji-Yuan Zhou
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Diez-Ahijado L, Cilleros-Portet A, Fernández-Jimenez N, Fernández MF, Guxens M, Julvez J, Llop S, Lopez-Espinosa MJ, Subiza-Pérez M, Lozano M, Ibarluzea J, Sunyer J, Bustamante M, Cosin-Tomas M. Evaluating the association between placenta DNA methylation and cognitive functions in the offspring. Transl Psychiatry 2024; 14:383. [PMID: 39304652 DOI: 10.1038/s41398-024-03094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The placenta plays a crucial role in protecting the fetus from environmental harm and supports the development of its brain. In fact, compromised placental function could predispose an individual to neurodevelopmental disorders. Placental epigenetic modifications, including DNA methylation, could be considered a proxy of placental function and thus plausible mediators of the association between intrauterine environmental exposures and genetics, and childhood and adult mental health. Although neurodevelopmental disorders such as autism spectrum disorder have been investigated in relation to placenta DNA methylation, no studies have addressed the association between placenta DNA methylation and child's cognitive functions. Thus, our goal here was to investigate whether the placental DNA methylation profile measured using the Illumina EPIC array is associated with three different cognitive domains (namely verbal score, perceptive performance score, and general cognitive score) assessed by the McCarthy Scales of Children's functions in childhood at age 4. To this end, we conducted epigenome-wide association analyses, including data from 255 mother-child pairs within the INMA project, and performed a follow-up functional analysis to help the interpretation of the findings. After multiple-testing correction, we found that methylation at 4 CpGs (cg1548200, cg02986379, cg00866476, and cg14113931) was significantly associated with the general cognitive score, and 2 distinct differentially methylated regions (DMRs) (including 27 CpGs) were significantly associated with each cognitive dimension. Interestingly, the genes annotated to these CpGs, such as DAB2, CEP76, PSMG2, or MECOM, are involved in placenta, fetal, and brain development. Moreover, functional enrichment analyses of suggestive CpGs (p < 1 × 10-4) revealed gene sets involved in placenta development, fetus formation, and brain growth. These findings suggest that placental DNA methylation could be a mechanism contributing to the alteration of important pathways in the placenta that have a consequence on the offspring's brain development and cognitive function.
Collapse
Affiliation(s)
- Laia Diez-Ahijado
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- University of Granada, Biomedical Research Centre, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Monica Guxens
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jordi Julvez
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Clinical and Epidemiological Neuroscience, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sabrina Llop
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Mikel Subiza-Pérez
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018, Donostia-San Sebastián, Spain
- Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, UK
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jesus Ibarluzea
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
12
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Camerota M, Lester BM, McGowan EC, Carter BS, Check J, Dansereau LM, DellaGrotta SA, Helderman JB, Hofheimer JA, Loncar CM, Neal CR, O’Shea TM, Pastyrnak SL, Smith LM, Abrishamcar S, Hüls A, Marsit CJ, Everson TM. Contributions of prenatal risk factors and neonatal epigenetics to cognitive outcome in children born very preterm. Dev Psychol 2024; 60:1606-1619. [PMID: 38358663 PMCID: PMC11618652 DOI: 10.1037/dev0001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Children born less than 30 weeks gestational age (GA) are at high risk for neurodevelopmental delay compared to term peers. Prenatal risk factors and neonatal epigenetics could help identify preterm children at highest risk for poor cognitive outcomes. We aimed to understand the associations among cumulative prenatal risk, neonatal DNA methylation, and child cognitive ability at age 3 years, including whether DNA methylation mediates the association between prenatal risk and cognitive ability. We studied 379 neonates (54% male) born less than 30 weeks GA who had DNA methylation measured at neonatal intensive care unit discharge along with 3-year follow-up data. Cumulative prenatal risk was calculated from 24 risk factors obtained from maternal report and medical record and epigenome-wide neonatal DNA methylation was assayed from buccal swabs. At 3-year follow-up, child cognitive ability was assessed using the Bayley Scales of Infant and Toddler Development (third edition). Cumulative prenatal risk and DNA methylation at two cytosine-phosphate-guanines (CpGs) were uniquely associated with child cognitive ability. Using high-dimensional mediation analysis, we also identified differential methylation of 309 CpGs that mediated the association between cumulative prenatal risk and child cognitive ability. Many of the associated CpGs were located in genes (TNS3, TRAPPC4, MAD1L1, APBB2, DIP2C, TRAPPC9, DRD2) that have previously been associated with prenatal exposures and/or neurodevelopmental phenotypes. Our findings suggest a role for both prenatal risk factors and DNA methylation in explaining outcomes for children born preterm and suggest we should further study DNA methylation as a potential mechanism underlying the association between prenatal risk and child neurodevelopment. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Barry M. Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Elisabeth C. McGowan
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Brian S. Carter
- Department of Pediatrics-Neonatology, Children’s Mercy Hospital, Kansas City, MO
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lynne M. Dansereau
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Sheri A. DellaGrotta
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | | | - Julie A. Hofheimer
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Cynthia M. Loncar
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Charles R. Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Steven L. Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen DeVos Hospital, Grand Rapids, MI
| | - Lynne M. Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Sarina Abrishamcar
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Anke Hüls
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA
| | - Carmen J. Marsit
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA
| | - Todd M. Everson
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA
| |
Collapse
|
14
|
Salontaji K, Haftorn KL, Sanders F, Page CM, Walton E, Felix JF, Bekkhus M, Bohlin J, Tiemeier H, Cecil CAM. Gestational epigenetic age and ADHD symptoms in childhood: a prospective, multi-cohort study. Mol Psychiatry 2024; 29:2911-2918. [PMID: 38561466 PMCID: PMC7616513 DOI: 10.1038/s41380-024-02544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Epigenetic age acceleration (EAA), defined as the difference between chronological age and epigenetically predicted age, was calculated from multiple gestational epigenetic clocks (Bohlin, EPIC overlap, and Knight) using DNA methylation levels from cord blood in three large population-based birth cohorts: the Generation R Study (The Netherlands), the Avon Longitudinal Study of Parents and Children (United Kingdom), and the Norwegian Mother, Father and Child Cohort Study (Norway). We hypothesized that a lower EAA associates prospectively with increased ADHD symptoms. We tested our hypotheses in these three cohorts and meta-analyzed the results (n = 3383). We replicated previous research on the association between gestational age (GA) and ADHD. Both clinically measured gestational age as well as epigenetic age measures at birth were negatively associated with ADHD symptoms at ages 5-7 years (clinical GA: β = -0.04, p < 0.001, Bohlin: β = -0.05, p = 0.01; EPIC overlap: β = -0.05, p = 0.01; Knight: β = -0.01, p = 0.26). Raw EAA (difference between clinical and epigenetically estimated gestational age) was positively associated with ADHD in our main model, whereas residual EAA (raw EAA corrected for clinical gestational age) was not associated with ADHD symptoms across cohorts. Overall, findings support a link between lower gestational age (either measured clinically or using epigenetic-derived estimates) and ADHD symptoms. Epigenetic age acceleration does not, however, add unique information about ADHD risk independent of clinically estimated gestational age at birth.
Collapse
Affiliation(s)
- Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Faye Sanders
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mona Bekkhus
- Promenta research centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department for methods development and analysis, section for modeling and bioinformatics, Division for infectious diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Medicine, Boston, MA, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Hwang S, Jung J, Moon H, Ko DS, Kim HW, Yoon JP, Kim WK, Seol A, Kim K, Kim YH. The impact of assisted reproductive technologies on ADHD: A systematic review and meta-analysis. Asian J Psychiatr 2024; 99:104125. [PMID: 38972143 DOI: 10.1016/j.ajp.2024.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND The escalating utilization of assisted reproductive technology (ART) in response to global infertility rates has spurred research into its complications. Short-term and long-term outcomes have been extensively studied, particularly the neurological concerns surrounding attention-deficit/hyperactivity disorder (ADHD) among ART-conceived children. This study aims investigate the association between ART and ADHD. METHODS Medline, Embase, Scopus, and Web of Science databases were searched through April 4, 2023. Cohort, case-control, and cross-sectional studies were eligible for inclusion. primary summary measures included the unadjusted relative risk (RR) and adjusted hazard ratio (HR) with 95 % confidence intervals. Both fixed-effects and random-effects models were utilized for meta-analysis data pooling to determine the overall effect size. The onset of ADHD in children conceived through ART compared to those conceived naturally. RESULTS The systematic search yielded 8 studies with 10,176,148 individuals included in the meta-analysis. The meta-analysis revealed a pooled RR of 0.93 (0.68-1.26) for cohort studies and a pooled RR of 0.97 (0.41-2.29) for cross-sectional studies, along with a pooled HR of 1.08 (1.03-1.13) for ADHD in the ART group compared to the non-ART group. CONCLUSION While this study identifies some potential association between ART and ADHD, the limited effect size and inherent heterogeneity underscore the need for cautious interpretation.
