1
|
Zheng CY, Blackwell JM, Fontanini A. Deficits in taste-guided behaviors and central processing of taste in the transgenic TDP-43 Q331K mouse model of frontotemporal dementia. Neurobiol Dis 2025; 207:106850. [PMID: 39978485 DOI: 10.1016/j.nbd.2025.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Frontotemporal dementia (FTD) is the second most prevalent form of presenile dementia. Patients with FTD show prominent chemosensory symptoms such as abnormal detection and recognition thresholds for various gustatory stimuli. The chemosensory symptoms of FTD may be related to damage of the gustatory insular cortex (GC) as the insular cortex is one of the primary targets in FTD disease progression. Little is known about how circuitry changes in GC lead to deficits in taste processing in FTD. Here we tested the hypothesis that gustatory deficits are present in a mouse model of FTD, and that they are related to abnormal patterns of neural activity in GC. We behaviorally evaluated a transgenic FTD mouse model overexpressing human TDP-43 with a Q331K mutation (TDP-43Q331K) in a brief access test and a taste-based two alternative forced choice (2AFC) task probing the ability to discriminate sucrose/NaCl mixtures. TDP-43Q331K mice showed abnormal sucrose consumption and an impaired ability to discriminate taste mixtures compared to non-transgenic control mice. To assess deficits in GC taste processing, we relied on electrophysiological recordings using chronically implanted tetrodes in alert TDP-43Q331K and non-transgenic control mice. The proportion of taste-selective neurons in TDP-43Q331K mice decreased over time compared to control mice. Similarly, encoding of chemosensory information and processing of taste palatability were impaired in TDP-43Q331K mice compared to control mice. Overall, these results demonstrate taste-related symptoms in a mouse model of FTD and provide evidence for altered taste processing in GC of TDP-43Q331K mice compared to control mice.
Collapse
Affiliation(s)
- Camelia Yuejiao Zheng
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Jennifer M Blackwell
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alfredo Fontanini
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Ha J, Kwon GE, Son Y, Jang SA, Cho SY, Park SJ, Kim H, Lee J, Lee J, Seo D, Lee M, Lee DY, Choi MH, Kim E. Cholesterol profiling reveals 7β-hydroxycholesterol as a pathologically relevant peripheral biomarker of Alzheimer's disease. Psychiatry Clin Neurosci 2024; 78:473-481. [PMID: 38923201 PMCID: PMC11488599 DOI: 10.1111/pcn.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
AIM Cholesterol homeostasis is associated with Alzheimer's disease (AD). Despite the multitude of cholesterol metabolites, little is known about which metabolites are directly involved in AD pathogenesis and can serve as its potential biomarkers. METHODS To identify "hit" metabolites, steroid profiling was conducted in mice with different age, diet, and genotype and also in humans with normal cognition, mild cognitive impairment, and AD using gas chromatography-mass spectrometry. Then, using one of the "hit" molecules (7β-hydroxycholesterol; OHC), molecular and histopathological experiment and behavioral testing were conducted in normal mice following its intracranial stereotaxic injection to see whether this molecule drives AD pathogenesis and causes cognitive impairment. RESULTS The serum levels of several metabolites, including 7β-OHC, were increased by aging in the 3xTg-AD unlike normal mice. Consistently, the levels of 7β-OHC were increased in the hairs of patients with AD and were correlated with clinical severity. We found that 7β-OHC directly affects AD-related pathophysiology; intrahippocampal injection of 7β-OHC induced astrocyte and microglial cell activation, increased the levels of pro-inflammatory cytokines (TNF-alpha, IL-1β, IL-6), and enhanced amyloidogenic pathway. Mice treated with 7β-OHC also exhibited deficits in memory and frontal/executive functions assessed by object recognition and 5-choice serial reaction time task, respectively. CONCLUSIONS Our results suggest that 7β-OHC could serve as a convenient, peripheral biomarker of AD. As directly involved in AD pathogenesis, 7β-OHC assay may help actualize personalized medicine in a way to identify an at-risk subgroup as a candidate population for statin-based AD treatment.
Collapse
Affiliation(s)
- Junghee Ha
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Go Eun Kwon
- Molecular Recognition Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
| | - Yumi Son
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulRepublic of Korea
| | - Soo Ah Jang
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulRepublic of Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Metabolism‐Dementia Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| | - Jimin Lee
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Juseok Lee
- Department of MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Dongryul Seo
- Department of MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Myeongjee Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulKorea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Man Ho Choi
- Molecular Recognition Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
| | - Eosu Kim
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulRepublic of Korea
- Metabolism‐Dementia Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
3
|
Godoy-Corchuelo JM, Ali Z, Brito Armas JM, Martins-Bach AB, García-Toledo I, Fernández-Beltrán LC, López-Carbonero JI, Bascuñana P, Spring S, Jimenez-Coca I, Muñoz de Bustillo Alfaro RA, Sánchez-Barrena MJ, Nair RR, Nieman BJ, Lerch JP, Miller KL, Ozdinler HP, Fisher EMC, Cunningham TJ, Acevedo-Arozena A, Corrochano S. TDP-43-M323K causes abnormal brain development and progressive cognitive and motor deficits associated with mislocalised and increased levels of TDP-43. Neurobiol Dis 2024; 193:106437. [PMID: 38367882 PMCID: PMC10988218 DOI: 10.1016/j.nbd.2024.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.
Collapse
Affiliation(s)
- Juan M Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK
| | - Jose M Brito Armas
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain
| | | | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Pablo Bascuñana
- Brain Mapping Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | | | - Maria J Sánchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, Madrid, Spain
| | - Remya R Nair
- MRC Harwell Institute, Oxfordshire, UK; Nucleic Acid Therapy Accelerator (NATA), Harwell Campus, Oxfordshire, UK
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hande P Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, and UCL Queen Square Motor Neuron Disease Centre, UCL, Institute of Neurology, London, UK
| | - Thomas J Cunningham
- MRC Harwell Institute, Oxfordshire, UK; MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain.
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK.
| |
Collapse
|
4
|
Wolpe N, Holton R, Fletcher PC. What Is Mental Effort: A Clinical Perspective. Biol Psychiatry 2024:S0006-3223(24)00065-9. [PMID: 38309319 DOI: 10.1016/j.biopsych.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Although mental effort is a frequently used term, it is poorly defined and understood. Consequently, its usage is frequently loose and potentially misleading. In neuroscience research, the term is used to mean both the cognitive work that is done to meet task demands and the subjective experience of performing that work. We argue that conflating these two meanings hampers progress in understanding cognitive impairments in neuropsychiatric conditions because cognitive work and the subjective experience of it have distinct underlying mechanisms. We suggest that the most coherent and clinically useful perspective on mental effort is that it is a subjective experience. This makes a clear distinction between cognitive impairments that arise from changes in the cognitive apparatus, as in dementia and brain injury, and those that arise from subjective difficulties in carrying out the cognitive work, as in attention-deficit/hyperactivity disorder, depression, and other motivational disorders. We review recent advances in neuroscience research that suggests that the experience of effort has emerged to control task switches so as to minimize costs relative to benefits. We consider how these advances can contribute to our understanding of the experience of increased effort perception in clinical populations. This more specific framing of mental effort will offer a deeper understanding of the mechanisms of cognitive impairments in differing clinical groups and will ultimately facilitate better therapeutic interventions.
Collapse
Affiliation(s)
- Noham Wolpe
- Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Richard Holton
- Faculty of Philosophy, University of Cambridge, Cambridge, United Kingdom
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Elizabeth House, Fulbourn, Cambridge, United Kingdom; Wellcome Trust Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
5
|
Fisher EM, Greensmith L, Malaspina A, Fratta P, Hanna MG, Schiavo G, Isaacs AM, Orrell RW, Cunningham TJ, Arozena AA. Opinion: more mouse models and more translation needed for ALS. Mol Neurodegener 2023; 18:30. [PMID: 37143081 PMCID: PMC10161557 DOI: 10.1186/s13024-023-00619-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.