Collapse
Affiliation(s)
- Seongbeen Hwang
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jinyoung Jung
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyunoh Moon
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dai Sik Ko
- Division of Vascular Surgery, Department of General Surgery, Gachon University College of Medicine, Gil Medical Center, Incheon 21556, Republic of Korea
| | - Hyun-Woo Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Jung-Pil Yoon
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, 50612, Republic of Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Division of Natural Products Applied Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Korea University Anam Hospital, 02841, Republic of Korea.
| | - Kihun Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
16
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
17
|
Schuurmans IK, Mulder RH, Baltramonaityte V, Lahtinen A, Qiuyu F, Rothmann LM, Staginnus M, Tuulari J, Burt SA, Buss C, Craig JM, Donald KA, Felix JF, Freeman TP, Grassi-Oliveira R, Huels A, Hyde LW, Jones SA, Karlsson H, Karlsson L, Koen N, Lawn W, Mitchell C, Monk CS, Mooney MA, Muetzel R, Nigg JT, Belangero SIN, Notterman D, O'Connor T, O'Donnell KJ, Pan PM, Paunio T, Ryabinin P, Saffery R, Salum GA, Seal M, Silk TJ, Stein DJ, Zar H, Walton E, Cecil CAM. Consortium Profile: The Methylation, Imaging and NeuroDevelopment (MIND) Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.23.24309353. [PMID: 38978656 PMCID: PMC11230303 DOI: 10.1101/2024.06.23.24309353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults. To bridge this gap, we established the Methylation, Imaging and NeuroDevelopment (MIND) Consortium, which aims to bring a developmental focus to the emerging field of Neuroimaging Epigenetics by (i) promoting collaborative, adequately powered developmental research via multi-cohort analyses; (ii) increasing scientific rigor through the establishment of shared pipelines and open science practices; and (iii) advancing our understanding of DNA methylation-brain dynamics at different developmental periods (from birth to emerging adulthood), by leveraging data from prospective, longitudinal pediatric studies. MIND currently integrates 15 cohorts worldwide, comprising (repeated) measures of DNA methylation in peripheral tissues (blood, buccal cells, and saliva) and neuroimaging by magnetic resonance imaging across up to five time points over a period of up to 21 years (Npooled DNAm = 11,299; Npooled neuroimaging = 10,133; Npooled combined = 4,914). By triangulating associations across multiple developmental time points and study types, we hope to generate new insights into the dynamic relationships between peripheral DNA methylation and the brain, and how these ultimately relate to neurodevelopmental and psychiatric phenotypes.
Collapse
|
18
|
Shastri GG, Sudre G, Ahn K, Jung B, Kolachana B, Auluck PK, Elnitski L, Marenco S, Shaw P. Cortico-striatal differences in the epigenome in attention-deficit/ hyperactivity disorder. Transl Psychiatry 2024; 14:189. [PMID: 38605038 PMCID: PMC11009227 DOI: 10.1038/s41398-024-02896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
While epigenetic modifications have been implicated in ADHD through studies of peripheral tissue, to date there has been no examination of the epigenome of the brain in the disorder. To address this gap, we mapped the methylome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from fifty-eight individuals with or without ADHD. While no single probe showed adjusted significance in differential methylation, several differentially methylated regions emerged. These regions implicated genes involved in developmental processes including neurogenesis and the differentiation of oligodendrocytes and glial cells. We demonstrate a significant association between differentially methylated genes in the caudate and genes implicated by GWAS not only in ADHD but also in autistic spectrum, obsessive compulsive and bipolar affective disorders through GWAS. Using transcriptomic data available on the same subjects, we found modest correlations between the methylation and expression of genes. In conclusion, this study of the cortico-striatal methylome points to gene and gene pathways involved in neurodevelopment, consistent with studies of common and rare genetic variation, as well as the post-mortem transcriptome in ADHD.
Collapse
Affiliation(s)
- Gauri G Shastri
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Gustavo Sudre
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Kwangmi Ahn
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Benjamin Jung
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Camerini L, Zurchimitten G, Bock B, Xavier J, Bastos CR, Martins E, Ardais AP, Dos Santos Motta JV, Pires AJ, de Matos MB, de Ávila Quevedo L, Pinheiro RT, Ghisleni G. Genetic Variations in Elements of the Oxytocinergic Pathway are Associated with Attention/Hyperactivity Problems and Anxiety Problems in Childhood. Child Psychiatry Hum Dev 2024; 55:552-563. [PMID: 36087156 DOI: 10.1007/s10578-022-01419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Genetic alterations related to oxytocin system seem to influence the neurobiology of attention-deficit hyperactivity disorder and anxiety problems leading to greater functional, social and emotional impairment. Here, we analyzed the association of OXTR rs2254298 and CD38 rs6449182 variants with attention/hyperactivity problems and anxiety problems in children. The study enrolled 292 children and adjusted regression model revealed OXTR rs2254298 AA genotype as a risk factor for attention deficit/hyperactivity problems (PR: 2.37; PadjFDR = 0.006), attention problems (PR: 2.71; PadjFDR = 0.003) and anxiety problems (PR: 1.92; PadjFDR = 0.018). CD38 rs6449182 G allele showed as a risk factor for attention deficit/hyperactivity problems (PR: 1.56; PadjFDR = 0.028). Moreover, in silico approach for regulatory roles found markers that influence chromatin accessibility and transcription capacity. Together, these data provide genetic information of oxytocin in developmental and behavioral disorders opening a range of opportunities for future studies that clarify their neurobiology in childhood.
Collapse
Affiliation(s)
- Laísa Camerini
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriel Zurchimitten
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bertha Bock
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Janaína Xavier
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Clarissa Ribeiro Bastos
- Department of Neurosciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Evânia Martins
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Paula Ardais
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Andressa Jacondino Pires
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana Bonati de Matos
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana de Ávila Quevedo
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Tavares Pinheiro
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Post-Graduation Program of Health and Behavior, Laboratory of Clinical Neuroscience, Catholic University of Pelotas - UCPel, Center of Health Science, Rua Gonçalves Chaves 373, sala 324, CEP 96010-280, Pelotas, RS, Brasil.
| |
Collapse
|
20
|
Abrishamcar S, Zhuang B, Thomas M, Gladish N, MacIsaac J, Jones M, Simons E, Moraes T, Mandhane P, Brook J, Subbarao P, Turvey S, Chen E, Miller G, Kobor M, Huels A. Association between Maternal Perinatal Stress and Depression on Infant DNA Methylation in the First Year of Life. RESEARCH SQUARE 2024:rs.3.rs-3962429. [PMID: 38562779 PMCID: PMC10984027 DOI: 10.21203/rs.3.rs-3962429/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with changes in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with changes in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To investigate the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. This suggested that differential DNAm may play a role in the relationship between maternal mental health and child health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anke Huels
- Rollins School of Public Health, Emory University
| |
Collapse
|
21
|
Zheng Z, Xu J, Chen J, Jiang B, Ma H, Li L, Li Y, Dai Y, Wang B. Integrated DNA methylation analysis reveals a potential role for PTPRN2 in Marfan syndrome scoliosis. JOR Spine 2024; 7:e1304. [PMID: 38304329 PMCID: PMC10831201 DOI: 10.1002/jsp2.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 02/03/2024] Open
Abstract
Background Marfan syndrome (MFS) is a rare genetic disorder caused by mutations in the Fibrillin-1 gene (FBN1) with significant clinical features in the skeletal, cardiopulmonary, and ocular systems. To gain deeper insights into the contribution of epigenetics in the variability of phenotypes observed in MFS, we undertook the first analysis of integrating DNA methylation and gene expression profiles in whole blood from MFS and healthy controls (HCs). Methods The Illumina 850K (EPIC) DNA methylation array was used to detect DNA methylation changes on peripheral blood samples of seven patients with MFS and five HCs. Associations between methylation levels and clinical features of MFS were analyzed. Subsequently, we conducted an integrated analysis of the outcomes of the transcriptome data to analyze the correlation between differentially methylated positions (DMPs) and differentially expressed genes (DEGs) and explore the potential role of methylation-regulated DEGs (MeDEGs) in MFS scoliosis. The weighted gene co-expression network analysis was used to find gene modules with the highest correlation coefficient with target MeDEGs to annotate their functions in MFS. Results Our study identified 1253 DMPs annotated to 236 genes that were primarily associated with scoliosis, cardiomyopathy, and vital capacity. These conditions are typically associated with reduced lifespan in untreated MFS. We calculated correlations between DMPs and clinical features, such as cobb angle to evaluate scoliosis and FEV1% to assess pulmonary function. Notably, cg20223687 (PTPRN2) exhibited a positive correlation with cobb angle of scoliosis, potentially playing a role in ERKs inactivation. Conclusions Taken together, our systems-level approach sheds light on the contribution of epigenetics to MFS and offers a plausible explanation for the complex phenotypes that are linked to reduced lifespan in untreated MFS patients.
Collapse
Affiliation(s)
- Zhen‐zhong Zheng
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Jing‐hong Xu
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Jia‐lin Chen
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Ya‐wei Li
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Yu‐liang Dai
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| |
Collapse
|
22
|
Hubers N, Hagenbeek FA, Pool R, Déjean S, Harms AC, Roetman PJ, van Beijsterveldt CEM, Fanos V, Ehli EA, Vermeiren RRJM, Bartels M, Hottenga JJ, Hankemeier T, van Dongen J, Boomsma DI. Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32955. [PMID: 37534875 DOI: 10.1002/ajmg.b.32955] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Peter J Roetman
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Robert R J M Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Youz, Parnassia Group, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Camerota M, Lester BM, Castellanos FX, Carter BS, Check J, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, O'Shea TM, Marsit CJ, Everson TM. Epigenome-wide association study identifies neonatal DNA methylation associated with two-year attention problems in children born very preterm. Transl Psychiatry 2024; 14:126. [PMID: 38418845 PMCID: PMC10902402 DOI: 10.1038/s41398-024-02841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Prior research has identified epigenetic predictors of attention problems in school-aged children but has not yet investigated these in young children, or children at elevated risk of attention problems due to preterm birth. The current study evaluated epigenome-wide associations between neonatal DNA methylation and attention problems at age 2 years in children born very preterm. Participants included 441 children from the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study, a multi-site study of infants born < 30 weeks gestational age. DNA methylation was measured from buccal swabs collected at NICU discharge using the Illumina MethylationEPIC Bead Array. Attention problems were assessed at 2 years of adjusted age using the attention problems subscale of the Child Behavior Checklist (CBCL). After adjustment for multiple testing, DNA methylation at 33 CpG sites was associated with child attention problems. Differentially methylated CpG sites were located in genes previously linked to physical and mental health, including several genes associated with ADHD in prior epigenome-wide and genome-wide association studies. Several CpG sites were located in genes previously linked to exposure to prenatal risk factors in the NOVI sample. Neonatal epigenetics measured at NICU discharge could be useful in identifying preterm children at risk for long-term attention problems and related psychiatric disorders, who could benefit from early prevention and intervention efforts.
Collapse
Affiliation(s)
- Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
- Brown Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA.
| | - Barry M Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen DeVos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Custodio RJP, Hengstler JG, Cheong JH, Kim HJ, Wascher E, Getzmann S. Adult ADHD: it is old and new at the same time - what is it? Rev Neurosci 2024; 35:225-241. [PMID: 37813870 DOI: 10.1515/revneuro-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Even though the number of studies aiming to improve comprehension of ADHD pathology has increased in recent years, there still is an urgent need for more effective studies, particularly in understanding adult ADHD, both at preclinical and clinical levels, due to the increasing evidence that adult ADHD is highly distinct and a different entity from childhood ADHD. This review paper outlines the symptoms, diagnostics, and neurobiological mechanisms of ADHD, with emphasis on how adult ADHD could be different from childhood-onset. Data show a difference in the environmental, genetic, epigenetic, and brain structural changes, when combined, could greatly impact the behavioral presentations and the severity of ADHD in adults. Furthermore, a crucial aspect in the quest to fully understand this disorder could be through longitudinal analysis. In this way, we will determine if and how the pathology and pharmacology of ADHD change with age. This goal could revolutionize our understanding of the disorder and address the weaknesses in the current clinical classification systems, improving the characterization and validity of ADHD diagnosis, specifically those in adults.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jan G Hengstler
- Systems Toxicology, Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, South Korea
| | - Edmund Wascher
- Experimental Ergonomics, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Stephan Getzmann
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| |
Collapse
|
25
|
Huang M, Wang J, Liu W, Zhou H. Advances in the role of the GADD45 family in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Front Neurosci 2024; 18:1349409. [PMID: 38332860 PMCID: PMC10850240 DOI: 10.3389/fnins.2024.1349409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The growth arrest and DNA damage inducible protein 45 (GADD45) family comprises stress-induced nuclear proteins that interact with DNA demethylases to facilitate DNA demethylation, thereby regulating diverse cellular processes including oxidative stress, DNA damage repair, apoptosis, proliferation, differentiation, inflammation, and neuroplasticity by modulating the expression patterns of specific genes. Widely expressed in the central nervous system, the GADD45 family plays a pivotal role in various neurological disorders, rendering it a potential therapeutic target for central nervous system diseases. This review presented a comprehensive overview of the expression patterns and potential mechanisms of action associated with each member of GADD45 family (GADD45α, GADD45β, and GADD45γ) in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders, while also explored strategies to harness these mechanisms for intervention and treatment. Future research should prioritize the development of effective modulators targeting the GADD45 family for clinical trials aimed at treating central nervous system diseases.
Collapse
Affiliation(s)
| | | | | | - Hongyan Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
26
|
Bhuvaneshwar K, Gusev Y. Translational bioinformatics and data science for biomarker discovery in mental health: an analytical review. Brief Bioinform 2024; 25:bbae098. [PMID: 38493340 PMCID: PMC10944574 DOI: 10.1093/bib/bbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| |
Collapse
|
27
|
Luo M, Walton E, Neumann A, Thio CHL, Felix JF, van IJzendoorn MH, Pappa I, Cecil CAM. DNA methylation at birth and lateral ventricular volume in childhood: a neuroimaging epigenetics study. J Child Psychol Psychiatry 2024; 65:77-90. [PMID: 37469193 PMCID: PMC10953396 DOI: 10.1111/jcpp.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Lateral ventricular volume (LVV) enlargement has been repeatedly linked to schizophrenia; yet, what biological factors shape LVV during early development remain unclear. DNA methylation (DNAm), an essential process for neurodevelopment that is altered in schizophrenia, is a key molecular system of interest. METHODS In this study, we conducted the first epigenome-wide association study of neonatal DNAm in cord blood with LVV in childhood (measured using T1-weighted brain scans at 10 years), based on data from a large population-based birth cohort, the Generation R Study (N = 840). Employing both probe-level and methylation profile score (MPS) approaches, we further examined whether epigenetic modifications identified at birth in cord blood are: (a) also observed cross-sectionally in childhood using peripheral blood DNAm at age of 10 years (Generation R, N = 370) and (b) prospectively associated with LVV measured in young adulthood in an all-male sample from the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 114). RESULTS At birth, DNAm levels at four CpGs (annotated to potassium channel tetramerization domain containing 3, KCTD3; SHH signaling and ciliogenesis regulator, SDCCAG8; glutaredoxin, GLRX) prospectively associated with childhood LVV after genome-wide correction; these genes have been implicated in brain development and psychiatric traits including schizophrenia. An MPS capturing a broader epigenetic profile of LVV - but not individual top hits - showed significant cross-sectional associations with LVV in childhood in Generation R and prospectively associated with LVV in early adulthood within ALSPAC. CONCLUSIONS This study finds suggestive evidence that DNAm at birth prospectively associates with LVV at different life stages, albeit with small effect sizes. The prediction of MPS on LVV in a childhood sample and an independent male adult sample further underscores the stability and reproducibility of DNAm as a potential marker for LVV. Future studies with larger samples and comparable time points across development are needed to further elucidate how DNAm associates with this clinically relevant brain structure and risk for neuropsychiatric disorders, and what factors explain the identified DNAm profile of LVV at birth.