Collapse
Affiliation(s)
- Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Michael G. Hanna
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
| | - Adrian M. Isaacs
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Richard W. Orrell
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Courtauld Building, 33 Cleveland Street, London, W1W 7FF UK
| | - Abraham Acevedo Arozena
- Research Unit, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, 38320 Spain
| |
Collapse
|
6
|
Hawkes CA, Heath CJ, Sharp MM, Górecki DC, Carare RO. α-Dystrobrevin knockout mice have increased motivation for appetitive reward and altered brain cannabinoid receptor 1 expression. Acta Neuropathol Commun 2022; 10:127. [PMID: 36045406 PMCID: PMC9434862 DOI: 10.1186/s40478-022-01434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
α-Dystrobrevin (α-DB) is a major component of the dystrophin-associated protein complex (DAPC). Knockout (KO) of α-DB in the brain is associated with astrocytic abnormalities and loss of neuronal GABA receptor clustering. Mutations in DAPC proteins are associated with altered dopamine signaling and cognitive and psychiatric disorders, including schizophrenia. This study tested the hypothesis that motivation and associated underlying biological pathways are altered in the absence of α-DB expression. Male wildtype and α-DB KO mice were tested for measures of motivation, executive function and extinction in the rodent touchscreen apparatus. Subsequently, brain tissues were evaluated for mRNA and/or protein levels of dysbindin-1, dopamine transporter and receptor 1 and 2, mu opioid receptor 1 (mOR1) and cannabinoid receptor 1 (CB1). α-DB KO mice had significantly increased motivation for the appetitive reward, while measures of executive function and extinction were unaffected. No differences were observed between wildtype and KO animals on mRNA levels of dysbindin-1 or any of the dopamine markers. mRNA levels of mOR1were significantly decreased in the caudate-putamen and nucleus accumbens of α-DB KO compared to WT animals, but protein levels were unaltered. However, CB1 protein levels were significantly increased in the prefrontal cortex and decreased in the nucleus accumbens of α-DB KO mice. Triple-labelling immunohistochemistry confirmed that changes in CB1 were not specific to astrocytes. These results highlight a novel role for α-DB in the regulation of appetitive motivation that may have implications for other behaviours that involve the dopaminergic and endocannabinoid systems.
Collapse
|
7
|
Lopez-Cruz L, Bussey TJ, Saksida LM, Heath CJ. Using touchscreen-delivered cognitive assessments to address the principles of the 3Rs in behavioral sciences. Lab Anim (NY) 2021; 50:174-184. [PMID: 34140683 DOI: 10.1038/s41684-021-00791-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Despite considerable advances in both in silico and in vitro approaches, in vivo studies that involve animal model systems remain necessary in many research disciplines. Neuroscience is one such area, with studies often requiring access to a complete nervous system capable of dynamically selecting between and then executing a full range of cognitive and behavioral outputs in response to a given stimulus or other manipulation. The involvement of animals in research studies is an issue of active public debate and concern and is therefore carefully regulated. Such regulations are based on the principles of the 3Rs of Replacement, Reduction and Refinement. In the sub-specialty of behavioral neuroscience, Full/Absolute Replacement remains a major challenge, as the complete ex vivo recapitulation of a system as complex and dynamic as the nervous system has yet to be achieved. However, a number of very positive developments have occurred in this area with respect to Relative Replacement and to both Refinement and Reduction. In this review, we discuss the Refinement- and Reduction-related benefits yielded by the introduction of touchscreen-based behavioral assessment apparatus. We also discuss how data generated by a specific panel of behavioral tasks developed for this platform might substantially enhance monitoring of laboratory animal welfare and provide robust, quantitative comparisons of husbandry techniques to define and ensure maintenance of best practice.
Collapse
Affiliation(s)
- Laura Lopez-Cruz
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| |
Collapse
|