Collapse
Affiliation(s)
- Mannan Luo
- Department of Psychology, Education and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Chris H. L. Thio
- Department of EpidemiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Janine F. Felix
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Marinus H. van IJzendoorn
- Department of Psychology, Education and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
- Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, UCLUniversity of LondonLondonUK
| | - Irene Pappa
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Clinical Child and Family StudiesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Epidemiology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
28
|
Serdarevic F, Luo M, Karabegović I, Binter AC, Alemany S, Mutzel R, Guxens M, Bustamante M, Hajdarpasic A, White T, Felix JF, Cecil CAM, Tiemeier H. DNA methylation at birth and fine motor ability in childhood: an epigenome-wide association study with replication. Epigenetics 2023; 18:2207253. [PMID: 37139702 PMCID: PMC10161945 DOI: 10.1080/15592294.2023.2207253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Lower fine motor performance in childhood has been associated with poorer cognitive development and neurodevelopmental conditions such as autism spectrum disorder, yet, biological underpinnings remain unclear. DNA methylation (DNAm), an essential process for healthy neurodevelopment, is a key molecular system of interest. In this study, we conducted the first epigenome-wide association study of neonatal DNAm with childhood fine motor ability and further examined the replicability of epigenetic markers in an independent cohort. The discovery study was embedded in Generation R, a large population-based prospective cohort, including a subsample of 924 ~ 1026 European-ancestry singletons with available data on DNAm in cord blood and fine motor ability at a mean (SD) age of 9.8 (0.4) years. Fine motor ability was measured using a finger-tapping test (3 subtests including left-, right-hand and bimanual), one of the most frequently used neuropsychological instruments of fine motor function. The replication study comprised 326 children with a mean (SD) age of 6.8 (0.4) years from an independent cohort, the INfancia Medio Ambiente (INMA) study. Four CpG sites at birth were prospectively associated with childhood fine motor ability after genome-wide correction. Of these, one CpG (cg07783800 in GNG4) was replicated in INMA, showing that lower levels of methylation at this site were associated with lower fine motor performance in both cohorts. GNG4 is highly expressed in the brain and has been implicated in cognitive decline. Our findings support a prospective, reproducible association between DNAm at birth and fine motor ability in childhood, pointing to GNG4 methylation at birth as a potential biomarker of fine motor ability.
Collapse
Affiliation(s)
- Fadila Serdarevic
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Irma Karabegović
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anne-Claire Binter
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Alemany
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ryan Mutzel
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Monica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Hajdarpasic
- Department of Medical Biology, and Genetics, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
29
|
Sehovic E, Zellers SM, Youssef MK, Heikkinen A, Kaprio J, Ollikainen M. DNA methylation sites in early adulthood characterised by pubertal timing and development: a twin study. Clin Epigenetics 2023; 15:181. [PMID: 37950287 PMCID: PMC10638786 DOI: 10.1186/s13148-023-01594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Puberty is a highly heritable and variable trait, with environmental factors having a role in its eventual timing and development. Early and late pubertal onset are both associated with various diseases developing later in life, and epigenetic characterisation of pubertal timing and development could lead to important insights. Blood DNA methylation, reacting to both genotype and environment, has been associated with puberty; however, such studies are relatively scarce. We investigated peripheral blood DNA methylation profiles (using Illumina 450 K and EPIC platforms) of 1539 young adult Finnish twins associated with pubertal development scale (PDS) at ages 12 and 14 as well as pubertal age (PA). RESULTS Fixed effect meta-analysis of the two platforms on 347,521 CpGs in common identified 58 CpG sites associated (p < 1 × 10-5) with either PDS or PA. All four CpGs associated with PA and 45 CpGs associated with PDS were sex-specific. Thirteen CpGs had a high heritability (h2: 0.51-0.98), while one CpG site (mapped to GET4) had a high shared environmental component accounting for 68% of the overall variance in methylation at the site. Utilising twin discordance analysis, we found 6 CpG sites (5 associated with PDS and 1 with PA) that had an environmentally driven association with puberty. Furthermore, genes with PDS- or PA-associated CpGs were consistently linked to various developmental processes and diseases such as breast, prostate and ovarian cancer, while methylation quantitative trait loci of associated CpG sites were enriched in immune pathways developing during puberty. CONCLUSIONS By identifying puberty-associated DNA methylation sites and examining the effects of sex, environment and genetics, we shed light on the intricate interplay between environment and genetics in the context of puberty. Through our comprehensive analysis, we not only deepen the understanding of the significance of both genetic and environmental factors in the complex processes of puberty and its timing, but also gain insights into potential links with disease risks.
Collapse
Affiliation(s)
- Emir Sehovic
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Stephanie M Zellers
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Markus K Youssef
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, 1015, Lausanne, Switzerland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
30
|
Ehlinger JV, Goodrich JM, Dolinoy DC, Watkins DJ, Cantoral A, Mercado-García A, Téllez-Rojo MM, Peterson KE. Associations between blood leukocyte DNA methylation and sustained attention in mid-to-late childhood. Epigenomics 2023; 15:965-981. [PMID: 37942546 PMCID: PMC10718163 DOI: 10.2217/epi-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Aims: To identify associations between DNA methylation (DNAm) across the epigenome and symptoms related to attention-deficit/hyperactivity disorder in a population of Hispanic children. Materials & methods: Among 517 participants in the ELEMENT study aged 9-18 years, we conducted an epigenome-wide association study examining associations between blood leukocyte DNAm and performance on the Conners' continuous performance test (CPT3). Results: DNAm at loci in or near ZNF814, ELF4 and OR6K6 and functional enrichment for gene pathways pertaining to ferroptosis, inflammation, immune response and neurotransmission were significantly related to CPT3 scores. Conclusion: DNAm was associated with CPT3 performance. Further analysis is warranted to understand how these genes and enriched pathways contribute to attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jessa V Ehlinger
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Chaumette B, Grizenko N, Fageera W, Fortier MÈ, Ter-Stepanian M, Labbe A, Joober R. Correlation of the methylomic signature of smoking during pregnancy with clinical traits in ADHD. J Psychiatry Neurosci 2023; 48:E390-E399. [PMID: 37857414 PMCID: PMC10599658 DOI: 10.1503/jpn.230062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent childhood disorder. Maternal smoking during pregnancy is a replicated environmental risk factor for this disorder. It is also a robust modifier of gene methylation during the prenatal developmental period. In this study, we sought to identify loci differentially methylated by maternal smoking during pregnancy and relate their methylation levels to various behavioural and physical outcomes relevant to ADHD. METHODS We extracted DNA from blood samples from children diagnosed with ADHD and deeply phenotyped. Genome-wide DNA methylation was assessed using Infinium MethylationEPIC BeadChip. Maternal smoking during pregnancy was self-declared and assessed retrospectively. RESULTS Our sample included 231 children with ADHD. Statistically significant differences in DNA methylation between children exposed or not to maternal smoking during pregnancy were detected in 3457 CpGs. We kept 30 CpGs with at least 5% of methylation difference between the 2 groups for further analysis. Six genes were associated with varied phenotypes of clinical relevance to ADHD. The levels of DNA methylation in RUNX1 were positively correlated with the CBCL scores, and DNA methylation in MYO1G correlated positively with the score at the Conners rating scale. Methylation level in a CpG located in GFI1 correlated with birthweight, a risk factor for ADHD. Differentially methylated regions were also identified and confirmed the association of RUNX1 methylation levels with the CBCL score. LIMITATIONS The study has several limitations, including the retrospective recall with self-report of maternal smoking during pregnancy as well as the grouping of individuals of varying age and developmental stage and of both males and females. In addition, the correlation design prevents the building of causation models. CONCLUSION This study provides evidence for the association between the level of methylation at specific loci and quantitative dimensions highly relevant for ADHD as well as birth weight, a measure that has already been associated with increased risk for ADHD. Our results provide further support to public health educational initiatives to stop maternal smoking during pregnancy.
Collapse
Affiliation(s)
- Boris Chaumette
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Natalie Grizenko
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Weam Fageera
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Marie-Ève Fortier
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Marina Ter-Stepanian
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Aurelie Labbe
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Ridha Joober
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| |
Collapse
|
32
|
Walton E, Baltramonaityte V, Calhoun V, Heijmans BT, Thompson PM, Cecil CAM. A systematic review of neuroimaging epigenetic research: calling for an increased focus on development. Mol Psychiatry 2023; 28:2839-2847. [PMID: 37185958 PMCID: PMC10615743 DOI: 10.1038/s41380-023-02067-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Epigenetic mechanisms, such as DNA methylation (DNAm), have gained increasing attention as potential biomarkers and mechanisms underlying risk for neurodevelopmental, psychiatric and other brain-based disorders. Yet, surprisingly little is known about the extent to which DNAm is linked to individual differences in the brain itself, and how these associations may unfold across development - a time of life when many of these disorders emerge. Here, we systematically review evidence from the nascent field of Neuroimaging Epigenetics, combining structural or functional neuroimaging measures with DNAm, and the extent to which the developmental period (birth to adolescence) is represented in these studies. We identified 111 articles published between 2011-2021, out of which only a minority (21%) included samples under 18 years of age. Most studies were cross-sectional (85%), employed a candidate-gene approach (67%), and examined DNAm-brain associations in the context of health and behavioral outcomes (75%). Nearly half incorporated genetic data, and a fourth investigated environmental influences. Overall, studies support a link between peripheral DNAm and brain imaging measures, but there is little consistency in specific findings and it remains unclear whether DNAm markers present a cause, correlate or consequence of brain alterations. Overall, there is large heterogeneity in sample characteristics, peripheral tissue and brain outcome examined as well as the methods used. Sample sizes were generally low to moderate (median nall = 98, ndevelopmental = 80), and attempts at replication or meta-analysis were rare. Based on the strengths and weaknesses of existing studies, we propose three recommendations on how advance the field of Neuroimaging Epigenetics. We advocate for: (1) a greater focus on developmentally oriented research (i.e. pre-birth to adolescence); (2) the analysis of large, prospective, pediatric cohorts with repeated measures of DNAm and imaging to assess directionality; and (3) collaborative, interdisciplinary science to identify robust signals, triangulate findings and enhance translational potential.
Collapse
Affiliation(s)
- Esther Walton
- Department of Psychology, University of Bath, Bath, UK.
| | | | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Dept. of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Charlotte A M Cecil
- Molecular Epidemiology, Dept. of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Olstad EW, Nordeng HME, Sandve GK, Lyle R, Gervin K. Effects of prenatal exposure to (es)citalopram and maternal depression during pregnancy on DNA methylation and child neurodevelopment. Transl Psychiatry 2023; 13:149. [PMID: 37147306 PMCID: PMC10163054 DOI: 10.1038/s41398-023-02441-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Studies assessing associations between prenatal exposure to antidepressants, maternal depression, and offspring DNA methylation (DNAm) have been inconsistent. Here, we investigated whether prenatal exposure to citalopram or escitalopram ((es)citalopram) and maternal depression is associated with differences in DNAm. Then, we examined if there is an interaction effect of (es)citalopram exposure and DNAm on offspring neurodevelopmental outcomes. Finally, we investigated whether DNAm at birth correlates with neurodevelopmental trajectories in childhood. We analyzed DNAm in cord blood from the Norwegian Mother, Father and Child Cohort Study (MoBa) biobank. MoBa contains questionnaire data on maternal (es)citalopram use and depression during pregnancy and information about child neurodevelopmental outcomes assessed by internationally recognized psychometric tests. In addition, we retrieved ADHD diagnoses from the Norwegian Patient Registry and information on pregnancies from the Medical Birth Registry of Norway. In total, 958 newborn cord blood samples were divided into three groups: (1) prenatal (es)citalopram exposed (n = 306), (2) prenatal maternal depression exposed (n = 308), and (3) propensity score-selected controls (n = 344). Among children exposed to (es)citalopram, there were more ADHD diagnoses and symptoms and delayed communication and psychomotor development. We did not identify differential DNAm associated with (es)citalopram or depression, nor any interaction effects on neurodevelopmental outcomes throughout childhood. Trajectory modeling identified subgroups of children following similar developmental patterns. Some of these subgroups were enriched for children exposed to maternal depression, and some subgroups were associated with differences in DNAm at birth. Interestingly, several of the differentially methylated genes are involved in neuronal processes and development. These results suggest DNAm as a potential predictive molecular marker of later abnormal neurodevelopmental outcomes, but we cannot conclude whether DNAm links prenatal (es)citalopram exposure or maternal depression with child neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Emilie Willoch Olstad
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway.
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Geir Kjetil Sandve
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Nigg JT. Considerations toward an epigenetic and common pathways theory of mental disorder. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:297-313. [PMID: 37126061 PMCID: PMC10153068 DOI: 10.1037/abn0000748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Psychopathology emerges from the dynamic interplay of physiological and mental processes and ecological context. It can be seen as a failure of recursive, homeostatic processes to achieve adaptive re-equilibrium. This general statement can be actualized with consideration of polygenic liability, early exposures, and multiunit (multi-"level") analysis of the psychological action and the associated physiological and neural operations, all in the context of the developmental exposome. This article begins by identifying key principles and clarifying key terms necessary to mental disorder theory. It then ventures a sketch of a model that highlights epigenetic dynamics and proposes a common pathways hypothesis toward psychopathology. An epigenetic perspective elevates the importance of developmental context and adaptive systems, particularly in early life, while opening the door to new mechanistic discovery. The key proposal is that a finite number of homeostatic biological and psychological mechanisms are shared across most risky environments (and possibly many genetic liabilities) for psychopathology. Perturbation of these mediating mechanisms leads to development of psychopathology. A focus on dynamic changes in these homeostatic mechanisms across multiple units of analysis and time points can render the problem of explaining psychopathology tractable. Key questions include the mapping of recursive processes over time, at adequate density, as mental disorders unfold across development. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University
| |
Collapse
|
35
|
Sonuga-Barke EJS, Becker SP, Bölte S, Castellanos FX, Franke B, Newcorn JH, Nigg JT, Rohde LA, Simonoff E. Annual Research Review: Perspectives on progress in ADHD science - from characterization to cause. J Child Psychol Psychiatry 2023; 64:506-532. [PMID: 36220605 PMCID: PMC10023337 DOI: 10.1111/jcpp.13696] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
The science of attention-deficit/hyperactivity disorder (ADHD) is motivated by a translational goal - the discovery and exploitation of knowledge about the nature of ADHD to the benefit of those individuals whose lives it affects. Over the past fifty years, scientific research has made enormous strides in characterizing the ADHD condition and in understanding its correlates and causes. However, the translation of these scientific insights into clinical benefits has been limited. In this review, we provide a selective and focused survey of the scientific field of ADHD, providing our personal perspectives on what constitutes the scientific consensus, important new leads to be highlighted, and the key outstanding questions to be addressed going forward. We cover two broad domains - clinical characterization and, risk factors, causal processes and neuro-biological pathways. Part one focuses on the developmental course of ADHD, co-occurring characteristics and conditions, and the functional impact of living with ADHD - including impairment, quality of life, and stigma. In part two, we explore genetic and environmental influences and putative mediating brain processes. In the final section, we reflect on the future of the ADHD construct in the light of cross-cutting scientific themes and recent conceptual reformulations that cast ADHD traits as part of a broader spectrum of neurodivergence.
Collapse
Affiliation(s)
- Edmund J S Sonuga-Barke
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
- Department of Child & Adolescent Psychiatry, Aarhus University, Denmark
| | - Stephen P. Becker
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Sven Bölte
- Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
- Division of Child and Adolescent Psychiatry, Center for Psychiatry Research, Stockholm County Council, Sweden
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joel T. Nigg
- Department of Psychiatry, Oregon Health and Science University, USA
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Brazil; National Institute of Developmental Psychiatry, Brazil
| | - Emily Simonoff
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
| |
Collapse
|
36
|
Dufault RJ, Crider RA, Deth RC, Schnoll R, Gilbert SG, Lukiw WJ, Hitt AL. Higher rates of autism and attention deficit/hyperactivity disorder in American children: Are food quality issues impacting epigenetic inheritance? World J Clin Pediatr 2023; 12:25-37. [PMID: 37034430 PMCID: PMC10075020 DOI: 10.5409/wjcp.v12.i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
In the United States, schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals. Pediatricians may play a key role in helping children access special education services. The number of children ages 6-21 in the United States receiving special education services increased 10.4% from 2006 to 2021. Children receiving special education services under the autism category increased 242% during the same period. The demand for special education services for children under the developmental delay and other health impaired categories increased by 184% and 83% respectively. Although student enrollment in American schools has remained stable since 2006, the percentage distribution of children receiving special education services nearly tripled for the autism category and quadrupled for the developmental delay category by 2021. Allowable heavy metal residues remain persistent in the American food supply due to food ingredient manufacturing processes. Numerous clinical trial data indicate heavy metal exposures and poor diet are the primary epigenetic factors responsible for the autism and attention deficit hyperactivity disorder epidemics. Dietary heavy metal exposures, especially inorganic mercury and lead may impact gene behavior across generations. In 2021, the United States Congress found heavy metal residues problematic in the American food supply but took no legislative action. Mandatory health warning labels on select foods may be the only way to reduce dietary heavy metal exposures and improve child learning across generations.
Collapse
Affiliation(s)
- Renee J Dufault
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
| | - Raquel A Crider
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Roseanne Schnoll
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Health and Nutrition Sciences, Brooklyn College of CUNY, Brooklyn, NY 11210, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Amanda L Hitt
- Food Integrity Campaign, Government Accountability Project, Columbia, WA 20006, United States
- Department of Legal, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
37
|
Rijlaarsdam J, Cosin-Tomas M, Schellhas L, Abrishamcar S, Malmberg A, Neumann A, Felix JF, Sunyer J, Gutzkow KB, Grazuleviciene R, Wright J, Kampouri M, Zar HJ, Stein DJ, Heinonen K, Räikkönen K, Lahti J, Hüls A, Caramaschi D, Alemany S, Cecil CAM. DNA methylation and general psychopathology in childhood: an epigenome-wide meta-analysis from the PACE consortium. Mol Psychiatry 2023; 28:1128-1136. [PMID: 36385171 PMCID: PMC7614743 DOI: 10.1038/s41380-022-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
The general psychopathology factor (GPF) has been proposed as a way to capture variance shared between psychiatric symptoms. Despite a growing body of evidence showing both genetic and environmental influences on GPF, the biological mechanisms underlying these influences remain unclear. In the current study, we conducted epigenome-wide meta-analyses to identify both probe- and region-level associations of DNA methylation (DNAm) with school-age general psychopathology in six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. DNAm was examined both at birth (cord blood; prospective analysis) and during school-age (peripheral whole blood; cross-sectional analysis) in total samples of N = 2178 and N = 2190, respectively. At school-age, we identified one probe (cg11945228) located in the Bromodomain-containing protein 2 gene (BRD2) that negatively associated with GPF (p = 8.58 × 10-8). We also identified a significant differentially methylated region (DMR) at school-age (p = 1.63 × 10-8), implicating the SHC Adaptor Protein 4 (SHC4) gene and the EP300-interacting inhibitor of differentiation 1 (EID1) gene that have been previously implicated in multiple types of psychiatric disorders in adulthood, including obsessive compulsive disorder, schizophrenia, and major depressive disorder. In contrast, no prospective associations were identified with DNAm at birth. Taken together, results of this study revealed some evidence of an association between DNAm at school-age and GPF. Future research with larger samples is needed to further assess DNAm variation associated with GPF.
Collapse
Affiliation(s)
- Jolien Rijlaarsdam
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Centro de investigación biomédica en red en epidemiología y salud pública (ciberesp), Madrid, Spain.
| | - Laura Schellhas
- School of Psychological Science, MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg, Eppendorf, Germany
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anni Malmberg
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
| | | | - Janine F Felix
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de investigación biomédica en red en epidemiología y salud pública (ciberesp), Madrid, Spain
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mariza Kampouri
- Department of Social Medicine, University of Crete, Crete, Greece
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Kati Heinonen
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
- Psychology/ Welfare Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Katri Räikkönen
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology & Logopedics, University of Helsinki, Helsinki, Finland
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Doretta Caramaschi
- Medical Research Council Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Psychology, , University of Exeter, Exeter, UK
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
38
|
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH. DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep 2023; 13:3501. [PMID: 36859453 PMCID: PMC9977725 DOI: 10.1038/s41598-023-29843-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic influence plays a role in the association between exposure to air pollution and attention deficit hyperactivity disorder (ADHD); however, research regarding sulfur dioxide (SO2) is scarce. Herein, we investigate the associations between prenatal SO2 exposure and ADHD rating scale (ARS) at ages 4, 6 and 8 years repeatedly in a mother-child cohort (n = 329). Whole blood samples were obtained at ages 2 and 6 years, and genome-wide DNA methylation (DNAm) was analyzed for 51 children using the Illumina Infinium HumanMethylation BeadChip. We analyzed the associations between prenatal SO2 exposure and DNAm levels at ages 2 and 6, and further investigated the association between the DNAm and ARS at ages 4, 6 and 8. Prenatal SO2 exposure was associated with ADHD symptoms. From candidate gene analysis, DNAm levels at the 6 CpGs at age 2 were associated with prenatal SO2 exposure levels. Of the 6 CpGs, cg07583420 (INS-IGF2) was persistently linked with ARS at ages 4, 6 and 8. Epigenome-wide analysis showed that DNAm at 6733 CpG sites were associated with prenatal SO2 exposure, of which 58 CpGs involved in Notch signalling pathway were further associated with ARS at age 4, 6 and 8 years, persistently. DNAm at age 6 was not associated with prenatal SO2 exposure. Changes in DNAm levels associated with prenatal SO2 exposure during early childhood are associated with increases in ARS in later childhood.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Health Research Institute, National Medical Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Zachary Kaminsky
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Østerster Farimagsgade 5, 1014, København K, Copenhagen, Denmark.
| |
Collapse
|
39
|
Feil D, Abrishamcar S, Christensen GM, Vanker A, Koen N, Kilanowski A, Hoffman N, Wedderburn CJ, Donald KA, Kobor MS, Zar HJ, Stein DJ, Hüls A. DNA methylation as a potential mediator of the association between indoor air pollution and neurodevelopmental delay in a South African birth cohort. Clin Epigenetics 2023; 15:31. [PMID: 36855151 PMCID: PMC9972733 DOI: 10.1186/s13148-023-01444-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Exposure to indoor air pollution during pregnancy has been linked to neurodevelopmental delay in toddlers. Epigenetic modification, particularly DNA methylation (DNAm), may explain this link. In this study, we employed three high-dimensional mediation analysis methods (HIMA, DACT, and gHMA) followed by causal mediation analysis to identify differentially methylated CpG sites and genes that mediate the association between indoor air pollution and neurodevelopmental delay. Analyses were performed using data from 142 mother to child pairs from a South African birth cohort, the Drakenstein Child Health Study. DNAm from cord blood was measured using the Infinium MethylationEPIC and HumanMethylation450 arrays. Neurodevelopment was assessed at age 2 years using the Bayley Scores of Infant and Toddler Development, 3rd edition across four domains (cognitive development, general adaptive behavior, language, and motor function). Particulate matter with an aerodynamic diameter of 10 μm or less (PM10) was measured inside participants' homes during the second trimester of pregnancy. RESULTS A total of 29 CpG sites and 4 genes (GOPC, RP11-74K11.1, DYRK1A, RNMT) were identified as significant mediators of the association between PM10 and cognitive neurodevelopment. The estimated proportion mediated (95%-confidence interval) ranged from 0.29 [0.01, 0.86] for cg00694520 to 0.54 [0.11, 1.56] for cg05023582. CONCLUSIONS Our findings suggest that DNAm may mediate the association between prenatal PM10 exposure and cognitive neurodevelopment. DYRK1A and several genes that our CpG sites mapped to, including CNKSR1, IPO13, IFNGR1, LONP2, and CDH1, are associated with biological pathways implicated in cognitive neurodevelopment and three of our identified CpG sites (cg23560546 [DAPL1], cg22572779 [C6orf218], cg15000966 [NT5C]) have been previously associated with fetal brain development. These findings are novel and add to the limited literature investigating the relationship between indoor air pollution, DNAm, and neurodevelopment, particularly in low- and middle-income country settings and non-white populations.
Collapse
Affiliation(s)
- Dakotah Feil
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anna Kilanowski
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
- German Research Center for Environmental Health, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Nadia Hoffman
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Sato JR, Biazoli CE, Bueno APA, Caye A, Pan PM, Santoro M, Honorato-Mauer J, Salum GA, Hoexter MQ, Bressan RA, Jackowski AP, Miguel EC, Belangero S, Rohde LA. Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12838. [PMID: 36811275 PMCID: PMC10067387 DOI: 10.1111/gbb.12838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Big Data, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Department of Experimental and Biological Psychology, Queen Mary University of London, London, UK
| | - Ana Paula Arantes Bueno
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Arthur Caye
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Marcos Santoro
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Jessica Honorato-Mauer
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Queiroz Hoexter
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Andrea Parolin Jackowski
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sintia Belangero
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,UniEduK, Jaguariúna, Brazil.,ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
41
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
42
|
da Silva BS, Grevet EH, Silva LCF, Ramos JKN, Rovaris DL, Bau CHD. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. DISCOVER MENTAL HEALTH 2023; 3:2. [PMID: 37861876 PMCID: PMC10501041 DOI: 10.1007/s44192-022-00030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 10/21/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent psychiatric condition characterized by developmentally inappropriate symptoms of inattention and/or hyperactivity/impulsivity, which leads to impairments in the social, academic, and professional contexts. ADHD diagnosis relies solely on clinical assessment based on symptom evaluation and is sometimes challenging due to the substantial heterogeneity of the disorder in terms of clinical and pathophysiological aspects. Despite the difficulties imposed by the high complexity of ADHD etiology, the growing body of research and technological advances provide good perspectives for understanding the neurobiology of the disorder. Such knowledge is essential to refining diagnosis and identifying new therapeutic options to optimize treatment outcomes and associated impairments, leading to improvements in all domains of patient care. This review is intended to be an updated outline that addresses the etiological and neurobiological aspects of ADHD and its treatment, considering the impact of the "omics" era on disentangling the multifactorial architecture of ADHD.
Collapse
Affiliation(s)
- Bruna Santos da Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luiza Carolina Fagundes Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - João Kleber Neves Ramos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Diego Luiz Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
43
|
The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep 2022; 14:28-37. [PMID: 36590248 PMCID: PMC9794904 DOI: 10.1016/j.ibneur.2022.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies related to neurological disorders and neurodegenerative diseases have pointed to the role of epigenetic changes such as DNA methylation, histone modification, and noncoding RNAs. DNA methylation machinery controls the dynamic regulation of methylation patterns in discrete brain regions. Objective This review aims to describe the role of DNA methylation in inhibiting and progressing neurological and neurodegenerative disorders and therapeutic approaches. Methods A Systematic search of PubMed, Web of Science, and Cochrane Library was conducted for all qualified studies from 2000 to 2022. Results For the current need of time, we have focused on the DNA methylation role in neurological and neurodegenerative diseases and the expression of genes involved in neurodegeneration such as Alzheimer's, Depression, and Rett Syndrome. Finally, it appears that the various epigenetic changes do not occur separately and that DNA methylation and histone modification changes occur side by side and affect each other. We focused on the role of modification of DNA methylation in several genes associated with depression (NR3C1, NR3C2, CRHR1, SLC6A4, BDNF, and FKBP5), Rett syndrome (MECP2), Alzheimer's, depression (APP, BACE1, BIN1 or ANK1) and Parkinson's disease (SNCA), as well as the co-occurring modifications to histones and expression of non-coding RNAs. Understanding these epigenetic changes and their interactions will lead to better treatment strategies. Conclusion This review captures the state of understanding of the epigenetics of neurological and neurodegenerative diseases. With new epigenetic mechanisms and targets undoubtedly on the horizon, pharmacological modulation and regulation of epigenetic processes in the brain holds great promise for therapy.
Collapse
|
44
|
Leake DW. Tracing Slow Phenoptosis to the Prenatal Stage in Social Vertebrates. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1512-1527. [PMID: 36717460 DOI: 10.1134/s0006297922120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vladimir Skulachev's coining of the term "phenoptosis" 25 years ago (Skulachev, V. P., Biochemistry (Moscow), 62, 1997) highlighted the theoretical possibility that aging is a programmed process to speed the exit of individuals posing some danger to their social group. While rapid "acute phenoptosis" might occur at any age (e.g., to prevent spread of deadly infections), "slow phenoptosis" is generally considered to occur later in life in the form of chronic age-related disorders. However, recent research indicates that risks for such chronic disorders can be greatly raised by early life adversity, especially during the prenatal stage. Much of this research uses indicators of biological aging, the speeding or slowing of natural physiological deterioration in response to environmental inputs, leading to divergence from chronological age. Studies using biological aging indicators commonly find it is accelerated not only in older individuals with chronic disorders, but also in very young individuals with health problems. This review will explain how accelerated biological aging equates to slow phenoptosis. Its occurrence even in the prenatal stage is theoretically supported by W. D. Hamilton's proposal that offsprings detecting they have dangerous mutations should then automatically speed their demise, in order to improve their inclusive fitness by giving their parents the chance to produce other fitter siblings.
Collapse
Affiliation(s)
- David W Leake
- University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
45
|
Cecil CAM, Nigg JT. Epigenetics and ADHD: Reflections on Current Knowledge, Research Priorities and Translational Potential. Mol Diagn Ther 2022; 26:581-606. [PMID: 35933504 PMCID: PMC7613776 DOI: 10.1007/s40291-022-00609-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and debilitating neurodevelopmental disorder influenced by both genetic and environmental factors, typically identified in the school-age years but hypothesized to have developmental origins beginning in utero. To improve current strategies for prediction, prevention and treatment, a central challenge is to delineate how, at a molecular level, genetic and environmental influences jointly shape ADHD risk, phenotypic presentation, and developmental course. Epigenetic processes that regulate gene expression, such as DNA methylation, have emerged as a promising molecular system in the search for both biomarkers and mechanisms to address this challenge. In this Current Opinion, we discuss the relevance of epigenetics (specifically DNA methylation) for ADHD research and clinical practice, starting with the current state of knowledge, what challenges we have yet to overcome, and what the future may hold in terms of methylation-based applications for personalized medicine in ADHD. We conclude that the field of epigenetics and ADHD is promising but is still in its infancy, and the potential for transformative translational applications remains a distant goal. Nevertheless, rapid methodological advances, together with the rise of collaborative science and increased availability of high-quality, longitudinal data make this a thriving research area that in future may contribute to the development of new tools for improved prediction, management, and treatment of ADHD.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| | - Joel T Nigg
- Division of Psychology, Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
46
|
Abrishamcar S, Chen J, Feil D, Kilanowski A, Koen N, Vanker A, Wedderburn CJ, Donald KA, Zar HJ, Stein DJ, Hüls A. DNA methylation as a potential mediator of the association between prenatal tobacco and alcohol exposure and child neurodevelopment in a South African birth cohort. Transl Psychiatry 2022; 12:418. [PMID: 36180424 PMCID: PMC9525659 DOI: 10.1038/s41398-022-02195-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
Prenatal tobacco exposure (PTE) and prenatal alcohol exposure (PAE) have been associated with an increased risk of delayed neurodevelopment in children as well as differential newborn DNA methylation (DNAm). However, the biological mechanisms connecting PTE and PAE, DNAm, and neurodevelopment are largely unknown. Here we aim to determine whether differential DNAm mediates the association between PTE and PAE and neurodevelopment at 6 (N = 112) and 24 months (N = 184) in children from the South African Drakenstein Child Health Study. PTE and PAE were assessed antenatally using urine cotinine measurements and the ASSIST questionnaire, respectively. Cord blood DNAm was measured using the EPIC and 450 K BeadChips. Neurodevelopment (cognitive, language, motor, adaptive behavior, socioemotional) was measured using the Bayley Scales of Infant and Toddler Development, Third Edition. We constructed methylation risk scores (MRS) for PTE and PAE and conducted causal mediation analysis (CMA) with these MRS as mediators. Next, we conducted a high-dimensional mediation analysis to identify individual CpG sites as potential mediators, followed by a CMA to estimate the average causal mediation effects (ACME) and total effect (TE). PTE and PAE were associated with neurodevelopment at 6 but not at 24 months. PTE MRS reached a prediction accuracy (R2) of 0.23 but did not significantly mediate the association between PTE and neurodevelopment. PAE MRS was not predictive of PAE (R2 = 0.006). For PTE, 31 CpG sites and eight CpG sites were identified as significant mediators (ACME and TE P < 0.05) for the cognitive and motor domains at 6 months, respectively. For PAE, 16 CpG sites and 1 CpG site were significant mediators for the motor and adaptive behavior domains at 6 months, respectively. Several of the associated genes, including MAD1L1, CAMTA1, and ALDH1A2 have been implicated in neurodevelopmental delay, suggesting that differential DNAm may partly explain the biological mechanisms underlying the relationship between PTE and PAE and child neurodevelopment.
Collapse
Affiliation(s)
- Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dakotah Feil
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Kirsten A Donald
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
47
|
Christensen GM, Rowcliffe C, Chen J, Vanker A, Koen N, Jones MJ, Gladish N, Hoffman N, Donald KA, Wedderburn CJ, Kobor MS, Zar HJ, Stein DJ, Hüls A. In-utero exposure to indoor air pollution or tobacco smoke and cognitive development in a South African birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155394. [PMID: 35460774 PMCID: PMC9177804 DOI: 10.1016/j.scitotenv.2022.155394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS There is increasing evidence indicating that air pollution exposure is associated with neuronal damage. Since pregnancy is a critical window of vulnerability, air pollution exposure during this period could have adverse effects on neurodevelopment. This study aims 1) to analyze associations of prenatal exposure to indoor air pollution (particulate matter with diameters ≤10 μm, PM10) and tobacco smoke with neurodevelopment and 2) to determine whether these associations are mediated by deviations of epigenetic gestational age from chronological gestational age (ΔGA). METHODS Data of 734 children from the South African Drakenstein Child Health Study were analyzed. Prenatal PM10 exposure was measured using devices placed in the families' homes. Maternal smoking during pregnancy was determined by maternal urine cotinine measures. The Bayley Scales of Infant and Toddler Development III (BSID-III) was used to measure cognition, language and motor development and adaptive behavior at two years of age. Linear regression models adjusted for maternal age, gestational age, sex of child, ancestry, birth weight/length, and socioeconomic status were used to explore associations between air pollutants and BSID-III scores. A mediation analysis was conducted to analyze if these associations were mediated by ΔGA using DNA methylation measurements from cord blood. RESULTS An increase of one interquartile range in natural-log transformed PM10 (lnPM10; 1.58 μg/m3) was significantly associated with lower composite scores in cognition, language, and adaptive behavior sub-scores (composite score β-estimate [95%-confidence interval]: -0.950 [-1.821, -0.120]). Maternal smoking was significantly associated with lower adaptive behavior scores (-3.386 [-5.632, -1.139]). Associations were not significantly mediated by ΔGA (e.g., for PM10 and cognition, proportion mediated [p-value]: 4% [0.52]). CONCLUSION We found an association of prenatal exposure to indoor air pollution (PM10) and tobacco smoke on neurodevelopment at two years of age, particularly cognition, language, and adaptive behavior. Further research is needed to understand underlying biological mediators.
Collapse
Affiliation(s)
- Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Claire Rowcliffe
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Children's Hospital Research, Institute of Manitoba, Winnipeg, Canada
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Nadia Hoffman
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, USA.
| |
Collapse
|
48
|
Silk T, Dipnall L, Wong YT, Craig JM. Epigenetics and ADHD. Curr Top Behav Neurosci 2022; 57:269-289. [PMID: 35505060 DOI: 10.1007/7854_2022_339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is robust evidence of genetic susceptibility to Attention-Deficit Hyperactivity Disorder (ADHD); however, there still remains significant variability that is not attributable to genetic factors. The emerging field of epigenetics is beginning to reveal how genotypic expression can be mediated by an array of variables including external environmental exposure, inter-individual developmental variation, and by the genome itself. Epigenetic modification plays a central role in neurobiological and developmental processes, and disturbances to these processes can have implications for a range of mental health problems. Although the field is still in its early days, this chapter will discuss the current standing of epigenetic research into ADHD. Firstly, key relevant epigenetic processes will be discussed. This will be followed by an overview of the key findings to date investigating the role of epigenetics in ADHD. Human studies have included the theory-driven approach of candidate-gene studies (CGS), as well as the increasingly popular exploratory approach of epigenome-wide association studies (EWAS). Overall, the findings are heterogeneous. However, it is possible that with more longitudinal studies and better characterised cohorts, both predictive and protective links between epigenetic processes and ADHD will be revealed.
Collapse
Affiliation(s)
- Timothy Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Lillian Dipnall
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
49
|
Peedicayil J. The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1642-1650. [PMID: 34544344 PMCID: PMC9881064 DOI: 10.2174/1570159x19666210920091036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India,Address correspondence to this author at the Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India;Tel: 91-0416-2284237; E-mail:
| |
Collapse
|
50
|
Taeubert MJ, de Prado-Bert P, Geurtsen ML, Mancano G, Vermeulen MJ, Reiss IKM, Caramaschi D, Sunyer J, Sharp GC, Julvez J, Muckenthaler MU, Felix JF. Maternal iron status in early pregnancy and DNA methylation in offspring: an epigenome-wide meta-analysis. Clin Epigenetics 2022; 14:59. [PMID: 35505416 PMCID: PMC9066980 DOI: 10.1186/s13148-022-01276-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unbalanced iron homeostasis in pregnancy is associated with an increased risk of adverse birth and childhood health outcomes. DNA methylation has been suggested as a potential underlying mechanism linking environmental exposures such as micronutrient status during pregnancy with offspring health. We performed a meta-analysis on the association of maternal early-pregnancy serum ferritin concentrations, as a marker of body iron stores, and cord blood DNA methylation. We included 1286 mother-newborn pairs from two population-based prospective cohorts. Serum ferritin concentrations were measured in early pregnancy. DNA methylation was measured with the Infinium HumanMethylation450 BeadChip (Illumina). We examined epigenome-wide associations of maternal early-pregnancy serum ferritin and cord blood DNA methylation using robust linear regression analyses, with adjustment for confounders and performed fixed-effects meta-analyses. We additionally examined whether associations of any CpGs identified in cord blood persisted in the peripheral blood of older children and explored associations with other markers of maternal iron status. We also examined whether similar findings were present in the association of cord blood serum ferritin concentrations with cord blood DNA methylation. RESULTS Maternal early-pregnancy serum ferritin concentrations were inversely associated with DNA methylation at two CpGs (cg02806645 and cg06322988) in PRR23A and one CpG (cg04468817) in PRSS22. Associations at two of these CpG sites persisted at each of the follow-up time points in childhood. Cord blood serum ferritin concentrations were not associated with cord blood DNA methylation levels at the three identified CpGs. CONCLUSION Maternal early-pregnancy serum ferritin concentrations were associated with lower cord blood DNA methylation levels at three CpGs and these associations partly persisted in older children. Further studies are needed to uncover the role of these CpGs in the underlying mechanisms of the associations of maternal iron status and offspring health outcomes.
Collapse
Affiliation(s)
- M J Taeubert
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatric Oncology, Hematology and Immunology, University Medical Center Heidelberg, Heidelberg, Germany
| | - P de Prado-Bert
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - M L Geurtsen
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - G Mancano
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
| | - M J Vermeulen
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - I K M Reiss
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - D Caramaschi
- College of Life and Environmental Sciences, Psychology, University of Exeter, Exeter, UK
| | - J Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - G C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - J Julvez
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - M U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Medical Center Heidelberg, Heidelberg, Germany
| | - J F Felix
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|